Next Issue
Volume 5, March
Previous Issue
Volume 5, September

Table of Contents

Genes, Volume 5, Issue 4 (December 2014) , Pages 865-1131

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Next-Generation Sequencing of Genomic DNA Fragments Bound to a Transcription Factor in Vitro Reveals Its Regulatory Potential
Genes 2014, 5(4), 1115-1131; https://doi.org/10.3390/genes5041115 - 19 Dec 2014
Cited by 7 | Viewed by 3291
Abstract
Several transcription factors (TFs) coordinate to regulate expression of specific genes at the transcriptional level. In Arabidopsis thaliana it is estimated that approximately 10% of all genes encode TFs or TF-like proteins. It is important to identify target genes that are directly regulated [...] Read more.
Several transcription factors (TFs) coordinate to regulate expression of specific genes at the transcriptional level. In Arabidopsis thaliana it is estimated that approximately 10% of all genes encode TFs or TF-like proteins. It is important to identify target genes that are directly regulated by TFs in order to understand the complete picture of a plant’s transcriptome profile. Here, we investigate the role of the LONG HYPOCOTYL5 (HY5) transcription factor that acts as a regulator of photomorphogenesis. We used an in vitro genomic DNA binding assay coupled with immunoprecipitation and next-generation sequencing (gDB-seq) instead of the in vivo chromatin immunoprecipitation (ChIP)-based methods. The results demonstrate that the HY5-binding motif predicted here was similar to the motif reported previously and that in vitro HY5-binding loci largely overlapped with the HY5-targeted candidate genes identified in previous ChIP-chip analysis. By combining these results with microarray analysis, we identified hundreds of HY5-binding genes that were differentially expressed in hy5. We also observed delayed induction of some transcripts of HY5-binding genes in hy5 mutants in response to blue-light exposure after dark treatment. Thus, an in vitro gDNA-binding assay coupled with sequencing is a convenient and powerful method to bridge the gap between identifying TF binding potential and establishing function. Full article
Show Figures

Figure 1

Open AccessArticle
Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line
Genes 2014, 5(4), 1095-1114; https://doi.org/10.3390/genes5041095 - 11 Dec 2014
Cited by 2 | Viewed by 3263
Abstract
Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. [...] Read more.
Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Open AccessReview
Somatic Mosaicism in the Human Genome
Genes 2014, 5(4), 1064-1094; https://doi.org/10.3390/genes5041064 - 11 Dec 2014
Cited by 49 | Viewed by 6899
Abstract
Somatic mosaicism refers to the occurrence of two genetically distinct populations of cells within an individual, derived from a postzygotic mutation. In contrast to inherited mutations, somatic mosaic mutations may affect only a portion of the body and are not transmitted to progeny. [...] Read more.
Somatic mosaicism refers to the occurrence of two genetically distinct populations of cells within an individual, derived from a postzygotic mutation. In contrast to inherited mutations, somatic mosaic mutations may affect only a portion of the body and are not transmitted to progeny. These mutations affect varying genomic sizes ranging from single nucleotides to entire chromosomes and have been implicated in disease, most prominently cancer. The phenotypic consequences of somatic mosaicism are dependent upon many factors including the developmental time at which the mutation occurs, the areas of the body that are affected, and the pathophysiological effect(s) of the mutation. The advent of second-generation sequencing technologies has augmented existing array-based and cytogenetic approaches for the identification of somatic mutations. We outline the strengths and weaknesses of these techniques and highlight recent insights into the role of somatic mosaicism in causing cancer, neurodegenerative, monogenic, and complex disease. Full article
Show Figures

Figure 1

Open AccessArticle
Long Non-Coding RNA NEAT1 Associates with SRp40 to Temporally Regulate PPARγ2 Splicing during Adipogenesis in 3T3-L1 Cells
Genes 2014, 5(4), 1050-1063; https://doi.org/10.3390/genes5041050 - 27 Nov 2014
Cited by 47 | Viewed by 4341
Abstract
Long non-coding (lnc) RNAs serve a multitude of functions in cells. NEAT1 RNA is a highly abundant 4 kb lncRNA in nuclei, and coincides with paraspeckles, nuclear domains that control sequestration of paraspeckle proteins. We examined NEAT1 RNA levels and its function in [...] Read more.
Long non-coding (lnc) RNAs serve a multitude of functions in cells. NEAT1 RNA is a highly abundant 4 kb lncRNA in nuclei, and coincides with paraspeckles, nuclear domains that control sequestration of paraspeckle proteins. We examined NEAT1 RNA levels and its function in 3T3-L1 cells during differentiation to adipocytes. Levels of NEAT1 transcript, measured by RT-PCR, fluctuated in a temporal manner over the course of differentiation that suggested its role in alternative splicing of PPARγ mRNA, the major transcription factor driving adipogenesis. When cells were induced to differentiate by a media cocktail of insulin, dexamethasone, and isobutylmethyxanthine (IBMX) on Day 0, NEAT1 levels dropped on Day 4, when the PPARγ2 variant was spliced and when terminal differentiation occurs The appearance of PPARγ2 coordinates with the PPARγ1 variant to drive differentiation of adipocytes. SiRNA used to deplete NEAT1 resulted in the inability of cells to phosphorylate the serine/arginine-rich splicing protein, SRp40. SiRNA treatment for SRp40 resulted in dysregulation of PPARγ1 and, primarily, PPARγ2 mRNA levels. SRp40 associated with NEAT1, as shown by RNA-IP on days 0 and 8, but decreased on day 4, and concentrations increased over that of IgG control. Overexpression of SRp40 increased PPARγ2, but not γ1. Although lncRNA MALAT1 has been investigated in SR protein function, NEAT1 has not been shown to bind SR proteins for phosphorylation such that alternative splicing results. The ability of cells to increase phosphorylated SR proteins for PPARγ2 splicing suggests that fluxes in NEAT1 levels during adipogenesis regulate alternative splicing events. Full article
(This article belongs to the Special Issue miRNA Regulation)
Show Figures

Figure 1

Open AccessReview
Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex
Genes 2014, 5(4), 1032-1049; https://doi.org/10.3390/genes5041032 - 11 Nov 2014
Cited by 6 | Viewed by 4583
Abstract
The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE). Plenty of nuclear pore complexes (NPCs) embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus [...] Read more.
The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE). Plenty of nuclear pore complexes (NPCs) embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D) movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT) techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms. Full article
(This article belongs to the Special Issue Mechanisms of mRNA Nuclear Export)
Show Figures

Figure 1

Open AccessReview
Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs
Genes 2014, 5(4), 1018-1031; https://doi.org/10.3390/genes5041018 - 06 Nov 2014
Cited by 26 | Viewed by 4195
Abstract
Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the [...] Read more.
Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs) is termed “stimulus-secretion coupling.” Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D). The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs) are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D. Full article
(This article belongs to the Special Issue miRNA Regulation)
Show Figures

Figure 1

Open AccessReview
Delivery of a Clinical Genomics Service
Genes 2014, 5(4), 1001-1017; https://doi.org/10.3390/genes5041001 - 06 Nov 2014
Cited by 13 | Viewed by 3793
Abstract
Over the past five years, next generation sequencing has revolutionised the discovery of genes responsible for rare inherited diseases previously resistant to traditional discovery techniques. This review considers how this new technology is being introduced into clinical practice to aid diagnosis and improve [...] Read more.
Over the past five years, next generation sequencing has revolutionised the discovery of genes responsible for rare inherited diseases previously resistant to traditional discovery techniques. This review considers how this new technology is being introduced into clinical practice to aid diagnosis and improve the clinical management of individuals and families affected by rare diseases where access to genetic testing was previously limited. We compare and contrast the different approaches that have been adopted including panel based tests, exome and genome sequencing. We provide insights from our own clinical practice demonstrating the challenges and benefits of this new technology. Full article
Show Figures

Figure 1

Open AccessArticle
Sumoylation is Required for the Cytoplasmic Accumulation of a Subset of mRNAs
Genes 2014, 5(4), 982-1000; https://doi.org/10.3390/genes5040982 - 20 Oct 2014
Cited by 8 | Viewed by 2733
Abstract
In order to discover novel proteins that promote the nuclear export of newly synthesized mRNAs in mammalian cells, we carried out a limited RNAi screen for proteins required for the proper cytoplasmic distribution of a model intronless mRNA. From this screen we obtained [...] Read more.
In order to discover novel proteins that promote the nuclear export of newly synthesized mRNAs in mammalian cells, we carried out a limited RNAi screen for proteins required for the proper cytoplasmic distribution of a model intronless mRNA. From this screen we obtained two hits, Ubc9 (SUMO-conjugating E2 enzyme) and GANP (germinal center-associated nuclear protein). Depletion of Ubc9 inhibited the proper cytoplasmic distribution of certain overexpressed intronless mRNAs, while depletion of GANP affected all tested mRNAs. Depletion of Sae1, which is also required for sumoylation, partially inhibited the cytoplasmic distribution of our model mRNA. Interestingly, the block in cytoplasmic accumulation in Ubc9-depleted cells could be overcome if an intron was incorporated into the mRNA. Surprisingly, Ubc9-depleted cells had normal nuclear export of newly synthesized intronless mRNAs, indicating that the observed accumulation of the model mRNA in the nuclei of transfected cells was likely due to some more general perturbation. Indeed, depletion of Ubc9, coupled with the overexpression of the intronless mRNAs, caused the redistribution of the nuclear speckle protein SC35 to cytoplasmic foci. Our results suggest that sumoylation may play a role in the proper assembly of mRNPs and/or the distribution of key RNA binding proteins, and may thus contribute to general protein expression patterns. Full article
(This article belongs to the Special Issue Mechanisms of mRNA Nuclear Export)
Open AccessArticle
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis
Genes 2014, 5(4), 957-981; https://doi.org/10.3390/genes5040957 - 30 Sep 2014
Cited by 22 | Viewed by 5618
Abstract
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) [...] Read more.
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. Full article
(This article belongs to the Section Technologies and Resources for Genetics)
Open AccessReview
The Role of MicroRNAs in Diabetic Complications—Special Emphasis on Wound Healing
Genes 2014, 5(4), 926-956; https://doi.org/10.3390/genes5040926 - 29 Sep 2014
Cited by 51 | Viewed by 5102
Abstract
Overweight and obesity are major problems in today’s society, driving the prevalence of diabetes and its related complications. It is important to understand the molecular mechanisms underlying the chronic complications in diabetes in order to develop better therapeutic approaches for these conditions. Some [...] Read more.
Overweight and obesity are major problems in today’s society, driving the prevalence of diabetes and its related complications. It is important to understand the molecular mechanisms underlying the chronic complications in diabetes in order to develop better therapeutic approaches for these conditions. Some of the most important complications include macrovascular abnormalities, e.g., heart disease and atherosclerosis, and microvascular abnormalities, e.g., retinopathy, nephropathy and neuropathy, in particular diabetic foot ulceration. The highly conserved endogenous small non-coding RNA molecules, the micro RNAs (miRNAs) have in recent years been found to be involved in a number of biological processes, including the pathogenesis of disease. Their main function is to regulate post-transcriptional gene expression by binding to their target messenger RNAs (mRNAs), leading to mRNA degradation, suppression of translation or even gene activation. These molecules are promising therapeutic targets and demonstrate great potential as diagnostic biomarkers for disease. This review aims to describe the most recent findings regarding the important roles of miRNAs in diabetes and its complications, with special attention given to the different phases of diabetic wound healing. Full article
(This article belongs to the Special Issue miRNA Regulation)
Show Figures

Graphical abstract

Open AccessReview
Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives
Genes 2014, 5(4), 887-925; https://doi.org/10.3390/genes5040887 - 29 Sep 2014
Cited by 11 | Viewed by 3718
Abstract
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. [...] Read more.
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. Full article
Open AccessReview
The Role of microRNAs in Mitochondria: Small Players Acting Wide
Genes 2014, 5(4), 865-886; https://doi.org/10.3390/genes5040865 - 26 Sep 2014
Cited by 52 | Viewed by 4871
Abstract
MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that act as post-transcriptional gene regulators. They can inhibit target protein-coding genes, through repressing messenger RNA (mRNA) translation or promoting their degradation. miRNAs were initially found to be originated from nuclear genome and exported to [...] Read more.
MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that act as post-transcriptional gene regulators. They can inhibit target protein-coding genes, through repressing messenger RNA (mRNA) translation or promoting their degradation. miRNAs were initially found to be originated from nuclear genome and exported to cytosol; where they exerted most of their actions. More recently, miRNAs were found to be present specifically in mitochondria; even originated there from mitochondrial DNA, regulating in a direct manner genes coding for mitochondrial proteins, and consequently mitochondrial function. Since miRNAs are recognized as major players in several biological processes, they are being considered as a key to better understand, explain, and probably prevent/cure not only the pathogenesis of multifactorial diseases but also mitochondrial dysfunction and associated diseases. Here we review some of the molecular mechanisms purported for miRNA actions in several biological processes, particularly the miRNAs acting in mitochondria or in mitochondria-related mechanisms. Full article
(This article belongs to the Special Issue miRNA Regulation)
Previous Issue
Next Issue
Back to TopTop