Next Issue
Volume 8, May
Previous Issue
Volume 8, March

Table of Contents

Polymers, Volume 8, Issue 4 (April 2016)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Smart Homopolymer Microgels: Influence of the Monomer Structure on the Particle Properties
Polymers 2016, 8(4), 162; https://doi.org/10.3390/polym8040162 - 23 Apr 2016
Cited by 21 | Viewed by 3644
Abstract
In this work, we compare the properties of smart homopolymer microgels based on N-n-propylacrylamide (NNPAM), N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM) synthesized under identical conditions. The particles are studied with respect to size, morphology, and swelling behavior using scanning electron and [...] Read more.
In this work, we compare the properties of smart homopolymer microgels based on N-n-propylacrylamide (NNPAM), N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM) synthesized under identical conditions. The particles are studied with respect to size, morphology, and swelling behavior using scanning electron and scanning force microscopy. In addition, light scattering techniques and fluorescent probes are employed to follow the swelling/de-swelling of the particles. Significant differences are found and discussed. Poly(N-n-propylacrylamide) (PNNPAM) microgels stand out due to their very sharp volume phase transition, whereas Poly(N-isopropylmethacrylamide) (PNIPMAM) particles are found to exhibit a more homogeneous network structure compared to the other two systems. Full article
Show Figures

Graphical abstract

Open AccessArticle
Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery
Polymers 2016, 8(4), 165; https://doi.org/10.3390/polym8040165 - 22 Apr 2016
Cited by 8 | Viewed by 2241
Abstract
The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM) [...] Read more.
The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM) self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol) (PEG), and dextrorotatory and levorotatory polylactides (PDLA and PLLA) was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC) than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT) as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE) and the slowest drug release in phosphate-buffered saline (PBS) at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA–PEG–PLA micelle may be promising for optimized drug delivery in the clinic. Full article
(This article belongs to the Special Issue Functional Polymers for Medical Applications)
Show Figures

Graphical abstract

Open AccessArticle
Modelling and Validation of Synthesis of Poly Lactic Acid Using an Alternative Energy Source through a Continuous Reactive Extrusion Process
Polymers 2016, 8(4), 164; https://doi.org/10.3390/polym8040164 - 22 Apr 2016
Cited by 7 | Viewed by 2485
Abstract
PLA is one of the most promising bio-compostable and bio-degradable thermoplastic polymers made from renewable sources. PLA is generally produced by ring opening polymerization (ROP) of lactide using the metallic/bimetallic catalyst (Sn, Zn, and Al) or other organic catalysts in a suitable solvent. [...] Read more.
PLA is one of the most promising bio-compostable and bio-degradable thermoplastic polymers made from renewable sources. PLA is generally produced by ring opening polymerization (ROP) of lactide using the metallic/bimetallic catalyst (Sn, Zn, and Al) or other organic catalysts in a suitable solvent. In this work, reactive extrusion experiments using stannous octoate Sn(Oct)2 and tri-phenyl phosphine (PPh)3 were considered to perform ROP of lactide. Ultrasound energy source was used for activating and/or boosting the polymerization as an alternative energy (AE) source. Ludovic® software, designed for simulation of the extrusion process, had to be modified in order to simulate the reactive extrusion of lactide and for the application of an AE source in an extruder. A mathematical model for the ROP of lactide reaction was developed to estimate the kinetics of the polymerization process. The isothermal curves generated through this model were then used by Ludovic software to simulate the “reactive” extrusion process of ROP of lactide. Results from the experiments and simulations were compared to validate the simulation methodology. It was observed that the application of an AE source boosts the polymerization of lactide monomers. However, it was also observed that the predicted residence time was shorter than the experimental one. There is potentially a case for reducing the residence time distribution (RTD) in Ludovic® due to the ‘liquid’ monomer flow in the extruder. Although this change in parameters resulted in validation of the simulation, it was concluded that further research is needed to validate this assumption. Full article
(This article belongs to the Special Issue Computational Modeling and Simulation in Polymer)
Show Figures

Graphical abstract

Open AccessArticle
Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids
Polymers 2016, 8(4), 161; https://doi.org/10.3390/polym8040161 - 22 Apr 2016
Cited by 16 | Viewed by 4051
Abstract
A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable [...] Read more.
A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR spectroscopy, dynamic light scattering and field flow fractionation show the polymers degrade via a combination of enzymatic, as well as hydrolytic pathways. The peptide sequence was chosen due to its known property to undergo lysosomal degradation; hence, these degradable, water soluble polymers could be of significant interest for the use as polymer therapeutics. In this context, we investigated conjugation of the immune response modifier imiquimod to the polymers via the tetrapeptide and report the self-assembly behavior of the conjugate, as well as its enzymatically triggered drug release behavior. Full article
(This article belongs to the Special Issue Biodegradable Polymers)
Show Figures

Graphical abstract

Open AccessArticle
Synthesis of Highly Branched Polyolefins Using Phenyl Substituted α-Diimine Ni(II) Catalysts
Polymers 2016, 8(4), 160; https://doi.org/10.3390/polym8040160 - 22 Apr 2016
Cited by 23 | Viewed by 3692
Abstract
A series of α-diimine Ni(II) complexes containing bulky phenyl groups, [ArN = C(Naphth)C = NAr]NiBr2 (Naphth: 1,8-naphthdiyl, Ar = 2,6-Me2-4-PhC6H2 (C1); Ar = 2,4-Me2-6-PhC6H2 (C2); Ar = 2-Me-4,6-Ph2C6H [...] Read more.
A series of α-diimine Ni(II) complexes containing bulky phenyl groups, [ArN = C(Naphth)C = NAr]NiBr2 (Naphth: 1,8-naphthdiyl, Ar = 2,6-Me2-4-PhC6H2 (C1); Ar = 2,4-Me2-6-PhC6H2 (C2); Ar = 2-Me-4,6-Ph2C6H2 (C3); Ar = 4-Me-2,6-Ph2C6H2 (C4); Ar = 4-Me-2-PhC6H3 (C5); Ar = 2,4,6-Ph3C6H2 (C6)), were synthesized and characterized. Upon activation with either diethylaluminum chloride (Et2AlCl) or modified methylaluminoxane (MMAO), all Ni(II) complexes showed high activities in ethylene polymerization and produced highly branched amorphous polyethylene (up to 145 branches/1000 carbons). Interestingly, the sec-butyl branches were observed in polyethylene depending on polymerization temperature. Polymerization of 1-alkene (1-hexene, 1-octene, 1-decene and 1-hexadecene) with C1-MMAO at room temperature resulted in branched polyolefins with narrow Mw/Mn values (ca. 1.2), which suggested a living polymerization. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature and types of monomers. Full article
Show Figures

Graphical abstract

Open AccessArticle
The Effects of in Situ-Formed Silver Nanoparticles on the Electrical Properties of Epoxy Resin Filled with Silver Nanowires
Polymers 2016, 8(4), 157; https://doi.org/10.3390/polym8040157 - 21 Apr 2016
Cited by 6 | Viewed by 2362
Abstract
A novel method for preparing epoxy/silver nanocomposites was developed via the in situ formation of silver nanoparticles (AgNPs) within the epoxy resin matrix while using silver nanowires (AgNWs) as a conductive filler. The silver–imidazole complex was synthesized from silver acetate (AgAc) and 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole [...] Read more.
A novel method for preparing epoxy/silver nanocomposites was developed via the in situ formation of silver nanoparticles (AgNPs) within the epoxy resin matrix while using silver nanowires (AgNWs) as a conductive filler. The silver–imidazole complex was synthesized from silver acetate (AgAc) and 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole (imidazole). AgNPs were generated in situ during the curing of the epoxy resin through the thermal decomposition of the AgAc–imidazole complex, which was capable of reducing Ag+ to Ag by itself. The released imidazole acted as a catalyst to cure the epoxy. Additionally, after the curing process, the in situ-generated AgNPs were stabilized by the formed epoxy network. Therefore, by using the thermal decomposition method, uniformly dispersed AgNPs of approximately 100 nm were formed in situ in the epoxy matrix filled with AgNWs. It was observed that the nanocomposites containing in situ-formed AgNPs exhibited isotropic electrical properties in the epoxy resins in the presence of AgNWs. Full article
Show Figures

Graphical abstract

Open AccessFeature PaperReview
Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands
Polymers 2016, 8(4), 156; https://doi.org/10.3390/polym8040156 - 21 Apr 2016
Cited by 13 | Viewed by 3409
Abstract
The past few decades have witnessed significant advances in the development of functionalized metal/metal oxide nanoparticles including those of inorganic noble metals and magnetic materials stabilized by various polymeric ligands. Recent applications of such functionalized nanoparticles, including those in bio-imaging, sensing, catalysis, drug [...] Read more.
The past few decades have witnessed significant advances in the development of functionalized metal/metal oxide nanoparticles including those of inorganic noble metals and magnetic materials stabilized by various polymeric ligands. Recent applications of such functionalized nanoparticles, including those in bio-imaging, sensing, catalysis, drug delivery, and other biomedical applications have triggered the need for their facile and reproducible preparation with a better control over their size, shape, and surface chemistry. In this perspective, the multidentate polymer ligands containing functional groups like thiol, thioether, and ester are important surface ligands for designing and synthesizing stable nanoparticles (NPs) of metals or their oxides with reproducibility and high yield. These ligands have offered an unprecedented control over the particle size of both nanoparticles and nanoclusters with enhanced colloidal stability, having tunable solubility in aqueous and organic media, and tunable optical, magnetic, and fluorescent properties. This review summarizes the synthetic methodologies and stability of nanoparticles and fluorescent nanoclusters of metals (Au, Ag, Cu, Pt, and other transition metal oxides) prepared by using thioether based ligands and highlights their applications in bio-imaging, sensing, drug delivery, magnetic resonance imaging (MRI), and catalysis. The future applications of fluorescent metal NPs like thermal gradient optical imaging, single molecule optoelectronics, sensors, and optical components of the detector are also envisaged. Full article
(This article belongs to the collection Featured Mini Reviews in Polymer Science)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Small Reaction Locus in Free-Radical Polymerization: Conventional and Reversible-Deactivation Radical Polymerization
Polymers 2016, 8(4), 155; https://doi.org/10.3390/polym8040155 - 20 Apr 2016
Cited by 3 | Viewed by 1746
Abstract
When the size of a polymerization locus is smaller than a few hundred nanometers, such as in miniemulsion polymerization, each locus may contain no more than one key-component molecule, and the concentration may become much larger than the corresponding bulk polymerization, leading to [...] Read more.
When the size of a polymerization locus is smaller than a few hundred nanometers, such as in miniemulsion polymerization, each locus may contain no more than one key-component molecule, and the concentration may become much larger than the corresponding bulk polymerization, leading to a significantly different rate of polymerization. By focusing attention on the component having the lowest concentration within the species involved in the polymerization rate expression, a simple formula can predict the particle diameter below which the polymerization rate changes significantly from the bulk polymerization. The key component in the conventional free-radical polymerization is the active radical and the polymerization rate becomes larger than the corresponding bulk polymerization when the particle size is smaller than the predicted diameter. The key component in reversible-addition-fragmentation chain-transfer (RAFT) polymerization is the intermediate species, and it can be used to predict the particle diameter below which the polymerization rate starts to increase. On the other hand, the key component is the trapping agent in stable-radical-mediated polymerization (SRMP) and atom-transfer radical polymerization (ATRP), and the polymerization rate decreases as the particle size becomes smaller than the predicted diameter. Full article
(This article belongs to the Special Issue Selected Papers from ASEPFPM2015) Printed Edition available
Show Figures

Graphical abstract

Open AccessArticle
Poly-Lactide/Exfoliated C30B Interactions and Influence on Thermo-Mechanical Properties Due to Artificial Weathering
Polymers 2016, 8(4), 154; https://doi.org/10.3390/polym8040154 - 20 Apr 2016
Cited by 3 | Viewed by 2831
Abstract
Thermal stability as well as enhanced mechanical properties of poly-lactide (PLA) can increase PLA applications for short-use products. The conjunction of adequate molecular weight (MW) as well as satisfactory thermo-mechanical properties, together, can lead to the achievement of suitable properties. [...] Read more.
Thermal stability as well as enhanced mechanical properties of poly-lactide (PLA) can increase PLA applications for short-use products. The conjunction of adequate molecular weight (MW) as well as satisfactory thermo-mechanical properties, together, can lead to the achievement of suitable properties. However, PLA is susceptible to thermal degradation and thus an undesired decay of MW and a decrease of its mechanical properties during processing. To avoid this PLA degradation, nanofiller is incorporated as reinforcement to increase its thermo-mechanical properties. There are many papers focusing on filler effects on the thermal stability and mechanical properties of PLA/nanocomposites; however, these investigations lack an explanation of polymer/filler interactions. We propose interactions between PLA and Cloisite30B (C30B) as nanofiller. We also study the effects on the thermal and mechanical properties due to molecular weight decay after exposure to artificial weathering. PLA blank and nanocomposites were subjected to three time treatments (0, 176, and 360 h) of exposure to artificial weathering in order to achieve comparable materials with different MW. MW was acquired by means of Gel Permeation Chromatography (GPC). Thermo-mechanical properties were investigated through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Dynamic Mechanical Thermal Analysis (DMTA) and Fourier Transform Infrared Spectroscopy (FTIR). Full article
(This article belongs to the Special Issue Biodegradable Polymers)
Show Figures

Graphical abstract

Open AccessArticle
Physical and Mechanical Evaluation of Five Suture Materials on Three Knot Configurations: An in Vitro Study
Polymers 2016, 8(4), 147; https://doi.org/10.3390/polym8040147 - 20 Apr 2016
Cited by 6 | Viewed by 2105
Abstract
The aim of this study was to evaluate and compare the mechanical properties of five suture materials on three knot configurations when subjected to different physical conditions. Five 5-0 (silk, polyamide 6/66, polyglycolic acid, glycolide-e-caprolactone copolymer, polytetrafluoroethylene) suture materials were used. Ten samples [...] Read more.
The aim of this study was to evaluate and compare the mechanical properties of five suture materials on three knot configurations when subjected to different physical conditions. Five 5-0 (silk, polyamide 6/66, polyglycolic acid, glycolide-e-caprolactone copolymer, polytetrafluoroethylene) suture materials were used. Ten samples per group of each material were used. Three knot configurations were compared A.2=1=1 (forward–forward–reverse), B.2=1=1 (forward–reverse–forward), C.1=2=1 (forward–forward–reverse). Mechanical properties (failure load, elongation, knot slippage/breakage) were measured using a universal testing machine. Samples were immersed in three different pH concentrations (4,7,9) at room temperature for 7 and 14 days. For the thermal cycle process, sutures were immersed in two water tanks at different temperatures (5 and 55 °C). Elongation and failure load were directly dependent on the suture material. Polyglycolic acid followed by glycolide-e-caprolactone copolymer showed the most knot failure load, while polytetrafluoroethylene showed the lowest (P < 0.001). Physical conditions had no effect on knot failure load (P = 0.494). Statistically significant differences were observed between knot configurations (P = 0.008). Additionally, individual assessment of suture material showed statistically significant results for combinations of particular knot configurations. Physical conditions, such as pH concentration and thermal cycle process, have no influence on suture mechanical properties. However, knot failure load depends on the suture material and knot configuration used. Consequently, specific suturing protocols might be recommended to obtain higher results of knot security. Full article
(This article belongs to the Special Issue Biodegradable Polymers)
Show Figures

Graphical abstract

Open AccessArticle
Bio-Based Resin Reinforced with Flax Fiber as Thermorheologically Complex Materials
Polymers 2016, 8(4), 153; https://doi.org/10.3390/polym8040153 - 19 Apr 2016
Cited by 12 | Viewed by 2369
Abstract
With the increase in structural applications of bio-based composites, the study of long-term creep behavior of these materials turns into a significant issue. Because of their bond type and structure, natural fibers and thermoset resins exhibit nonlinear viscoelastic behavior. Time-temperature superposition (TTS) provides [...] Read more.
With the increase in structural applications of bio-based composites, the study of long-term creep behavior of these materials turns into a significant issue. Because of their bond type and structure, natural fibers and thermoset resins exhibit nonlinear viscoelastic behavior. Time-temperature superposition (TTS) provides a useful tool to overcome the challenge of the long time required to perform the tests. The TTS principle assumes that the effect of temperature and time are equivalent when considering the creep behavior, therefore creep tests performed at elevated temperatures may be converted to tests performed at longer times. In this study, flax fiber composites were processed with a novel liquid molding methacrylated epoxidized sucrose soyate (MESS) resin. Frequency scans of flax/MESS composites were obtained at different temperatures and storage modulus and loss modulus were recorded and the application of horizontal and vertical shift factors to these viscoelastic functions were studied. In addition, short-term strain creep at different temperatures was measured and curves were shifted with solely horizontal, and with both horizontal and vertical shift factors. The resulting master curves were compared with a 24-h creep test and two extrapolated creep models. The findings revealed that use of both horizontal and vertical shift factors will result in a smoother master curves for loss modulus and storage modulus, while use of only horizontal shift factors for creep data provides acceptable creep strain master curves. Based on the findings of this study, flax/MESS composites can be considered as thermorheologically complex materials. Full article
(This article belongs to the Special Issue Renewable Polymeric Adhesives)
Show Figures

Graphical abstract

Open AccessArticle
Opening New Gates for the Modification of PVC or Other PVC Derivatives: Synthetic Strategies for the Covalent Binding of Molecules to PVC
Polymers 2016, 8(4), 152; https://doi.org/10.3390/polym8040152 - 19 Apr 2016
Cited by 17 | Viewed by 3012
Abstract
Several synthetic strategies based on the use of substituted aromatic and hetero-aromatic thiols for the covalent binding of modifier compounds to PVC are described. A variety of aliphatic alcohols and amines are linked to the aromatic or heteroaromatic rings via highly active functionalities [...] Read more.
Several synthetic strategies based on the use of substituted aromatic and hetero-aromatic thiols for the covalent binding of modifier compounds to PVC are described. A variety of aliphatic alcohols and amines are linked to the aromatic or heteroaromatic rings via highly active functionalities as the isocyanate, acidchloride, or chlorosulfonyl group, and the three chlorine atoms of trichlorotriazine. The first three pathways lead to protected aromatic disulfides obtaining the substituted aromatic thiols by reduction as a final step of an unprecedented synthetic route. The second approach, in a novel, extremely efficient, and scalable process, uses the particular selectivity of trichlorotriazine to connect aliphatic amines, alcohols, and thiols to the ring and creates the thiol via nucleophilic substitution of a heteroaromatic halogen by thiourea and subsequent hydrolysis. Most of the modifier compounds were linked to the polymer chains with high degrees of anchorage. The presented approaches are highly versatile as different activations of aromatic and heteroaromatic rings are used. Therefore, many types of tailored functional nucleophiles may be anchored to PVC providing non-migrating materials with a broad range of applications and properties. Full article
Show Figures

Graphical abstract

Open AccessFeature PaperArticle
The in Vitro and in Vivo Degradation of Cross-Linked Poly(trimethylene carbonate)-Based Networks
Polymers 2016, 8(4), 151; https://doi.org/10.3390/polym8040151 - 19 Apr 2016
Cited by 9 | Viewed by 2398
Abstract
The degradation of the poly(trimethylene carbonate) (PTMC) and poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-co-CL)) networks cross-linked by 0.01 and 0.02 mol % 2,2′-bis(trimethylene carbonate-5-yl)-butylether (BTB) was carried out in the conditions of hydrolysis and enzymes in vitro and subcutaneous implantation in vivo [...] Read more.
The degradation of the poly(trimethylene carbonate) (PTMC) and poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-co-CL)) networks cross-linked by 0.01 and 0.02 mol % 2,2′-bis(trimethylene carbonate-5-yl)-butylether (BTB) was carried out in the conditions of hydrolysis and enzymes in vitro and subcutaneous implantation in vivo. The results showed that the cross-linked PTMC networks exhibited much faster degradation in enzymatic conditions in vitro and in vivo versus in a hydrolysis case due to the catalyst effect of enzymes; the weight loss and physical properties of the degraded networks were dependent on the BTB amount. The morphology observation in lipase and in vivo illustrated that enzymes played an important role in the surface erosion of cross-linked PTMC. The hydrolytic degradation rate of the cross-linked P(TMC-co-CL) networks increased with increasing ε-caprolactone (CL) content in composition due to the preferential cleavage of ester bonds. Cross-linking is an effective strategy to lower the degradation rate and enhance the form-stability of PTMC-based materials. Full article
(This article belongs to the Special Issue Functional Polymers for Medical Applications)
Show Figures

Graphical abstract

Open AccessArticle
Processing of Polysulfone to Free Flowing Powder by Mechanical Milling and Spray Drying Techniques for Use in Selective Laser Sintering
Polymers 2016, 8(4), 150; https://doi.org/10.3390/polym8040150 - 19 Apr 2016
Cited by 9 | Viewed by 3545
Abstract
Polysulfone (PSU) has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can [...] Read more.
Polysulfone (PSU) has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can be used for this aim. Processing PSU pellets by rotor milling in a three-step process resulted in particles of 51.8 μm mean diameter, whereas spray drying could only manage a mean diameter of 26.1 μm. The resulting powders were characterized using Differential Scanning Calorimetry (DSC), Gel Permeation Chromatography (GPC) and X-ray Diffraction measurements (XRD). DSC measurements revealed an influence of all processing techniques on the thermal behavior of the material. Glass transitions remained unaffected by spray drying and rotor milling, yet a clear shift was observed for ball milling, along with a large endothermic peak in the high temperature region. This was ascribed to the imparting of an orientation into the polymer chains due to the processing method and was confirmed by XRD measurements. Of all processed powder samples, the ball milled sample was unable to dissolve for GPC measurements, suggesting degradation by chain scission and subsequent crosslinking. Spray drying and rotor milling did not cause significant degradation. Full article
Show Figures

Graphical abstract

Open AccessArticle
2H Solid-State NMR Analysis of the Dynamics and Organization of Water in Hydrated Chitosan
Polymers 2016, 8(4), 149; https://doi.org/10.3390/polym8040149 - 19 Apr 2016
Cited by 5 | Viewed by 2184
Abstract
Understanding water–biopolymer interactions, which strongly affect the function and properties of biopolymer-based tissue engineering and drug delivery materials, remains a challenge. Chitosan, which is an important biopolymer for the construction of artificial tissue grafts and for drug delivery, has attracted extensive attention in [...] Read more.
Understanding water–biopolymer interactions, which strongly affect the function and properties of biopolymer-based tissue engineering and drug delivery materials, remains a challenge. Chitosan, which is an important biopolymer for the construction of artificial tissue grafts and for drug delivery, has attracted extensive attention in recent decades, where neutralization with an alkali solution can substantially enhance the final properties of chitosan films cast from an acidic solution. In this work, to elucidate the effect of water on the properties of chitosan films, we investigated the dynamics and different states of water in non-neutralized (CTS-A) and neutralized (CTS-N) hydrated chitosan by mobility selective variable-temperature (VT) 2H solid-state NMR spectroscopy. Four distinct types of water exist in all of the samples with regards to dynamic behavior. First, non-freezable, rigid and strongly bound water was found in the crystalline domain at low temperatures. The second component consists of weakly bound water, which is highly mobile and exhibits isotropic motion, even below 260 K. Another type of water undergoes well-defined 180° flips around their bisector axis. Moreover, free water is also present in the films. For the CTS-A sample in particular, another special water species were bounded to acetic acid molecules via strong hydrogen bonding. In the case of CTS-N, the onset of motions of the weakly bound water molecules at 260 K was revealed by 2H-NMR spectroscopy. This water is not crystalline, even below 260 K, which is also the major contribution to the flexibility of chitosan chains and thus toughness of materials. By contrast, such motion was not observed in CTS-A. On the basis of the 2H solid-state NMR results, it is concluded that the unique toughness of CTS-N mainly originates from the weakly bound water as well as the interactions between water and the chitosan chains. Full article
(This article belongs to the collection Polysaccharides)
Show Figures

Graphical abstract

Open AccessArticle
Mesogenic Polyelectrolyte Gels Absorb Organic Solvents and Liquid Crystalline Molecules
Polymers 2016, 8(4), 148; https://doi.org/10.3390/polym8040148 - 19 Apr 2016
Cited by 6 | Viewed by 1948
Abstract
In this paper, mesogenic polyelectrolyte gels (MPEgels) tethering mesogenic groups on the side chains were synthesized from a mesogenic monomer and ionic monomer via a conventional radical polymerization process. The obtained MPEgels absorbed various organic solvents in a wide range of dielectric constants [...] Read more.
In this paper, mesogenic polyelectrolyte gels (MPEgels) tethering mesogenic groups on the side chains were synthesized from a mesogenic monomer and ionic monomer via a conventional radical polymerization process. The obtained MPEgels absorbed various organic solvents in a wide range of dielectric constants from chloroform (ε = 7.6) to DMSO (ε = 46.5). The electrostatic repulsion among the polymer chains and the osmotic pressure between the interior and exterior of the MPEgel is responsible for the high swelling ability, revealed by the common ion effect using tetra(n-hexyl)ammonium tetra(3,5-bis(trifluoromethyl)phenylborate (THATFPB). The obtained MPEgels could also absorb liquid crystalline molecules such as 4-cyano-4’-pentylbiphenyl (5CB), analogously caused by the above-mentioned polyelectrolyte characteristic. The MPEgels exhibited liquid crystal transition temperature (TNI) on differential scanning calorimetry (DSC) measurement, and the increase of the ionic group content lowered TNI. The MPEgels absorbing liquid crystalline molecules exhibited differing TNI, dependent on the compatibility of the mesogenic group on the side chain to the liquid crystalline molecule. Full article
(This article belongs to the collection Polyelectrolytes)
Show Figures

Graphical abstract

Open AccessArticle
Synthesis of Monodisperse Silica Particles Grafted with Concentrated Ionic Liquid-Type Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization for Use as a Solid State Polymer Electrolyte
Polymers 2016, 8(4), 146; https://doi.org/10.3390/polym8040146 - 16 Apr 2016
Cited by 9 | Viewed by 3625
Abstract
A polymerizable ionic liquid, N,N-diethyl-N-(2-methacryloylethyl)-N-methylammonium bis(trifluoromethylsulfonyl)imide (DEMM-TFSI), was polymerized via copper-mediated atom transfer radical polymerization (ATRP). The polymerization proceeded in a living manner producing well-defined poly(DEMM-TFSI) of target molecular weight up to about 400 K (including [...] Read more.
A polymerizable ionic liquid, N,N-diethyl-N-(2-methacryloylethyl)-N-methylammonium bis(trifluoromethylsulfonyl)imide (DEMM-TFSI), was polymerized via copper-mediated atom transfer radical polymerization (ATRP). The polymerization proceeded in a living manner producing well-defined poly(DEMM-TFSI) of target molecular weight up to about 400 K (including a polycation and an counter anion). The accurate molecular weight as determined by a GPC analysis combined with a light scattering measurement, and the molecular weight values obtained exhibited good agreement with the theoretical values calculated from the initial molar ratio of DEMM-TFSI and the monomer conversion. Surface-initiated ATRP on the surface of monodisperse silica particles (SiPs) with various diameters was successfully performed, producing SiPs grafted with well-defined poly(DEMM-TFSI) with a graft density as high as 0.15 chains/nm2. Since the composite film made from the silica-particle-decorated polymer brush and ionic liquid shows a relatively high ionic conductivity, we have evaluated the relationship between the grafted brush chain length and the ionic conductivity. Full article
Show Figures

Graphical abstract

Open AccessArticle
Modification of Spherical Polyelectrolyte Brushes by Layer-by-Layer Self-Assembly as Observed by Small Angle X-ray Scattering
Polymers 2016, 8(4), 145; https://doi.org/10.3390/polym8040145 - 15 Apr 2016
Cited by 10 | Viewed by 2600
Abstract
Multilayer modified spherical polyelectrolyte brushes were prepared through alternate deposition of positively charged poly(allylamine hydrochloride) (PAH) and negatively charged poly-l-aspartic acid (PAsp) onto negatively charged spherical poly(acrylic acid) (PAA) brushes (SPBs) on a poly(styrene) core. The charge reversal determined by the [...] Read more.
Multilayer modified spherical polyelectrolyte brushes were prepared through alternate deposition of positively charged poly(allylamine hydrochloride) (PAH) and negatively charged poly-l-aspartic acid (PAsp) onto negatively charged spherical poly(acrylic acid) (PAA) brushes (SPBs) on a poly(styrene) core. The charge reversal determined by the zeta potential indicated the success of layer-by-layer (LBL) deposition. The change of the structure during the construction of multilayer modified SPBs was observed by small-angle X-ray scattering (SAXS). SAXS results indicated that some PAH chains were able to penetrate into the PAA brush for the PAA-PAH double-layer modified SPBs whereas part of the PAH moved towards the outer layer when the PAsp layer was loaded to form a PAA-PAH-PAsp triple-layer system. The multilayer modified SPBs were stable upon changing the pH (5 to 9) and ionic strength (1 to 100 mM). The triple-layer modified SPBs were more tolerated to high pH (even at 11) compared to the double-layer ones. SAXS is proved to be a powerful tool for studying the inner structure of multilayer modified SPBs, which can establish guidelines for the a range of potential applications of multilayer modified SPBs. Full article
(This article belongs to the collection Polyelectrolytes)
Show Figures

Graphical abstract

Open AccessArticle
Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment
Polymers 2016, 8(4), 144; https://doi.org/10.3390/polym8040144 - 15 Apr 2016
Cited by 2 | Viewed by 2376
Abstract
Polyurethane/urea copolymers based on poly(ethylene glycol) (PURPEG) were exposed to weakly ionized, highly reactive low-pressure oxygen plasma to improve their sorption kinetics. The plasma was sustained with an inductively coupled radiofrequency generator operating at various power levels in either E-mode (up to the [...] Read more.
Polyurethane/urea copolymers based on poly(ethylene glycol) (PURPEG) were exposed to weakly ionized, highly reactive low-pressure oxygen plasma to improve their sorption kinetics. The plasma was sustained with an inductively coupled radiofrequency generator operating at various power levels in either E-mode (up to the forward power of 300 W) or H-mode (above 500 W). The treatments that used H-mode caused nearly instant thermal degradation of the polymer samples. The density of the charged particles in E-mode was on the order of 1016 m−3, which prevented material destruction upon plasma treatment, but the density of neutral O-atoms in the ground state was on the order of 1021 m−3. The evolution of plasma characteristics during sample treatment in E-mode was determined by optical emission spectroscopy; surface modifications were determined by water adsorption kinetics and X-ray photoelectron spectroscopy; and etching intensity was determined by residual gas analysis. The results showed moderate surface functionalization with hydroxyl and carboxyl/ester groups, weak etching at a rate of several nm/s, rather slow activation down to a water contact angle of 30° and an ability to rapidly absorb water. Full article
(This article belongs to the Special Issue Polymers Applied in Tissue Engineering)
Show Figures

Graphical abstract

Open AccessArticle
Analysis and Testing of Bisphenol A—Free Bio-Based Tannin Epoxy-Acrylic Adhesives
Polymers 2016, 8(4), 143; https://doi.org/10.3390/polym8040143 - 15 Apr 2016
Cited by 12 | Viewed by 3729
Abstract
A tannin-based epoxy acrylate resin was prepared from glycidyl ether tannin (GET) and acrylic acid. The influence of the reaction condition for producing tannin epoxy acrylate was studied by FT-MIR, 13C-NMR, MALDI-TOF spectroscopy and shear strength. The best reaction conditions for producing [...] Read more.
A tannin-based epoxy acrylate resin was prepared from glycidyl ether tannin (GET) and acrylic acid. The influence of the reaction condition for producing tannin epoxy acrylate was studied by FT-MIR, 13C-NMR, MALDI-TOF spectroscopy and shear strength. The best reaction conditions for producing tannin epoxy acrylate resin without bisphenol A was by reaction between GET and acrylic acid in the presence of a catalyst and hydroquinone at 95 °C for 12 h. FT-MIR, 13C-NMR and MALDI-TOF analysis have confirmed that the resin has been prepared under these conditions. The joints bonded with this resin were tested for block shear strength. The results obtained indicated that the best strength performance was obtained by the bioepoxy-acrylate adhesive resin prepared at 95 °C for a 12-h reaction. Full article
(This article belongs to the Special Issue Renewable Polymeric Adhesives)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Rubber Nanoparticle Agglomeration on Properties of Thermoplastic Vulcanizates during Dynamic Vulcanization
Polymers 2016, 8(4), 127; https://doi.org/10.3390/polym8040127 - 15 Apr 2016
Cited by 8 | Viewed by 2776
Abstract
We previously reported that the dispersed rubber microparticles in ethylene-propylene-diene monomer (EPDM)/polypropylene (PP) thermoplastic vulcanizates (TPVs) are actually agglomerates of rubber nanoparticles. In this study, based on this new understanding of the microstructure of TPV, we further revealed the microstructure-properties relationship of EPDM/PP [...] Read more.
We previously reported that the dispersed rubber microparticles in ethylene-propylene-diene monomer (EPDM)/polypropylene (PP) thermoplastic vulcanizates (TPVs) are actually agglomerates of rubber nanoparticles. In this study, based on this new understanding of the microstructure of TPV, we further revealed the microstructure-properties relationship of EPDM/PP TPV during dynamic vulcanization, especially the effect of the size of rubber nanoparticle agglomerates (dn), the thicknesses of PP ligaments (IDpoly) and the rubber network on the properties of EPDM/PP TPV. We were able to simultaneously obtain a high tensile strength, elongation at break, elastic modulus, and elasticity for the EPDM/PP TPV by the achievement of a smaller dn, a thinner IDpoly and a denser rubber network. Interestingly, the effect of dn and IDpoly on the elastic modulus of EPDM/PP TPV composed of rubber nanoparticle agglomerates is different from that of EPDM/PP TPVs composed of rubber microparticles reported previously. The deformation behavior of the TPVs during stretching was studied to understand the mechanism for the achievement of good mechanical properties. Interestingly, the rubber nanoparticle agglomerates are oriented along the tensile direction during stretching. The TPV samples with smaller and more numerous rubber nanoparticle agglomerates can slow down the development of voids and cracks more effectively, thus leading to increase in tensile strength and elongation at break of the EPDM/PP TPV. Full article
Show Figures

Graphical abstract

Open AccessArticle
Density Functional Theory of Polymer Structure and Conformations
Polymers 2016, 8(4), 121; https://doi.org/10.3390/polym8040121 - 15 Apr 2016
Cited by 2 | Viewed by 2808
Abstract
We present a density functional approach to quantitatively evaluate the microscopic conformations of polymer chains with consideration of the effects of chain stiffness, polymer concentration, and short chain molecules. For polystyrene (PS), poly(ethylene oxide) (PEO), and poly(methyl methacrylate) (PMMA) melts with low-polymerization degree, [...] Read more.
We present a density functional approach to quantitatively evaluate the microscopic conformations of polymer chains with consideration of the effects of chain stiffness, polymer concentration, and short chain molecules. For polystyrene (PS), poly(ethylene oxide) (PEO), and poly(methyl methacrylate) (PMMA) melts with low-polymerization degree, as chain length increases, they display different stretching ratios and show non-universal scaling exponents due to their different chain stiffnesses. In good solvent, increase of PS concentration induces the decline of gyration radius. For PS blends containing short (m1 = 1 100) and long (m = 100) chains, the expansion of long chains becomes unobvious once m 1 is larger than 40, which is also different to the scaling properties of ideal chain blends. Full article
(This article belongs to the Special Issue Computational Modeling and Simulation in Polymer)
Show Figures

Graphical abstract

Open AccessArticle
pH-Triggered Sheddable Shielding System for Polycationic Gene Carriers
Polymers 2016, 8(4), 141; https://doi.org/10.3390/polym8040141 - 14 Apr 2016
Cited by 3 | Viewed by 2106
Abstract
For improving the therapeutic efficiency of tumors and decreasing undesirable side effects, ternary complexes were developed by coating pH-sensitive PEG-b-PLL-g-succinylsulfathiazole (hereafter abbreviated as PPSD) with DNA/PEI polyplexes via electrostatic interaction. PPSD can efficiently shield the surface charge of DNA/PEI. [...] Read more.
For improving the therapeutic efficiency of tumors and decreasing undesirable side effects, ternary complexes were developed by coating pH-sensitive PEG-b-PLL-g-succinylsulfathiazole (hereafter abbreviated as PPSD) with DNA/PEI polyplexes via electrostatic interaction. PPSD can efficiently shield the surface charge of DNA/PEI. The gene transfection efficiency of ternary complexes was lower than that of DNA/PEI at pH 7.4; however, it recovered to the same level as that of DNA/PEI at pH 6.0, attributed to the pH-triggered release of DNA/PEI from ternary complexes. Cell uptake results also exhibited the same trend as transfection at different pH values. The suitable ability for pH-triggered shielding/deshielding estimated that PPSD demonstrates potential as a shielding system for use in in vivo gene delivery. Full article
(This article belongs to the Special Issue Functional Polymers for Medical Applications)
Show Figures

Graphical abstract

Open AccessArticle
Transparent Blend of Poly(Methylmethacrylate)/Cellulose Acetate Butyrate for the Protection from Ultraviolet
Polymers 2016, 8(4), 128; https://doi.org/10.3390/polym8040128 - 14 Apr 2016
Cited by 4 | Viewed by 2332
Abstract
The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the [...] Read more.
The use of transparent polymers as an alternative to glass has become widespread. However, the direct exposure of these materials to climatic conditions of sunlight and heat decrease the lifetime cost of these products. The aim of this study was to minimize the harm caused by ultraviolet (UV) radiation exposure to transparent poly(methylmethacrylate) (PMMA), which usually leads to changes in the physical and chemical properties of these materials and reduced performance. This was achieved using environmentally friendly cellulose acetate butyrate (CAB). The optical, morphological, and thermal properties of CAB blended with transparent PMMA was studied using UV-VIS spectrophotometry, scanning electron microscopy, X-ray diffraction, dynamic mechanical analysis, and thermal gravimetric analysis. The results show that CAB was able to reduce the effects of UV radiation by making PMMA more transparent to UV light, thereby preventing the negative effects of trapped radiation within the compositional structure, while maintaining the amorphous structure of the blend. The results also show that CAB blended with PMMA led to some properties commensurate with the requirements of research in terms of a slight increase in the value of the modulus and the glass transition temperature for the PMMA/CAB blend. Full article
Show Figures

Graphical abstract

Open AccessArticle
Enzyme-Catalyzed Synthesis of Water-Soluble Conjugated Poly[2-(3-thienyl)-Ethoxy-4-Butylsulfonate]
Polymers 2016, 8(4), 139; https://doi.org/10.3390/polym8040139 - 13 Apr 2016
Cited by 4 | Viewed by 2175
Abstract
An environmentally friendly water-soluble conjugated polythiophene poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] (PTEBS) has been found to be effective for making hybrid solar cells. In this work, we first report the enzyme-catalyzed polymerization of (3-thienyl)-ethoxy-4-butylsulfonate (TEBS) using horseradish peroxidase (HRP) enzyme as a catalyst and hydrogen peroxide (H [...] Read more.
An environmentally friendly water-soluble conjugated polythiophene poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] (PTEBS) has been found to be effective for making hybrid solar cells. In this work, we first report the enzyme-catalyzed polymerization of (3-thienyl)-ethoxy-4-butylsulfonate (TEBS) using horseradish peroxidase (HRP) enzyme as a catalyst and hydrogen peroxide (H2O2) as an oxidant in an aqueous buffer. This enzyme-catalyzed polymerization is a “green synthesis process” for the synthesis of water-soluble conjugated PTEBS, the benefits of which include a simple setting, high yields, and an environmentally friendly route. Fourier transform infrared spectra (FTIR) and UV–Vis absorption spectra confirm the successful enzyme-catalyzed polymerization of TEBS. The thermo gravimetric (TG) data show the obtained PTEBS is stable over a fairly high range of temperatures. The present PTEBS has a good solubility in water and ethanol, and photoluminescence quenching of PTEBS/titanium dioxide (TiO2) composite implies that the excitons dissociate and separate successfully at the interface of PTEBS and TiO2, which help to build solar cells using green processing methods. Full article
(This article belongs to the Special Issue Enzymatic Polymer Synthesis)
Show Figures

Graphical abstract

Open AccessFeature PaperReview
Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization
Polymers 2016, 8(4), 140; https://doi.org/10.3390/polym8040140 - 12 Apr 2016
Cited by 12 | Viewed by 3076
Abstract
Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an [...] Read more.
Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed. Full article
Show Figures

Graphical abstract

Open AccessArticle
A Hyper-Viscoelastic Constitutive Model for Polyurea under Uniaxial Compressive Loading
Polymers 2016, 8(4), 133; https://doi.org/10.3390/polym8040133 - 12 Apr 2016
Cited by 8 | Viewed by 1915
Abstract
A hyper-viscoelastic constitutive model for polyurea by separating hyperelastic and viscoelastic behaviors has been put forward. Hyperelasticity represents the rate-independent responses at low strain rates, described by a three-parameter Mooney-Rivlin model and a third Ogden model. By fitting the quasi-static experimental data, the [...] Read more.
A hyper-viscoelastic constitutive model for polyurea by separating hyperelastic and viscoelastic behaviors has been put forward. Hyperelasticity represents the rate-independent responses at low strain rates, described by a three-parameter Mooney-Rivlin model and a third Ogden model. By fitting the quasi-static experimental data, the Ogden model is more appropriate to describe the hyperelastic behaviors for its better agreement at strain over 0.3. Meanwhile, viscoelasticity represents the rate-dependent responses at high strain rates, described by the Standard Linear Solids (SLS) model and the K-BKZ model. By fitting the experimental data of split Hopkinson pressure bar (SHPB), the SLS model is more appropriate to describe the viscoelastic behaviors at strain rates below 1600 s−1, but the K-BKZ model performs better at strain rates over 2100 s−1 because of the substantial increase of Young’s modulus and the state of polyurea transforming from rubbery to glassy. The K-BKZ model is chosen to describe the viscoelastic behavior, for its low Root Mean Square Error (RMSE) at strain rates below 1600 s−1. From the discussion above, the hyper-viscoelastic constitutive model is chosen to be the combination of the Ogden model and the K-BKZ model. Full article
Show Figures

Graphical abstract

Open AccessArticle
Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites
Polymers 2016, 8(4), 129; https://doi.org/10.3390/polym8040129 - 12 Apr 2016
Cited by 12 | Viewed by 2641
Abstract
Bacterial cellulose (BC) has great potential to be used as a new filler to reinforce isotactic polypropylene (iPP) due to its high crystallinity, biodegradability, and efficient mechanical properties. In this study, esterification was used to modify BC, which improved the surface compatibility of [...] Read more.
Bacterial cellulose (BC) has great potential to be used as a new filler to reinforce isotactic polypropylene (iPP) due to its high crystallinity, biodegradability, and efficient mechanical properties. In this study, esterification was used to modify BC, which improved the surface compatibility of the iPP and BC. The results indicated that the cellulose octoate (CO) changed the surface properties from hydrophilic to lipophilic. Compared to the pure iPP, the tensile strength, charpy notched impact strength, and tensile modulus of the iPP/BC composites increased by 9.9%, 7.77%, and 15.64%, respectively. However, the addition of CO reinforced the iPP/CO composites. The tensile strength, charpy notched impact strength, and tensile modulus of the iPP/CO composites increased by 14.23%, 14.08%, and 17.82% compared to the pure iPP. However, the elongation at break of both the composites is decreased. The SEM photographs and particle size distribution of the composites showed improvements when the change of polarity of the BC surface, interface compatibility, and dispersion of iPP improved. Full article
(This article belongs to the collection Polysaccharides)
Show Figures

Graphical abstract

Open AccessReview
Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions
Polymers 2016, 8(4), 138; https://doi.org/10.3390/polym8040138 - 11 Apr 2016
Cited by 18 | Viewed by 3237
Abstract
In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the [...] Read more.
In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose) was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named “vine-twining polymerization”. Through this approach, amylose supramolecular network materials were fabricated using designed graft copolymers. Furthermore, supramolecular inclusion polymers were formed by vine-twining polymerization using primer–guest conjugates. Full article
(This article belongs to the Special Issue Enzymatic Polymer Synthesis)
Show Figures

Graphical abstract

Open AccessArticle
Hg(II) Coordination Polymers Based on N,N’-bis(pyridine-4-yl)formamidine
Polymers 2016, 8(4), 137; https://doi.org/10.3390/polym8040137 - 11 Apr 2016
Cited by 5 | Viewed by 2278
Abstract
Reactions of N,N’-bis(pyridine-4-yl)formamidine (4-Hpyf) with HgX2 (X = Cl, Br, and I) afforded the formamidinate complex {[Hg(4-pyf)2]·(THF)}n, 1, and the formamidine complexes {[HgX2(4-Hpyf)]·(MeCN)}n (X = Br, 2; I, 3), which have been structurally characterized [...] Read more.
Reactions of N,N’-bis(pyridine-4-yl)formamidine (4-Hpyf) with HgX2 (X = Cl, Br, and I) afforded the formamidinate complex {[Hg(4-pyf)2]·(THF)}n, 1, and the formamidine complexes {[HgX2(4-Hpyf)]·(MeCN)}n (X = Br, 2; I, 3), which have been structurally characterized by X-ray crystallography. Complex 1 is a 2D layer with the {44·62}-sql topology and complexes 2 and 3 are helical chains. While the helical chains of 2 are linked through N–H···Br hydrogen bonds, those of 3 are linked through self-complementary double N–H···N hydrogen bonds, resulting in 2D supramolecular structures. The 4-pyf- ligands of 1 coordinate to the Hg(II) ions through one pyridyl and one adjacent amine nitrogen atoms and the 4-Hpyf ligands of 2 and 3 coordinate to the Hg(II) ions through two pyridyl nitrogen atoms, resulting in new bidentate binding modes. Complexes 1–3 provide a unique opportunity to envisage the effect of the halide anions of the starting Hg(II) salts on folding and unfolding the Hg(II) coordination polymers. Density function theory (DFT) calculation indicates that the emission of 1 is due to intraligand π→π * charge transfer between two different 4-pyf- ligands, whereas those of 2 and 3 can be ascribed to the charge transfer from non-bonding p-type orbitals of the halide anions to π * orbitals of the 4-pyf- ligands (n→π *). The gas sorption properties of the desolvated product of 1 are compared with the Cu analogues to show that the nature of the counteranion and the solvent-accessible volume are important in determining their adsorption capability. Full article
(This article belongs to the Special Issue Coordination Polymers: New Materials for Multiple Applications)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop