Enhanced 2,4,6-Tribromophenol Degradation via Slow-Release S(IV) in Fe(II)-Activated CaSO3 Advanced Oxidation Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Experimental Procedure
2.3. Analytic Methods
3. Results and Discussion
3.1. Comparison of Different Processes in TBP Degradation
3.2. Quantitative Analysis of CaSO3 Slow-Release Process
3.3. Generation Pathways and Oxidative Contribution of Reactive Species
3.4. Effects of Operating Parameters
3.5. Impacts of Water Quality Conditions
3.6. Intermediate Products Identification and Toxicity Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Michałowicz, J.; Włuka, A.; Bukowska, B. A review on environmental occurrence, toxic effects and transformation of man-made bromophenols. Sci. Total Environ. 2022, 811, 152289. [Google Scholar] [CrossRef]
- Shen, Q.; Song, X.; Fan, J.; Chen, C.; Li, Z. UV/Advanced Oxidation Process for Removing Humic Acid from Natural Water: Comparison of Different Methods and Effect of External Factors. Water 2024, 16, 1815. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Show, P.-L.; Juan, J.C.; Ling, T.C.; Lau, B.F.; Lai, S.H.; Ng, E.P. Sustainable landfill leachate treatment: Optimize use of guar gum as natural coagulant and floc characterization. Environ. Res. 2020, 188, 109737. [Google Scholar] [CrossRef]
- Dufour, P.; Pirard, C.; Charlier, C. Determination of phenolic organohalogens in human serum from a Belgian population and assessment of parameters affecting the human contamination. Sci. Total Environ. 2017, 599-600, 1856–1866. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, F.; Cao, L.; Yue, S.; Wang, J.; Wang, S.; Ma, J.; Xie, P. Activation of sulfite by ferric ion for the degradation of 2,4,6-tribromophenol with the addition of sulfite in batches. Chin. Chem. Lett. 2022, 33, 4766–4770. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, L.; Wang, J.; Zou, Y.; Wang, S.; Yue, S.; Wang, Z.; Ma, J. Transformation of tetrabromobisphenol a in the iron ions-catalyzed auto-oxidation of HSO3−/SO32− process. Sep. Purif. Technol. 2020, 235, 116197. [Google Scholar] [CrossRef]
- Leonetti, C.; Butt, C.M.; Hoffman, K.; Miranda, M.L.; Stapleton, H.M. Concentrations of polybrominated diphenyl ethers (PBDEs) and 2,4,6-tribromophenol in human placental tissues. Environ. Int. 2016, 88, 23–29. [Google Scholar] [CrossRef]
- Lamssali, M.; Mantripragada, S.; Deng, D.; Zhang, L. Enhancing Swine Wastewater Treatment: A Sustainable and Systematic Approach through Optimized Chemical Oxygen Demand/Sulfate Mass Ratio in Attached-Growth Anaerobic Bioreactor. Environments 2024, 11, 162. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, F.; Shen, X.; Zhang, D.; Chu, W.; Zhao, H.; Zhao, G. Electronic Control of Traditional Iron–Carbon Electrodes to Regulate the Oxygen Reduction Route to Scale Up Water Purification. Environ. Sci. Technol. 2022, 56, 13740–13750. [Google Scholar] [CrossRef] [PubMed]
- Alsawy, T.; Rashad, E.; El-Qelish, M.; Mohammed, R.H. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. npj Clean Water 2022, 5, 29. [Google Scholar] [CrossRef]
- Huang, Z.H.; Zhang, X.; Wang, Y.X.; Sun, J.Y.; Zhang, H.; Liu, W.L.; Li, M.P.; Ma, X.H.; Xu, Z.L. Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling. Environ. Res. 2020, 187, 109617. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, M.; Chen, M.; Zhou, Y.; Zhu, M. Oxygen vacancies in piezoelectric ZnO twin-mesocrystal to improve peroxymonosulfate utilization efficiency via piezo-activation for antibiotic ornidazole removal. Adv. Mater. 2023, 35, e2209885. [Google Scholar] [CrossRef]
- Zhu, C.; Nie, Y.; Zhao, S.; Fan, Z.; Liu, F.; Li, A. Constructing surface micro-electric fields on hollow single-atom cobalt catalyst for ultrafast and anti-interference advanced oxidation. Appl. Catal. B 2022, 305, 121057. [Google Scholar] [CrossRef]
- Łęcki, T.; Zarębska, K.; Sobczak, K. Skompska Photocatalytic degradation of 4-chlorophenol with the use of FTO/TiO2/SrTiO3 composite prepared by microwave-assisted hydrothermal method. Appl. Surf. Sci. 2019, 470, 991–1002. [Google Scholar] [CrossRef]
- Arora, P.K.; Srivastava, A.; Garg, S.K.; Singh, V.P. Recent advances in degradation of chloronitrophenols. Bioresour. Technol. 2018, 250, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wang, H.; Zhang, Y.; Zhong, Y.; Wang, K. Surface treatment by the Fe(III)/sulfite system for flotation separation of hazardous chlorinated plastics from the mixed waste plastics. J. Hazard. Mater. 2019, 377, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, J.; Xie, P.; Liu, Y. Insights into the photo-reduction of nitrate in the presence of CaSO3: Performance and mechanism. J. Environ. Chem. Eng. 2024, 12, 112292. [Google Scholar] [CrossRef]
- Bai, F.; Liu, Y.; Cheng, Y.; Guo, Y.; Chen, Z.; Cao, L.; Wang, Z.; Xie, P. Treatment of 2,4,6-tribromophenol-contaminated water using iron ion/calcium sulfite: The dual role of oxidation and coagulation. Environ. Sci. Water Res. Technol. 2024, 10, 2491–2499. [Google Scholar] [CrossRef]
- Cheng, X.; Lian, J.; Liu, B.; Zhu, X.; Jin, Y.; Zhang, L.; Tan, F.; Wu, D.; Liang, H. Integrated ferrate and calcium sulfite to treat algae-laden water for controlling ultrafiltration membrane fouling: High-efficiency oxidation and simultaneous cell integrity maintaining. Chem. Eng. J. 2023, 461, 141880. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Jiang, J.; Zhao, Z.; Li, Z.; Zhao, C.; Wang, X.; Dong, S. Bimetallic (Cu, Zn) ZIF-derived S-scheme heterojunction for efficient remediation of aqueous pollutants in visible light/peroxymonosulfate system. Appl. Catal. B 2023, 330, 122539. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C.; Yang, Y.; Zhang, S.; Yan, X.; Xiao, C.; Zhou, Y.; Zhu, Z.; Qi, J.; Sun, X.; et al. Mn-Co dual sites relay activation of peroxymonosulfate for accelerated decontamination. Appl. Catal. B 2023, 330, 122656. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Z.; Wang, J.; Cao, L.; Chen, Z.; Chen, Y.; Liu, Z.; Xie, P.; Ma, J. New insights into the degradation of micro-pollutants in the hydroxylamine enhanced Fe(II)/peracetic acid process: Contribution of reactive species and effects of pH. J. Hazard. Mater. 2023, 441, 129885. [Google Scholar] [CrossRef]
- Bai, F.; Wang, Z.; Wan, G.; Cao, L.; Cheng, Y.; Chen, Z.; Xie, P. Combined oxidation and in situ coagulation in an iron-activated sulfite process for tribromophenol removal in an actual water matrix. Environ. Sci. Water Res. Technol. 2024, 10, 2442–2452. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, L.; Wan, Y.; Wang, J.; Bai, F.; Xie, P. Enhanced degradation of tetrabromobisphenol A by Fe3+/sulfite process under simulated sunlight irradiation. Chemosphere 2021, 285, 131442. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Cai, A.; He, H.; Zhang, G.; Zhang, F.; Fan, X.; Peng, W.; Li, Y. Atomically Fe doped hollow mesoporous carbon spheres for peroxymonosulfate mediated advanced oxidation processes with a dual activation pathway. J. Mater. Chem. A 2022, 10, 20535–20544. [Google Scholar] [CrossRef]
- Wang, S.; Wu, J.; Lu, X.; Xu, W.; Gong, Q.; Ding, J.; Dan, B.; Xie, P. Removal of acetaminophen in the Fe2+/persulfate system: Kinetic model and degradation pathways. Chem. Eng. J. 2019, 358, 1091–1100. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Z.; Cao, L.; Chen, Z.; Chen, Y.; Liu, Z.; Ma, J.; Xie, P. Tailorable morphology control of Prussian blue analogues toward efficient peracetic acid activation for sulfonamides removal. Appl. Catal. B 2024, 342, 123409. [Google Scholar] [CrossRef]
- She, J.X.; Li, W.; Zhang, S.; Gu, C.; Chen, X.; Zheng, H.; Xu, C.; Liu, W. Sensitivity of mass-independent Sn isotope fractionation to UV radiation and magnetic fields. Proc. Natl. Acad. Sci. USA 2025, 122, e2504065122. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bai, X.; Ji, Y.; Chen, D. Enhanced activation of peroxymonosulfate using ternary MOFs-derived MnCoFeO for sulfamethoxazole degradation: Role of oxygen vacancies. J. Hazard. Mater. 2023, 441, 129912. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Yu, Y.; Pan, T.; Li, D.; Lambropoulou, D.; Yang, X. Natural polyphenols enhanced the Cu(II)/peroxymonosulfate (PMS) oxidation: The contribution of Cu(III) and HO•. Water Res. 2020, 186, 116326. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z.; Wang, H.; Almatrafi, E.; Qin, H.; Huang, D.; Zhu, Y.; Zhou, C.; Tian, Q.; Xu, P.; et al. Confinement of ZIF-derived copper-cobalt-zinc oxides in carbon framework for degradation of organic pollutants. J. Hazard. Mater. 2022, 440, 129811. [Google Scholar] [CrossRef]
- Saxena, K.; Brighu, U. A comprehensive methodology for analysis of coagulation performance: Dosing approach, isotherm modelling, FTIR spectroscopy and floc characterization. J. Water Process Eng. 2023, 52, 103509. [Google Scholar] [CrossRef]
- Lv, D.; Zheng, L.; Zhang, H.; Deng, Y. Coagulation of colloidal particles with ferrate(vi). Environ. Sci. Water Res. Technol. 2018, 4, 701–710. [Google Scholar] [CrossRef]
- Zha, X.; Wang, S.; Zhang, D. Reductive Degradation of N-Nitrosodimethylamine via UV/S Water Resulfite Advanced Reduction Process: Efficiency, Influencing Factors and Mechanism. Water 2023, 15, 3670. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, F.; Yin, L.; Wang, H.; Ping, Y.; Ding, J.; Wang, Z.; Xie, P. Enhanced Degradation of Deltamethrin in Water through Ferrous Ion Activated Sulfite: Efficiency and Mechanistic Insights. Water 2024, 16, 8. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, H.-N.; Jin, Y.-F.; Zhai, L.-F.; Sun, M. Co-Fe synergy in CoxFe1-xWO4: The new type peroxymonosulfate activator for sulfamethoxazole degradation. Chem. Eng. J. 2023, 461, 129811. [Google Scholar] [CrossRef]
- Wu, Z.; Bai, S.; Zhang, D.; Yang, S.-T.; Wu, X.; Chen, X.; Jing, L.; Liu, J. The influence of environmental factors on carbon isotopic fractionation during the degradation of tributyl phosphate (TBP) in advanced oxidation processes (AOPs). Process Saf. Environ. Prot. 2025, 202, 107686. [Google Scholar] [CrossRef]
- Ding, Y.; Pan, C.; Peng, X.; Mao, Q.; Xiao, Y.; Fu, L.; Huang, J. Deep mineralization of bisphenol A by catalytic peroxymonosulfate activation with nano CuO/Fe3O4 with strong Cu-Fe interaction. Chem. Eng. J. 2020, 384, 122539. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, P.; Ji, Y.; Lu, J. The Role of Natural Organic Matter in the Degradation of Phenolic Pollutants by Sulfate Radical Oxidation: Radical Scavenging vs Reduction. Environ. Sci. Technol. 2025, 59, 3325–3335. [Google Scholar] [CrossRef] [PubMed]
- Lester, Y.; Dabash, A.; Eghbareya, D. UV sensitization of nitrate and sulfite: A powerful tool for groundwater remediation. Environments 2018, 5, 117. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Cheng, Y.; Cao, L.; Bai, F.; Yue, S.; Xie, P.; Ma, J. Molybdenum disulfide (MoS(2)): A novel activator of peracetic acid for the degradation of sulfonamide antibiotics. Water Res 2021, 201, 117291. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fu, Y.; Peng, Y.; Wang, S.; Liu, Y. HCO3–/CO32– enhanced degradation of diclofenac by Cu(II)-activated peracetic acid: Efficiency and mechanism. Sep. Purif. Technol. 2021, 277, 119434. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, X.; Liu, S.; Wang, Z.; Bai, F.; Cheng, Y.; Lu, D.; Xie, P. Enhanced 2,4,6-Tribromophenol Degradation via Slow-Release S(IV) in Fe(II)-Activated CaSO3 Advanced Oxidation Process. Water 2025, 17, 3100. https://doi.org/10.3390/w17213100
Wang B, Wang X, Liu S, Wang Z, Bai F, Cheng Y, Lu D, Xie P. Enhanced 2,4,6-Tribromophenol Degradation via Slow-Release S(IV) in Fe(II)-Activated CaSO3 Advanced Oxidation Process. Water. 2025; 17(21):3100. https://doi.org/10.3390/w17213100
Chicago/Turabian StyleWang, Bingyang, Xiaochen Wang, Shuang Liu, Zheng Wang, Fan Bai, Yujie Cheng, Dingkun Lu, and Pengchao Xie. 2025. "Enhanced 2,4,6-Tribromophenol Degradation via Slow-Release S(IV) in Fe(II)-Activated CaSO3 Advanced Oxidation Process" Water 17, no. 21: 3100. https://doi.org/10.3390/w17213100
APA StyleWang, B., Wang, X., Liu, S., Wang, Z., Bai, F., Cheng, Y., Lu, D., & Xie, P. (2025). Enhanced 2,4,6-Tribromophenol Degradation via Slow-Release S(IV) in Fe(II)-Activated CaSO3 Advanced Oxidation Process. Water, 17(21), 3100. https://doi.org/10.3390/w17213100
