Forecasting Groundwater Sustainability Through Visual MODFLOW Modelling in the Phulnakhara Canal Command, Coastal Odisha, India
Abstract
1. Introduction
- To develop and calibrate a hydrological model for simulating groundwater flow in the study area.
- To predict the impact of increased groundwater pumping on the water table over the next decade.
- To explore the impact of climate change-induced reductions in recharge on groundwater sustainability.
- To provide recommendations for water management strategies based on the model.
2. Materials
2.1. Research Study Area
2.2. Irrigation Characteristics of the Command Area
2.3. Land Use/Land Cover
2.4. Soil Texture
2.5. Data Sets
3. Methods
3.1. Development of Conceptual Model
3.1.1. Steady-State Flow Equation (For VMOD)
3.1.2. Transient-State Flow Equation (For VMOD)
3.1.3. Assigning of Different Model Parameters
3.1.4. Assigning of Wells
3.1.5. Assigning of Hydrogeological Properties
3.1.6. Assigning of Initial Head
3.1.7. Assigning of Boundary Conditions
3.1.8. Assigning of Recharge and Evapotranspiration
3.1.9. Performance of VMOD
3.1.10. Calibration of the Model
3.1.11. Validation of the Model
3.1.12. Model Prediction
4. Results and Discussions
4.1. Grid Discretization of the Canal Command
4.2. Steady State Calibration
4.3. Transient State Calibration
4.4. Model Validation
4.5. Model Evaluation Criteria
4.6. Sensitivity Analysis
4.7. Water Level Fluctuation
4.8. Model Predictive Simulation for Groundwater Management in the Study Canal Command
5. Discussions
Study Limitations
- Identification of appropriate sites for groundwater recharge to enhance conjunctive use is not included in the current study.
- Based on the climate change impact, the future irrigation water requirement, which is dependent on optimized crop coverage, the future water table fluctuation can be predicted from the VMOD.
- Long-term prediction for future years’ water table fluctuation and water balance study is not attempted here.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An-Vo, D.; Mushtaq, S.; Nguyen-Ky, T.; Bundschuh, J.; Tran-Cong, T.; Maraseni, T.; Reardon-Smith, K. Nonlinear optimisation using production functions to estimate economic benefit of conjunctive water use for multi crop production. Water Resour. Manag. 2015, 29, 2153–2170. [Google Scholar] [CrossRef]
- Mishra, C.; Tiwari, Y.; Nema, A.; Singh, G.; Nema, R.; Kumar, R. Impact of conjunctive use of water resources on crop production in canal command area—Acase study. Indian J. Dryland Agric. Res. Dev. 2015, 30, 37–43. [Google Scholar] [CrossRef]
- Ahmadi, A.; Olyaei, M.; Heydari, Z.; Emami, M.; Zeynolabedin, A.; Ghomlaghi, A.; Daccache, A.; Fogg, G.; Sadegh, M. Groundwater level modeling with machine learning: A systematic review and meta-analysis. Water 2023, 14, 949. [Google Scholar] [CrossRef]
- Petpongpan, C.; Ekkawatpanit, C.; Bailey, R.; Kositgittiwong, D.; Saraphirom, P. Evaluating surface water-groundwater interactions in consequence of changes in climate and groundwater extraction. Water Resour. Manag. 2022, 36, 5767–5783. [Google Scholar] [CrossRef]
- Awadh, S.; Al-Mimar, H.; Yaseen, Z. Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environ. Dev. Sustain. 2020, 23, 1–21. [Google Scholar] [CrossRef]
- Jha, M.; Singh, L.; Nayak, G.; Chowdary, V. Optimization modeling for conjunctive use planning in Upper Damodar River basin, India. J. Clean. Prod. 2020, 273, 123098. [Google Scholar] [CrossRef]
- Directorate of Economics and Statistics. Land Use Statistics, Agricultural Statistics Ata Glance; Government of India; Directorate of Economics and Statistics: New Delhi, India, 2018; pp. 287–307.
- Dhawan, V. Water and Agriculture in India, Background Paper for the South Asia Expert Panel During the Global Forum for Food and Agriculture (GFFA); OAV-German Asia-Pacific Business Association: Hamburg, Germany, 2017; pp. 1–27. [Google Scholar]
- Deshpande, T. Vital Stats: Status of Water Availability for Agriculture in India; PRS Legislative Research, Institute for Policy Research Studies: New Delhi, India, 2016; pp. 1–2. [Google Scholar]
- Dangar, S.; Asoka, A.; Mishra, V. Causes and implications of groundwater depletion in India: A review. J. Hydrol. 2021, 596, 129103. [Google Scholar] [CrossRef]
- Central Ground Water Board (CGWB). Ground Water Information Booklet of Cuttack District, Orissa; Central Ground Water Board (CGWB): Faridabad, India, 2013; pp. 1–27.
- Sahuquillo, A.; Cassiraga, E.; Gomez-Hernandez, J.; Andreu, J.; Pulido-Velazquez, M.; Pulido-Velazquez, D.; Alvarez-Villa, O.; Estrela, T. Management alternatives of aquifer storage, distribution, and simulation in conjunctive use. Water 2022, 14, 2332. [Google Scholar] [CrossRef]
- Mishra, A.; Verma, H.C.; Singh, R. Alternative rotational delivery scheduling for better water regime in canal command. J. Irrig. Drain. Eng. 2008, 134, 175–184. [Google Scholar] [CrossRef]
- Gao, Y.; Du, E.; Yi, S.; Han, Y.; Zheng, C. An improved numerical model for groundwater flow simulation with MPFA method on arbitrary polygon grids. J. Hydrol. 2021, 603, 127399. [Google Scholar] [CrossRef]
- Mengistu, H.A.; Demlie, M.B.; Abiye, T.A.; Xu, Y.; Kanyerere, T. Conceptual hydrogeological and numerical groundwater flow modelling around the MoabKhutsong deep gold mine, South Africa. Groundw. Sustain. Dev. 2019, 9, 100266. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, J.; Zha, Y.; Shi, L. Capturing soil-water and groundwater interactions with an iterative feedback coupling scheme: New HYDRUS package for MODFLOW. Hydrol. Earth Syst. Sci. 2019, 23, 637–655. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W. A review of regional groundwater flow modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef]
- Post, V.E.A.; Galvis, S.C.; Sinclair, P.J.; Werner, A.D. Evaluation of management scenarios for potable water supply using script-based numerical groundwater models of a freshwater lens. J. Hydrol. 2019, 571, 843–855. [Google Scholar] [CrossRef]
- Bizhanimanzar, M.; Leconte, R.; Nuth, M. Modelling of shallow water table dynamics using conceptual andphysically based integrated surface-water–groundwater hydrologic models. Hydrol. Earth Syst. Sci. 2018, 23, 2245–2264. [Google Scholar] [CrossRef]
- Gebere, A.; Kawo, N.S.; Karuppannan, S.; Aster, T.F.; Paolo, P. Numerical modeling of groundwater flow system in the Modjo River catchment, Central Ethiopia. Model. Earth Syst. Environ. 2020, 6, 2151–2164. [Google Scholar] [CrossRef]
- Hassen, I.; Slama, F.; Bouhlila, R. Groundwater recharge assessment in an arid region through chloride mass balance and unsaturated numerical modelling: The Kasserine Aquifer System. Arab. J. Geosci. 2021, 14, 2282. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Khashei-Siuki, A.; Pourreza-Bilondi, M. Performance assessment of model averaging techniques to reduce structural uncertainty of groundwater modeling. Water Resour. Manag. 2021, 35, 3941–3956. [Google Scholar] [CrossRef]
- Raazia, S.; Dar, A.Q. Insights into the hydrogeological framework of the NW Himalayan Karewas (India). Environ. Chall. 2021, 4, 100086. [Google Scholar] [CrossRef]
- Chakraborty, S.; Maity, P.; Das, S. Investigation, simulation, identification andprediction of groundwater levels in coastal areas of Purba Midnapur, India, using MODFLOW. Environ. Dev. Sustain. 2019, 22, 3805–3837. [Google Scholar] [CrossRef]
- Dalai, A.; Tripathi, M.P.; Mishra, A.; Chand, S.; Venkataramana, B.; Nayak, J.K. Assessing the Impact of Climate Change on Irrigation Water Needs Through Conjunctive Water Use: Future Prospectives. Water 2025, 17, 2622. [Google Scholar] [CrossRef]
- Mishra, S.; Tripathi, S.; Tiwary, D.; Ohri, A.; Agnihotri, A.; Vishwakarma, A. Application of Visual MODFLOW in groundwater flow modeling at the left crescent of the Ganga River, Varanasi, India. In Groundwater Environment in Asian Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 105–124. [Google Scholar]
- Lyazidi, R.; Hessane, M.; Moutei, J.; Bahir, M. Developing a methodology for estimating the groundwater levels of coastal aquifers in the Gareb-Bourag plains, Morocco embedding the Visual MODFLOW techniques in groundwater modeling system. Groundw. Sustain. Dev. 2020, 11, 100471. [Google Scholar] [CrossRef]
- Vazquez-Baez, V.; Rubio-Arellano, A.; Garcia-Toral, D.; Rodríguez-Mora, I. Modeling an aquifer: Numerical solution to the groundwater flow equation. Math. Probl. Eng. 2019, 2019, 1613726. [Google Scholar] [CrossRef]
- Klammler, H. Introduction to the Mechanics of Flow and Transport for Groundwater Scientists; The Groundwater Project: Guelph, ON, Canada, 2023. [Google Scholar]
- Maier, R.; Leven, C.; Sanchez-León, E.; Strasser, D.; Stoll, M.; Cirpka, O. Revealing vertical aquifer heterogeneity and hydraulic anisotropy by pumping partially penetrating wells. Hydrogeol. J. 2022, 30, 463–477. [Google Scholar] [CrossRef]
- Ikard, S.; Minsley, B.; Rigby, J.; Kress, W. A model of transmissivity and hydraulic conductivity from electrical resistivity distribution derived from airborne electromagnetic surveys of the Mississippi River Valley Alluvial Aquifer, Midwest USA. Hydrogeol. J. 2023, 31, 313–334. [Google Scholar] [CrossRef]
- Feng, J.; Cui, W.; Cortés, J.; Shi, Y. Bridging transient and steady-state performance in voltage control: A reinforcement learning approach with safe gradient flow. IEEE Control Syst. Lett. 2023, 7, 2845–2850. [Google Scholar] [CrossRef]
- Jeannot, B.; Schaper, L.; Habets, F. Water level in observation wells simulated from fracture and matrix water heads outputted by dual-continuum hydrogeological models: POWeR-FADS. Water Resour. Res. 2023, 59, e2023WR034652. [Google Scholar] [CrossRef]
- Doble, R.; Crosbie, R. Review: Current and emerging methods for catchment-scale modeling of recharge and evapotranspiration from shallow groundwater. Hydrogeol. J. 2017, 25, 3–23. [Google Scholar] [CrossRef]
- Gaiolini, M.; Colombani, N.; Busico, G.; Rama, F.; Mastrocicco, M. Impact of boundary conditions dynamics on groundwater budget in the Campania Region (Italy). Water 2022, 14, 2462. [Google Scholar] [CrossRef]
- Central Ground Water Board. Report of the Groundwater Resource Estimation Committee (GEC-2015); Central Ground Water Board: Haryana, India, 2017; pp. 1–137.
- Rejani, R.; Jha, M.K.; Panda, S.N.; Mull, R. Simulation modelling for efficient groundwater management in Balasore coastal basin, India. Water Resour. Manag. 2008, 22, 23–50. [Google Scholar] [CrossRef]
- Sajeena, S.; Kurien, E.K. Studies on groundwater resources using Visual MODFLOW–A case study of Kadalundi river basin, Malappuram, Kerala. Indian J. Soil Conserv. 2019, 47, 21–29. [Google Scholar]
- Gilsha Bai, E.B.; Rema, K.P.; Sajeena, S.; Sasikala, D. Simulation of groundwater flow using Visual MODFLOW: A case study for the command area of Chalakudy River diversion scheme. Indian J. Soil Conserv. 2022, 50, 29–37. [Google Scholar] [CrossRef]
- Waterloo Hydrogeologic Inc. Visual MODFLOW v.3.1 User’s Manual; Waterloo Hydrogeologic Inc.: Waterloo, ON, Canada, 2003; pp. 1–436. [Google Scholar]
- Tsai, J.; Yeh, T.; Cheng, C.; Zha, Y.; Chang, L.; Hwang, C.; Wang, Y.; Hao, Y. Fusion of time-lapse gravity survey and hydraulic tomography for estimating spatially varying hydraulic conductivity and specific yield fields. Water Resour. Res. 2017, 53, 8554–8571. [Google Scholar] [CrossRef]
- Mohanty, S.; Jha, M.K.; Gupta, V.; Chaudhari, S.K.; Mal, B.C. Numerical analysis of a deltaic aquifer system for sustainable management of groundwater. Indian J. Soil Conserv. 2018, 46, 151–159. [Google Scholar]
- Anderson, M.P.; Woessner, W.W. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd ed.; Academic Press: Cambridge, MA, USA, 2002; pp. 1–373. [Google Scholar]
- Zheng, C.; Bennett, G.D. Applied Contaminant Transport Modeling, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; pp. 1–613. [Google Scholar]
- Bear, J.; Cheng, A.H.D. Modeling Groundwater Flow and Contaminant Transport; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–834. [Google Scholar]
- Java, O.; Kohv, M.; Lohmus, A. Performance of a bog hydrological system dynamics simulation model in an ecological restoration context: Sooma a case study, Estonia. Water 2021, 13, 2217. [Google Scholar]
- Sajeena, S.; Kurien, E.K. Hydrogeological characteristics and groundwater scenario of Kadalundi river basin, Malappuram District, Kerala. J. Trends Biosci. 2017, 10, 2193–2200. [Google Scholar]
- Duran, L.; Gill, L. Modeling spring flow of an Irish karst catchment using MODFLOW-USG with CLN. J. Hydrol. 2021, 597, 125971. [Google Scholar] [CrossRef]
- Perdikaki, M.; Chrysanthopoulos, E.; Markantonis, K.; Kallioras, A. Groundwater flow model calibration using variable density modeling for coastal aquifer management. Hydrology 2024, 11, 59. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar]
- Dalai, A.; Mishra, A.; Tripathi, M.P.; Pandey, V.K.; Mohanty, R.R. Maximizing net income and economic water productivity in a canal command through conjunctive use of canal water and groundwater. Indian J. Soil Conserv. 2023, 51, 18–26. [Google Scholar]
- Dalai, A. Conjunctive Use Assessment Using Optimization-Simulation Modeling. Ph.D. Thesis, IGKV, Raipur, India, 2023; pp. 1–199. [Google Scholar]
- Omar, P.; Gaur, S.; Dikshit, P. Conceptualization and development of multi-layered groundwater model in transient condition. Appl. Water Sci. 2021, 11, 147. [Google Scholar] [CrossRef]
- Kihm, J.; Kim, J.; Kim, Y.; Kim, S.; Yeh, G. Hydrogeologic framework model-based numerical simulation of groundwater flow and salt transport and analytic hierarchy process-based multi-criteria evaluation of optimal pumping location and rate for mitigation of seawater intrusion in a complex coastal aquifer system. Water Resour. Res. 2024, 60, e2023WR035486. [Google Scholar]
- Singh, L.; Saravanan, S. Assessing streamflow modeling using single and multi-site calibration approach on Bharathpuzha catchment, India: A case study. Model. Earth Syst. Environ. 2022, 8, 4135–4148. [Google Scholar] [CrossRef]
- Sahoo, S.; Jha, M. Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: Implications for sustainable groundwater management in the Mahanadi delta region, India. Hydrogeol. J. 2017, 25, 2489–2511. [Google Scholar] [CrossRef]
- Behera, A.; Pradhan, R.; Kumar, S.; Chakrapani, G.; Kumar, P. Assessment of groundwater flow dynamics using MODFLOW in shallow aquifer system of Mahanadi Delta (East Coast), India. Water 2022, 14, 611. [Google Scholar] [CrossRef]
- Abdullah, T.; Ali, S.; Al-Ansari, N.; Knutsson, S.; Laue, J. Magnitude and direction of groundwater seepage velocity in different soil and rock materials. Engineering 2020, 12, 320–333. [Google Scholar] [CrossRef]
- Anand, B.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K.; Suresh, M. Long-term trend detection and spatiotemporal analysis of groundwater levels using GIS techniques in Lower Bhavani River Basin, Tamil Nadu, India. Environ. Dev. Sustain. 2019, 22, 2779–2800. [Google Scholar] [CrossRef]
- Fang, Z.; Bogena, H.; Kollet, S.; Vereecken, H. Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested head water catchment. J. Hydrol. 2016, 536, 365–375. [Google Scholar] [CrossRef]
- Ajjur, S.; Al-Ghamdi, S. Quantifying the uncertainty in future groundwater recharge simulations from regional climate models. Hydrol. Process. 2022, 36, e14645. [Google Scholar] [CrossRef]
- Alqahtani, A.; Sale, T.; Ronayne, M.; Hemenway, C. Demonstration of sustainable development of groundwater through aquifer storage and recovery (ASR). Water Resour. Manag. 2021, 35, 429–445. [Google Scholar] [CrossRef]
























| Sl. No. | Land Use/Land Cover | Area (ha) | Area (%) |
|---|---|---|---|
| 1. | Built Up | 471.97 | 9.63 |
| 2. | Kharif Crop | 1661.37 | 33.88 |
| 3. | Rabi Crop | 170.09 | 3.47 |
| 4. | Zaid Crop | 20.73 | 0.42 |
| 5. | Double/Triple Crop | 1542.07 | 31.45 |
| 6. | Current Fallow | 331.92 | 6.77 |
| 7. | Plantation | 624.66 | 12.74 |
| 8. | Forest | 46.92 | 0.96 |
| 9. | Waste Land | 4.22 | 0.09 |
| 10. | Water Body | 29.34 | 0.60 |
| 11. | Total | 4903.29 | 100.00 |
| Sl. No. | FAO Soil | Texture | Area (ha) | Area (%) |
|---|---|---|---|---|
| 1. | OR151 | Clay | 4547.52 | 92.74 |
| 2. | OR152 | Loamy | 355.77 | 7.26 |
| Sl. No. | Model Properties | Layer 1 | Layer 2 | Layer 3 |
|---|---|---|---|---|
| 1. | Hydraulic conductivity (ms−1) in horizontal direction (Kx) | 1.16 × 10−3 | 7.29 × 10−4 | 2.35 × 10−4 |
| 2. | Hydraulic conductivity (ms−1) in longitudinal direction (Ky) | 1.16 × 10−3 | 7.29 × 10−4 | 2.35 × 10−4 |
| 3. | Hydraulic conductivity (ms−1) in vertical direction (Kz) | 9.7 × 10−4 | 9.14 × 10−4 | 5.37 × 10−4 |
| 4. | Storage coefficient | 0.23 to 0.28 | 0.000106 to 0.000834 | 0.000106 to 0.000834 |
| 5. | Specific storage(m−1) (S) | 0.004948 to 0.020000 | 0.000004 to 0.000193 | 0.000003 to 0.000062 |
| 6. | Specific Yield (Sy) | 0.23 to 0.28 | 0.03 | 0.06 |
| 7. | Effective porosity | 0.31 to 0.42 | 0.39 | 0.39 |
| 8. | Total Porosity | 0.32 to 0.43 | 0.42 | 0.42 |
| Sl. No. | Observation Wells and Location | Correlation Coefficient |
|---|---|---|
| 1. | OW1, Cuttack Sadar | 0.640 |
| 2. | OW2, Kantapada | 0.780 |
| 3. | OW3, Nakhara | 0.270 |
| 4. | OW4, Kuranga pradhan | 0.380 |
| 5. | OW5, Raepur | 0.520 |
| 6. | OW6, Rahura | 0.540 |
| Sl. No. | Model Properties | Layer 1 | Layer 2 | Layer 3 |
|---|---|---|---|---|
| 1. | Hydraulic conductivity (ms−1) in horizontal direction (Kx) | 2.89 × 10−4 | 1.16 × 10−3 | 2.89 × 10−4 |
| 2. | Hydraulic conductivity (ms−1) in longitudinal direction (Ky) | 2.89 × 10−4 | 1.16 × 10−3 | 2.89 × 10−4 |
| 3. | Hydraulic conductivity (ms−1) in vertical direction (Kz) | 1.22 × 10−4 | 4.86 × 10−4 | 1.21 × 10−4 |
| 4. | Storage coefficient (m−1) (S) | 0.23 to 0.28 | 0.000106 to 0.000834 | 0.000106 to 0.000834 |
| 5. | Specific storage | 0.004948 to 0.020000 | 0.000004 to 0.000193 | 0.000003 to 0.000062 |
| 6. | Specific Yield | 0.23 to 0.28 | 0.03 | 0.06 |
| 7. | Effective porosity | 0.31 to 0.42 | 0.39 | 0.39 |
| 8. | Total Porosity | 0.32 to 0.43 | 0.42 | 0.42 |
| Sl. No. | Time (Days) | OW1/A (Observed) | OW1/A (Calculated) | OW5/E (Observed) | OW5/E (Calculated) |
|---|---|---|---|---|---|
| 1. | 0 | 14.20 | 14.76 | 13.60 | 13.55 |
| 2. | 15 | 14.11 | 14.74 | 12.97 | 13.52 |
| 3. | 30 | 14.02 | 13.76 | 12.89 | 12.85 |
| 4. | 45 | 13.93 | 13.93 | 12.72 | 13.08 |
| 5. | 60 | 13.83 | 13.93 | 12.80 | 12.70 |
| 6. | 75 | 13.74 | 13.70 | 12.97 | 12.70 |
| 7. | 90 | 13.66 | 13.46 | 12.22 | 12.42 |
| 8. | 105 | 14.12 | 13.66 | 11.98 | 12.42 |
| 9. | 120 | 14.65 | 13.66 | 11.95 | 12.68 |
| 10. | 135 | 15.07 | 14.55 | 12.59 | 13.20 |
| 11. | 150 | 15.55 | 15.58 | 13.22 | 13.46 |
| 12. | 165 | 16.02 | 15.47 | 13.82 | 14.26 |
| 13. | 180 | 16.50 | 16.45 | 13.64 | 14.26 |
| 14. | 195 | 16.32 | 16.45 | 14.08 | 15.51 |
| 15. | 210 | 16.10 | 16.31 | 15.24 | 15.32 |
| 16. | 225 | 15.95 | 16.54 | 15.75 | 15.85 |
| 17. | 240 | 15.78 | 15.58 | 16.38 | 16.06 |
| 18. | 255 | 15.52 | 15.58 | 15.84 | 14.91 |
| 19. | 270 | 15.40 | 15.80 | 15.24 | 15.18 |
| 20. | 285 | 15.48 | 15.80 | 14.78 | 15.18 |
| 21. | 300 | 15.54 | 15.40 | 14.51 | 14.57 |
| 22. | 315 | 15.66 | 15.40 | 14.43 | 14.57 |
| 23. | 330 | 15.76 | 15.61 | 14.24 | 14.87 |
| 24. | 345 | 15.85 | 15.61 | 14.01 | 14.87 |
| 25. | 360 | 15.94 | 15.61 | 14.01 | 14.87 |
| S. No. | Observation Well | R2 | NSE | PBIAS |
|---|---|---|---|---|
| 1 | OW1 | 0.85 | 0.82 | 0.36 |
| 2 | OW2 | 0.72 | 0.70 | −0.35 |
| 3 | OW3 | 0.67 | 0.65 | −1.49 |
| 4 | OW4 | 0.74 | 0.66 | −2.77 |
| 5 | OW5 | 0.85 | 0.83 | −2.02 |
| 6 | OW6 | 0.83 | 0.74 | −2.74 |
| S. No. | Observation Well | R2 | NSE | PBIAS |
|---|---|---|---|---|
| 1 | OW1 | 0.89 | 0.86 | −0.91 |
| 2 | OW2 | 0.72 | 0.70 | −0.35 |
| 3 | OW3 | 0.68 | 0.64 | 0.11 |
| 4 | OW4 | 0.78 | 0.69 | −1.65 |
| 5 | OW5 | 0.91 | 0.88 | −1.83 |
| 6 | OW6 | 0.86 | 0.73 | −3.31 |
| Sl. No. | Name | Observed Head (m) | Calculated Head (m) | Deviation (%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| case-1 | case-2 | case-3 | case-4 | case-5 | case-1 | case-2 | case-3 | case-4 | case-5 | |||
| 1. | OW1 | 14 | 14.48 | 14.43 | 14.52 | 13.77 | 14.48 | −3.4 | −3.06 | −3.69 | 1.65 | −3.4 |
| 2. | OW2 | 13.59 | 13.76 | 13.74 | 13.78 | 13.59 | 13.76 | −1.25 | −1.11 | −1.37 | −0.03 | −1.25 |
| 3. | OW3 | 13.8 | 14.19 | 14.12 | 14.26 | 13.41 | 14.19 | −2.86 | −2.31 | −3.30 | 2.84 | −2.86 |
| 4. | OW4 | 13.65 | 13.44 | 13.28 | 13.56 | 12.58 | 13.44 | 1.56 | 2.72 | 0.67 | 7.84 | 1.56 |
| 5. | OW5 | 13.4 | 13.33 | 13.17 | 13.46 | 12.4 | 13.33 | 0.50 | 1.75 | −0.48 | 7.46 | 0.50 |
| 6. | OW6 | 13.2 | 13.32 | 13.16 | 13.45 | 12.42 | 13.32 | −0.92 | 0.32 | −1.88 | 5.89 | −0.92 |
| t-calculated | −1.37 | −0.32 | −2.44 | 3.24 | −1.37 | |||||||
| t-critical | 2.57 | |||||||||||
| R2 | 0.81 | 0.79 | 0.80 | 0.64 | 0.81 | |||||||
| Sl. No. | Parameters | Layers | Values | Head (m) | % Deviation from Base Value |
|---|---|---|---|---|---|
| 1. | Recharge (mm) | Layer 1 | 0 | 14.48 | 0 |
| 2. | Hydraulic conductivity | Layer 1 | 1.45 × 10−4 | 14.43 | 0.003 |
| (ms−1) | 4.34 × 10−4 | 14.52 | −0.003 | ||
| Layer 2 | 2.43 × 10−4 | 13.77 | 0.05 | ||
| 5.78 × 10−4 | |||||
| 3. | Specific Storage (m−1) | Layer1 | 1.05 × 10−5 | 14.48 | 0 |
| 1.00 × 10−2 | 14.48 | 0 | |||
| Layer 2 | 2.00 × 10−6 | 14.48 | 0 | ||
| 7.70 × 10−5 | 14.48 | 0 | |||
| Layer 3 | 1.50 × 10−6 | 14.48 | 0 | ||
| 2.65 × 10−5 | 14.48 | 0 | |||
| 4. | Base variable | - | 14.48 | - |
| Sl. No. | Observation Wells | Location | Average Observed Value (m BGL) | Average Computed Value (m BGL) | Maximum Observed Value (m BGL) | Maximum Computed Value (m BGL) |
|---|---|---|---|---|---|---|
| 1. | OW1 | Cuttack Sadar | 2.55 | 2.80 | 4.04 | 4.25 |
| 2. | OW2 | Kantapada | 3.82 | 3.78 | 4.85 | 4.75 |
| 3. | OW3 | Nakhara | 3.34 | 3.37 | 5.37 | 5.03 |
| 4. | OW4 | Kuranga pradhan | 3.23 | 2.94 | 4.95 | 4.65 |
| 5. | OW5 | Raepur | 3.16 | 3.00 | 5.05 | 4.75 |
| 6. | OW6 | Rahura | 3.41 | 3.04 | 5.32 | 4.78 |
| Sl. No. | Observation Wells | Location | Average Observed Value (m BGL) | Average Computed Value (m BGL) | Maximum Observed Value (m BGL) | Maximum Computed Value (m BGL) |
|---|---|---|---|---|---|---|
| 1. | OW1 | Cuttack Sadar | 2.75 | 2.83 | 4.25 | 4.48 |
| 2. | OW2 | Kantapada | 3.95 | 3.88 | 4.91 | 4.75 |
| 3. | OW3 | Nakhara | 3.39 | 3.41 | 5.47 | 5.03 |
| 4. | OW4 | Kurangapradhan | 3.28 | 2.97 | 5.05 | 4.65 |
| 5. | OW5 | Raepur | 3.21 | 3.04 | 5.15 | 4.75 |
| 6. | OW6 | Rahura | 3.46 | 3.08 | 5.42 | 4.78 |
| Sl. No. | Observation Wells | Location | 2020 (Rabi) (m BGL) | 2020 (Kharif) (m BGL) | 2021 (Rabi) (m BGL) | 2021 (Kharif) (m BGL) |
|---|---|---|---|---|---|---|
| 1. | OW1 | Cuttack Sadar | 0.36 | 0.16 | 0.23 | 0.04 |
| 2. | OW2 | Kantapada | 0.17 | 0.22 | 0.12 | 0.22 |
| 3. | OW3 | Nakhara | 0.35 | 0.33 | 0.43 | 0.36 |
| 4. | OW4 | Kuranga pradhan | 0.07 | 0.0 | 0.15 | 0.0 |
| 5. | OW5 | Raepur | 0.08 | 0.0 | 0.16 | 0.0 |
| 6. | OW6 | Rahura | 0.35 | 0.0 | 0.43 | 0.0 |
| Sl. | Avg. | Area | Avg. | Area | Avg. | Area | Avg. | Area |
|---|---|---|---|---|---|---|---|---|
| No. | Observed | (ha) | Computed | (ha) | Observed | (ha) | Computed | (ha) |
| Water | Water | Water | Water | |||||
| Table (m | Table (m | Table (m | Table (m | |||||
| BGL) | BGL) | BGL) | BGL) | |||||
| Calibration (2020) | Validation (2021) | |||||||
| 1 | 2.50–2.75 | 76 | 2.50–2.75 | - | 2.50–2.75 | - | 2.50–2.75 | - |
| 2 | 2.75–3.00 | 359 | 2.75–3.00 | 559 | 2.75–3.00 | 193 | 2.75–3.00 | 196 |
| 3 | 3.00–3.25 | 2062 | 3.00–3.25 | 3456 | 3.00–3.25 | 705 | 3.00–3.25 | 3608 |
| 4 | 3.25–3.50 | 1792 | 3.25–3.50 | 442 | 3.25–3.50 | 3240 | 3.25–3.50 | 565 |
| 5 | 3.50–3.75 | 418 | 3.50–3.75 | 381 | 3.50–3.75 | 381 | 3.50–3.75 | 297 |
| 6 | 3.75–4.00 | 196 | 3.75–4.00 | 65 | 3.75–4.00 | 384 | 3.75–4.00 | 237 |
| Sl. No. | Scenarios | OW1 | OW2 | OW3 | OW4 | OW5 | OW6 | Weighted Average |
|---|---|---|---|---|---|---|---|---|
| 1. | Scenario-1 | 4.00 | 1.08 | 4.65 | 6.08 | 6.62 | 6.50 | 4.82 |
| 2. | Scenario-2 | 4.63 | 1.29 | 5.42 | 7.19 | 7.88 | 7.90 | 5.72 |
| 3. | Scenario-3 | 4.86 | 1.32 | 5.73 | 7.68 | 8.62 | 8.47 | 6.11 |
| Sl. No. | Avg. Computed Water Table Fluctuation (m BGL) | Area (ha) | Avg. Computed Water Table Fluctuation (m BGL) | Area (ha) | Avg. Computed Water Table Fluctuation (m BGL) | Area (ha) |
|---|---|---|---|---|---|---|
| Scenario-1 | Scenario-2 | Scenario-3 | ||||
| 1 | 1.00–1.25 | 56 | 1.00–1.25 | - | 1.00–1.25 | - |
| 2 | 1.25–2.50 | 310 | 1.25–2.50 | 284 | 1.25–2.50 | 263 |
| 3 | 2.50–3.75 | 233 | 2.50–3.75 | 209 | 2.50–3.75 | 192 |
| 4 | 3.75–5.00 | 1397 | 3.75–5.00 | 304 | 3.75–5.00 | 202 |
| 5 | 5.00–6.25 | 2527 | 5.00–6.25 | 1514 | 5.00–6.25 | 1283 |
| 6 | 6.25–7.50 | 380 | 6.25–7.50 | 2245 | 6.25–7.50 | 1529 |
| Sl. No. | Scenarios | IWR from Groundwater (GWk) During Kharif Season from Optimization (Mm3) | IWR from Groundwater (GWᵣ) During Rabi Season from Optimization (Mm3) | Simulated Groundwater Draft in Rabi (GWᵣ) Obtained from Simulation (Mm3) | Simulated Recharge in Rabi (Mm3) |
|---|---|---|---|---|---|
| 1. | Scenario-1 | 0 | 18.23 | 15.27 | 5.85 |
| 2. | Scenario-2 | 0 | 18.23 | 18.74 | 7.18 |
| 3. | Scenario-3 | 0 | 18.23 | 20.07 | 8.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalai, A.; Tripathi, M.P.; Mishra, A.; Jena, S.K.; Jothimani, M.; Venkataramana, B.; Chand, S.; Nayak, J.K. Forecasting Groundwater Sustainability Through Visual MODFLOW Modelling in the Phulnakhara Canal Command, Coastal Odisha, India. Water 2025, 17, 3101. https://doi.org/10.3390/w17213101
Dalai A, Tripathi MP, Mishra A, Jena SK, Jothimani M, Venkataramana B, Chand S, Nayak JK. Forecasting Groundwater Sustainability Through Visual MODFLOW Modelling in the Phulnakhara Canal Command, Coastal Odisha, India. Water. 2025; 17(21):3101. https://doi.org/10.3390/w17213101
Chicago/Turabian StyleDalai, Abinash, Mahendra Prasad Tripathi, Atmaram Mishra, Susanta Kumar Jena, Muralitharan Jothimani, Boorla Venkataramana, Sasmita Chand, and Jagdeep Kumar Nayak. 2025. "Forecasting Groundwater Sustainability Through Visual MODFLOW Modelling in the Phulnakhara Canal Command, Coastal Odisha, India" Water 17, no. 21: 3101. https://doi.org/10.3390/w17213101
APA StyleDalai, A., Tripathi, M. P., Mishra, A., Jena, S. K., Jothimani, M., Venkataramana, B., Chand, S., & Nayak, J. K. (2025). Forecasting Groundwater Sustainability Through Visual MODFLOW Modelling in the Phulnakhara Canal Command, Coastal Odisha, India. Water, 17(21), 3101. https://doi.org/10.3390/w17213101

