Effects of Wind Turbine Density on Insect Diversity and Its Mechanisms in Ningxia Desert Steppe Wind Farms
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Plot Design
2.3. Investigation Method
2.3.1. Insect Monitoring Protocol
2.3.2. Vegetation Monitoring Protocol
2.3.3. Soil Monitoring Protocol
2.4. Analysis Method
3. Results
3.1. Response of Insect Alpha Diversity to Wind Power Density
3.2. Response of Vegetation Community Structure Characteristics to Wind Power Density
3.3. Correlation Between Wind Power Density and Insect Alpha Diversity
3.4. Correlation Between Wind Power Density and the Structural Characteristics of Vegetation Communities
3.5. Correlation of Wind Power Density on Soil Nutrient Content
3.6. Correlation Between Alpha Diversity of Insects and Soil Nutrient Content and Vegetation Community Characteristics
3.7. Correlation Analysis of Insects and Predominant Vegetation
3.8. Correlation Analysis of Soil Nutrient Content and Predominant Vegetation
4. Discussion
4.1. Insect Responses to Wind Power Density Disturbances
4.2. Response of Vegetation to Wind Power Density Disturbance
4.3. Response of Soil Nutrient Content to Wind Power Density Disturbance
4.4. The Influence Mechanism Between Insects and Vegetation and Soil
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, Y.; Mei, R.; Yang, D. The impact of the development and utilization of wind energy resources on biodiversity. Environ. Impact Assess. 2023, 45, 39–43. Available online: https://link.cnki.net/doi/10.14068/j.ceia.2023.03.007 (accessed on 1 September 2025). (In Chinese).
- Devine-Wright, P. Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy. Wind. Energy 2005, 8, 125–139. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Hawinkel, P.; Thiery, W.; Lhermitte, S.; Swinnen, E.; Verbist, B.; Van Orshoven, J.; Muys, B. Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. J. Geophys. Res. Biogeosci. 2016, 121, 2422–2444. [Google Scholar] [CrossRef]
- Wang, B.; Liu, G.B.; Xue, S.; Zhu, B. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environ. Earth Sci. 2011, 62, 915–925. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.P.; Xie, Y.Z.; Li, X.Y.; Luo, X.; Huang, X.; Wang, Y.T.; Yu, J.; Liang, X. Effects of precipitation changes and warming on vegetation–soil–microbial relationships in desert grasslands. Glob. Ecol. Conserv. 2024, 54, e03205. [Google Scholar] [CrossRef]
- Chen, J.; Song, N.; Wang, X.; Meng, C.; Zhang, Y.; Chen, L.; Wang, Q.; Lv, H.; Wu, X.; Yu, D. Precipitation and plant community-weighted mean traits determine total transpirable soil water in a desert grassland. Ecol. Indic. 2024, 160, 111873. [Google Scholar] [CrossRef]
- Zhong, T.; Tian, H.; Zheng, J.; Dou, B.; Wang, Y.; Yang, Z.; Li, P.; Xiao, P. Effect of chemical clogging on the permeability of weakly consolidated sandstone due to reinjection at different temperatures. J. Water Clim. Change 2022, 14, 142–155. [Google Scholar] [CrossRef]
- Marx, J.; Schreiber, A.; Zapp, P. Response to ‘Life-cycle green-house gas emissions of onshore and offshore wind turbines’. J. Clean. Prod. 2019, 219, 33–34. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.H.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef]
- Santangeli, A.; Toivonen, T.; Pouzols, F.M.; Pogson, M.; Hastings, A.; Smith, P.; Moilanen, A. Global change synergies and trade-offs between renewable energy and biodiversity. GCB Bioenergy 2016, 8, 941–951. [Google Scholar] [CrossRef]
- Denholm, P.; Hand, M.; Jackson, M.; Ong, S. Land Use Requirements of Modern Wind Power Plants in the United States (NREL/TP-6A2-45834); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2009. [Google Scholar] [CrossRef]
- Xu, K.; He, L.; Hu, H.; Liu, S.; Du, Y.; Wang, Z.; Li, Y.L.; Khan, A.; Wang, G. Positive ecological effects of wind farms on vegetation in China’s Gobi desert. Sci. Rep. 2019, 9, 6341. [Google Scholar] [CrossRef]
- Chang, R.; Zhu, R.; Guo, P. A case study of land-surface-temperature impact from large-scale deployment of wind farms in China from Guazhou. Remote Sens. 2016, 8, 790. [Google Scholar] [CrossRef]
- Qin, Y.; Li, Y.; Xu, R.; Hou, C.; Armstrong, A.; Bach, E.; Wang, Y.; Fu, B. Impacts of 319 wind farms on surface temperature and vegetation in the United States. Environ. Res. Lett. 2022, 17, 024026. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Smith, P. Ecological impacts of wind farms on birds: Questions, hypotheses, and research needs. Renew. Sustain. Energy Rev. 2015, 44, 599–607. [Google Scholar] [CrossRef]
- Dhar, A.; Naeth, M.A.; Jennings, P.D.; Gamal El-Din, M. Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Sci. Total Environ. 2020, 718, 134602. [Google Scholar] [CrossRef]
- Hall, R.; João, E.; Knapp, C.W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess. Rev. 2020, 83, 106404. [Google Scholar] [CrossRef]
- Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.J.; Olabi, A.G. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ. 2021, 766, 144505. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, H.; Chen, J.; Song, J.; Xu, K.; Lin, J.; Zhang, S. Potential effects of underwater noise from wind turbines on the marbled rockfish (Sebasticus marmoratus). J. Appl. Ichthyol. 2021, 37, 514–522. [Google Scholar] [CrossRef]
- Bassetto, M.; Reichl, T.; Kobylkov, D.; Kattnig, D.R.; Winklhofer, M.; Hore, P.J.; Mouritsen, H. No evidence for magnetic field effects on the behaviour of Drosophila. Nature 2023, 620, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.; Bhandekar, R.; Ali, M.; Thiske, S. A review on: Insects as bioindicators for an ecosystem and key species in trophic level. World J. Adv. Res. Rev. 2024, 24, 430–446. [Google Scholar] [CrossRef]
- Ramola, G.C.; Rawat, N.; Singh, R.; Sajwan, A.S.; Sahu, L.; Rawat, P. Insects as Ecological Indicators: A Review. Int. J. Environ. Clim. Change 2024, 14, 260–279. [Google Scholar] [CrossRef]
- Ghosh, I.; Debnath, P. Are Insects Really Important in Nature? Int. J. Curr. Microbiol. Appl. Sci. 2023, 12, 99–106. [Google Scholar] [CrossRef]
- Noriega, J.A.; Hortal, J.; Azcárate, F.M.; Berg, M.P.; Bonada, N.; Briones, M.J.I.; Del Toro, I.; Goulson, D.; Ibanez, S.; Landis, D.A.; et al. Research trends in ecosystem services provided by insects. Basic Appl. Ecol. 2018, 26, 8–23. [Google Scholar] [CrossRef]
- Dangles, O. Ecosystem services provided by insects for achieving sustainable developmental goals. Comptes Rendus Biol. 2019, 342, 268. [Google Scholar] [CrossRef]
- Landmann, T.; Schmitt, M.; Ekim, B.; Villinger, J.; Ashiono, F.; Habel, J.C.; Tonnang, H.E.Z. Insect diversity is a good indicator of biodiversity status in Africa. Commun. Earth Environ. 2023, 4, 234. [Google Scholar] [CrossRef]
- Long, C.V.; Flint, J.A.; Lepper, P.A. Insect attraction to wind turbines: Does colour play a role? Eur. J. Wildl. Res. 2011, 57, 323–331. [Google Scholar] [CrossRef]
- MacGregor, K.A.; Lemaître, J. The management utility of large-scale environmental drivers of bat mortality at wind energy facilities: The effects of facility size, elevation. Glob. Ecol. Conserv. 2019, 20, e00871. [Google Scholar] [CrossRef]
- Horn, J.W.; Arnett, E.B.; Kunz, T.H. Behavioral responses of bats to operating wind turbines. J. Wildl. Manag. 2008, 72, 123–132. [Google Scholar] [CrossRef]
- Tougaard, J.; Hermannsen, L.; Madsen, P.T. How loud is the underwater noise from operating offshore wind turbines? J. Acoust. Soc. Am. 2020, 148, 2885–2893. [Google Scholar] [CrossRef]
- Norro, A.M.J.; Rumes, B.; Degraer, S.J. Differentiating between Underwater Construction Noise of Monopile and Jacket Foundations for Offshore Windmills: A Case Study from the Belgian Port of the North Sea. Sci. World J. 2013, 2013, 897624. [Google Scholar] [CrossRef]
- Lampe, U.; Reinhold, K.; Schmoll, T. How grasshoppers respond to road noise: Developmental plasticity and population differentiation in acoustic signalling. Funct. Ecol. 2014, 28, 660–668. [Google Scholar] [CrossRef]
- Orci, K.M.; Petróczki, K.; Barta, Z. Instantaneous song modification in response to fluctuating traffic noise in the tree cricket Oecanthus pellucens. Anim. Behav. 2016, 112, 187–194. [Google Scholar] [CrossRef]
- Cunnington, G.M.; Fahrig, L. Mate attraction by male anurans in the presence of traffic noise. Anim. Conserv. 2013, 16, 275–285. [Google Scholar] [CrossRef]
- Mitchell, L.J.; Williamson, B.J.; Masden, E.A. Methods for highlighting ecological monitoring needs in data-sparse regions: A case study of impact assessment for multi-component infrastructure installations. Environ. Impact Assess. Rev. 2024, 105, 107433. [Google Scholar] [CrossRef]
- Ling, S.; Linehan, A. Guidelines for Wind Power and Wildlife in Washington State, USA. Wind Eng. 2003, 27, 273–283. [Google Scholar] [CrossRef]
- Schöll, E.M.; Nopp-Mayr, U. Impact of wind power plants on mammalian and avian wildlife species in shrub- and woodlands. Biol. Conserv. 2021, 256, 109037. [Google Scholar] [CrossRef]
- Santos, M.; Bastos, R.; Travassos, P.; Bessa, R.; Repas, M.; Cabral, J.A. Predicting the trends of vertebrate species richness as a response to wind farms installation in mountain ecosystems of northwest Portugal. Ecol. Indic. 2010, 10, 192–205. [Google Scholar] [CrossRef]
- Marques, A.T.; Santos, C.D.; Hanssen, F.; Muñoz, A.R.; Onrubia, A.; Wikelski, M.; Moreira, F.; Palmeirim, J.M.; Silva, J.P. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 2020, 89, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Kumara, H.N.; Babu, S.; Rao, G.B.; Mahato, S.; Bhattacharya, M.; Rao, N.V.R.; Tamiliniyan, D.; Parengal, H.; Deepak, D.; Balakrishnan, A.; et al. Responses of birds and mammals to long-established wind farms in India. Sci. Rep. 2022, 12, 1339. [Google Scholar] [CrossRef] [PubMed]
- Skarin, A.; Sandström, P.; Alam, M. Out of sight of wind turbines—Reindeer response to wind farms in operation. Ecol. Evol. 2018, 8, 9906–9919. [Google Scholar] [CrossRef]
- Smith, K.T.; Taylor, K.L.; Albeke, S.E.; Beck, J.L. Pronghorn Winter Resource Selection Before and After Wind Energy Development in South-Central Wyoming. Rangel. Ecol. Manag. 2020, 73, 227–233. [Google Scholar] [CrossRef]
- Du, L.; Gong, F.; Zeng, Y.; Ma, L.; Qiao, C.; Wu, H. Carbon use efficiency of terrestrial ecosystems in desert/grassland biome transition zone: A case in Ningxia province, northwest China. Ecol. Indic. 2021, 120, 106971. [Google Scholar] [CrossRef]
- Hou, J.; Du, L.; Liu, K.; Hu, Y.; Zhu, Y. Characteristics of vegetation activity and its responses to climate change in desert/grassland biome transition zones in the last 30 years based on GIMMS3g. Theor. Appl. Climatol. 2019, 136, 915–928. [Google Scholar] [CrossRef]
- Song, K.; Zhang, H.; Hu, H.; Xie, Y.; Zhao, X.; Zhang, Y.; Yong, J.; Deng, W.; Guan, S. Precipitation changes alter the structure, species composition and interspecific relationships of desert steppe plant communities. Glob. Ecol. Conserv. 2025, 58, e03460. [Google Scholar] [CrossRef]
- Lewińska, K.E.; Hostert, P.; Buchner, J.; Bleyhl, B.; Radeloff, V.C. Short-term vegetation loss versus decadal degradation of grasslands in the Caucasus based on Cumulative Endmember Fractions. Remote Sens. Environ. 2020, 248, 111969. [Google Scholar] [CrossRef]
- An, H.; Li, Q.L.; Yan, X.; Wu, X.Z.; Liu, R.; Fang, Y. Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia, northwest China. Ecol. Eng. 2019, 127, 348–355. [Google Scholar] [CrossRef]
- Dudek, K.; Dudek, M.; Tryjanowski, P. Wind Turbines as Overwintering Sites Attractive to an Invasive Lady Beetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Coleopt. Bull. 2015, 69, 665–669. [Google Scholar] [CrossRef]
- Drewitt, A.L.; Langston, R.H.W. Assessing the impacts of wind farms on birds. Ibis 2006, 148, 29–42. [Google Scholar] [CrossRef]
- Hastik, R.; Basso, S.; Geitner, C.; Haida, C.; Poljanec, A.; Portaccio, A.; Vrščaj, B.; Walzer, C. Renewable energies and ecosystem service impacts. Renew. Sustain. Energy Rev. 2015, 48, 608–623. [Google Scholar] [CrossRef]
- Poot, H.; Ens, B.J.; de Vries, H.; Donners, M.A.H.; Wernand, M.R.; Marquenie, J.M. Green Light for Nocturnally Migrating Birds. Ecol. Soc. 2008, 13, 47. [Google Scholar] [CrossRef]
- Aksoy, T.; Cetin, M.; Cabuk, S.N.; Senyel Kurkcuoglu, M.A.; Bilge Ozturk, G.; Cabuk, A. Impacts of wind turbines on vegetation and soil cover: A case study of Urla, Cesme, and Karaburun Peninsulas, Turkey. Clean Technol. Environ. Policy 2023, 25, 51–68. [Google Scholar] [CrossRef]
- Li, G.; Zhang, C.; Zhang, L.; Zhang, M. Wind Farm Effect on Grassland Vegetation Due to Its Influence on the Range, Intensity and Variation of Wind Direction. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1304–1306. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Wang, G. Can wind farms change the phenology of grassland in China? Sci. Total Environ. 2022, 832, 155077. [Google Scholar] [CrossRef]
- Pekkan, O.I.; Senyel Kurkcuoglu, M.A.; Cabuk, S.N.; Aksoy, T.; Yilmazel, B.; Kucukpehlivan, T.; Dabanli, A.; Cabuk, A.; Cetin, M. Assessing the effects of wind farms on soil organic carbon. Environ. Sci. Pollut. Res. 2021, 28, 18216–18233. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Wu, D.; Zhao, X.; Zhou, T.; Zhao, W.; Wei, H. The Observed Impacts of Wind Farms on Local Vegetation Growth in Northern China. Remote Sens. 2017, 9, 332. [Google Scholar] [CrossRef]
- Urziceanu, M.; Anastasiu, P.; Rozylowicz, L.; Senan, T.E. Local-scale impact of wind energy farms on rare, endemic, and threatened plant species. PeerJ 2021, 9, e11390. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Zhao, C.; Gegen, T.; Zheng, C.; Shi, X.; Geng, J.; Letu, H. Satellite-Based Assessment of Local Environment Change by Wind Farms in China. Earth Space Sci. 2019, 6, 947–958. [Google Scholar] [CrossRef]
- Luo, L.; Zhuang, Y.; Duan, Q.; Dong, L.; Yu, Y.; Liu, Y.; Chen, K.; Gao, X. Local climatic and environmental effects of an onshore wind farm in North China. Agric. For. Meteorol. 2021, 308–309, 108607. [Google Scholar] [CrossRef]
- Pătru-Stupariu, I.; Calotă, A.M.; Santonja, M.; Anastasiu, P.; Stoicescu, I.; Biriş, I.A.; Stupariu, M.S.; Buttler, A. Do wind turbines impact plant community properties in mountain region? Biologia 2019, 74, 1613–1619. [Google Scholar] [CrossRef]
- Diffendorfer, J.E.; Dorning, M.A.; Keen, J.R.; Kramer, L.A.; Taylor, R.V. Geographic context affects the landscape change and fragmentation caused by wind energy facilities. PeerJ 2019, 7, e7129. [Google Scholar] [CrossRef]
- Guan, J. The impact of onshore wind farms on ecological corridors in Ningbo, China. Environ. Res. Commun. 2023, 5, 015006. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Du, S.; Li, C.; Siu, Y.L.; Rong, Y.; Yang, H. The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China. J. Clean. Prod. 2020, 254, 120075. [Google Scholar] [CrossRef]
- Roscioni, F.; Rebelo, H.; Russo, D.; Carranza, M.L.; Di Febbraro, M.; Loy, A. A modelling approach to infer the effects of wind farms on landscape connectivity for bats. Landsc. Ecol. 2014, 29, 891–903. [Google Scholar] [CrossRef]
- Zhang, T.; Meng, M.; Cao, Y.; Liu, J.; Jiang, Y. The Influence of the Construction of Huitengxile Wind Farm on the Landscape Pattern of Grassland. Ecol. Environ. Sci. 2016, 25, 1899–1905. Available online: https://link.cnki.net/doi/10.16258/j.cnki.1674-5906.2016.12.002 (accessed on 1 September 2025). (In Chinese).
- Smith, J.; Nayak, D.R.; Smith, P. Wind farms on undegraded peatlands are unlikely to reduce future carbon emissions. Energy Policy 2014, 66, 585–591. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Smith, P. Quantifying impacts of onshore wind farms on ecosystem services at local and global scales. Renew. Sustain. Energy Rev. 2015, 52, 1424–1428. [Google Scholar] [CrossRef]
- Wang, G.; Li, G.; Liu, Z. Wind farms dry surface soil in temporal and spatial variation. Sci. Total Environ. 2023, 857, 159293. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.M.; Shang, G.F.; Sun, M.H.; Yan, Z.H.; Gao, Y.X.; Yuan, Q.X.; Zhang, C. Impact of wind farms on local land surface temperature in Qinghai Province, China. Int. J. Remote Sens. 2024, 45, 7318–7338. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.P.; Xie, Y.Z.; Li, X.Y.; Luo, X.; Huang, X.; Wang, Y.T.; Yu, J.; Liang, X. The Varieties of Plants α-Diversity and Biomass in Desert Grasslands Under the Precipitation Change and Climate Warming. Rangel. Ecol. Manag. 2025, 98, 508–517. [Google Scholar] [CrossRef]
Turbine Density Category (1 km × 1 km) | Number of Sample Plots |
---|---|
0 | 1 |
1 | 2 |
2 | 3 |
3 | 1 |
4 | 3 |
5 | 1 |
6 | 2 |
11 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zhang, S.; Zhang, H.; Cao, Z.; Xiong, C.; Xu, J.; Lu, Y.; Ban, L.; Ma, J.; Wei, S. Effects of Wind Turbine Density on Insect Diversity and Its Mechanisms in Ningxia Desert Steppe Wind Farms. Agronomy 2025, 15, 2253. https://doi.org/10.3390/agronomy15102253
Cui Y, Zhang S, Zhang H, Cao Z, Xiong C, Xu J, Lu Y, Ban L, Ma J, Wei S. Effects of Wind Turbine Density on Insect Diversity and Its Mechanisms in Ningxia Desert Steppe Wind Farms. Agronomy. 2025; 15(10):2253. https://doi.org/10.3390/agronomy15102253
Chicago/Turabian StyleCui, Yifan, Shuhan Zhang, Haixiang Zhang, Ziyu Cao, Changyu Xiong, Jinyu Xu, Ye Lu, Liping Ban, Jianhua Ma, and Shuhua Wei. 2025. "Effects of Wind Turbine Density on Insect Diversity and Its Mechanisms in Ningxia Desert Steppe Wind Farms" Agronomy 15, no. 10: 2253. https://doi.org/10.3390/agronomy15102253
APA StyleCui, Y., Zhang, S., Zhang, H., Cao, Z., Xiong, C., Xu, J., Lu, Y., Ban, L., Ma, J., & Wei, S. (2025). Effects of Wind Turbine Density on Insect Diversity and Its Mechanisms in Ningxia Desert Steppe Wind Farms. Agronomy, 15(10), 2253. https://doi.org/10.3390/agronomy15102253