Influence of Wine on Bone Mineral Density
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Identification (Key Question)
2.2. Literature Search
2.3. Data Evaluation and Data Analysis
3. Results
3.1. Studies from Databases
3.2. Characteristics of Included Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABV | Alcohol by Volume |
mL | milliliter |
g | gram |
g/mL | gram per milliliter |
g/cm2 | grams per square centimeter (bone mineral density) |
g/d | grams per day |
g/w | grams per week |
L | liter |
BMD | Bone Mineral Density |
FN | Femoral Neck |
DEXA/DXA | Dual-energy X-ray Absorptiometry |
RW | Red Wine |
WW | White Wine |
ER | Estrogen Receptor |
ERK 1/2 | Extracellular Signal-Regulated Kinases 1/2 |
p38 MAPK | p38 Mitogen-Activated Protein Kinase |
Wnt | Wingless/Integrated signaling pathway |
BMP-2 | Bone Morphogenetic Protein-2 |
RANKL | Receptor Activator of Nuclear Factor κB Ligand |
ROS | Reactive Oxygen Species |
TNF-α | Tumor Necrosis Factor-alpha |
IL-6 | Interleukin 6 |
RUNX-2 | Runt-related Transcription Factor 2 |
NR | Not Reported |
RCT | Randomized Clinical Trial |
MD | Mean Difference |
MDPI | Multidisciplinary Digital Publishing Institute |
Mn | Manganese |
Pb | Lead |
Zn | Zinc |
Cu | Copper |
e.g. | for example |
Appendix A
Author and Year | Estimate of Alcohol |
---|---|
Larsen et al., 2022 [27] | RW–Men: ≈10.4 g/d RW–Women: ≈6.9 g/d WW–Men: ≈4.0 g/d WW–Women: ≈7.1 g/d |
Cardoso et al., 2017 [28] | ≈0.95 g/d |
McLernon et al., 2012 [29] | 1.3 g/d |
Fairweather-Tait et al., 2011 [30] | 9.2 g/d |
Yin et al., 2011 [31] | Men 20 g/d Women 10 g/d |
Broulík et al., 2010 [32] | ≈76 g/d |
Tucker et al., 2009 [33] | 13.2 g/d |
References
- Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages 2022, 8, 1. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Government Publishing Office: Washington, DC, USA, 2020. [Google Scholar]
- Lukacs, P. Inventing Wine: A New History of One of the World’s Most Ancient Pleasures; WW Norton & Company: New York, NY, USA, 2012. [Google Scholar]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Serio, F.; Imbriani, G.; Acito, M.; Moretti, M.; Fanizzi, F.P.; de Donno, A.; Valacchi, G. Moderate red wine intake and cardiovascular health protection: A literature review. Food Funct. 2023, 14, 6346–6362. [Google Scholar] [CrossRef]
- Basli, A.; Soulet, S.; Chaher, N.; Mérillon, J.M.; Chibane, M.; Monti, J.P.; Richard, T. Wine polyphenols: Potential agents in neuroprotection. Oxid. Med. Cell. Longev. 2012, 2012, 805762. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Ren, M.; Liu, D.; Wang, C.; Yang, C.; Yan, L. Alcohol consumption and risk of metabolic syndrome: A meta-analysis of prospective studies. Clin. Nutr. 2014, 33, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Yao, B.; Liu, G.; Fang, J. Polyphenols as potential preventers of osteoporosis: A comprehensive review on antioxidant and anti-inflammatory effects, molecular mechanisms, and signal pathways in bone metabolism. J. Nutr. Biochem. 2024, 123, 109488. [Google Scholar] [CrossRef]
- He, S.; Sun, C.; Pan, Y. Red wine polyphenols for cancer prevention. Int. J. Mol. Sci. 2008, 9, 842–853. [Google Scholar] [CrossRef]
- Lim, R.K.; Rhee, J.; Hoang, M.; Qureshi, A.A.; Cho, E. Consumption of Red Versus White Wine and Cancer Risk: A Meta-Analysis of Observational Studies. Nutrients 2025, 17, 534. [Google Scholar] [CrossRef]
- Kutleša, Z.; Budimir Mršić, D. Wine and bone health: A review. J. Bone Miner. Metab. 2016, 34, 11–22. [Google Scholar] [CrossRef]
- Errichiello, F.; Forino, M.; Picariello, L.; Moio, L.; Gambuti, A. Analysis of Polyphenols During Alcoholic Fermentation of Red Grape Aglianico (Vitis vinifera L.): Potential Winemaking Optimization and Pomace Valorization. Molecules 2024, 29, 5962. [Google Scholar] [CrossRef]
- El Rayess, Y.; Nehme, N.; Azzi-Achkouty, S.; Julien, S.G. Wine Phenolic Compounds: Chemistry, Functionality and Health Benefits. Antioxidants 2024, 13, 1312. [Google Scholar] [CrossRef] [PubMed]
- Acuña-Avila, P.E.; Vasquez-Murrieta, M.S.; Cortés-Camargo, S.; Hernández-Botello, M.T.; Ramos-Monroy, O.; López-Cortéz, M.d.S. Wine Polyphenol Content during the Fermentation of Vitis vinifera CS Grapes and Its Relationship with the Presence of Minerals in the Resulting Wine. Appl. Sci. 2023, 13, 8314. [Google Scholar] [CrossRef]
- Bavaresco, L.; Lucini, L.; Busconi, M.; Flamini, R.; De Rosso, M. Wine Resveratrol: From the Ground Up. Nutrients 2016, 8, 222. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Wong, R.H.; Thaung Zaw, J.J.; Xian, C.J.; Howe, P.R. Regular Supplementation With Resveratrol Improves Bone Mineral Density in Postmenopausal Women: A Randomized, Placebo-Controlled Trial. J. Bone Miner. Res. 2020, 35, 2121–2131. [Google Scholar] [CrossRef]
- Dai, Z.; Li, Y.; Quarles, L.D.; Song, T.; Pan, W.; Zhou, H.; Xiao, Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 2007, 14, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.L.; Chang, J.K.; Tsai, C.H.; Chien, T.T.; Kuo, P.L. Myricetin induces human osteoblast differentiation through bone morphogenetic protein-2/p38 mitogen-activated protein kinase pathway. Biochem. Pharmacol. 2007, 73, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shang, L.; Li, X.; Zhang, X.; Gao, G.; Guo, C.; Chen, B.; Liu, Q.; Gong, Y.; Shao, C. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Exp. Cell Res. 2009, 315, 2953–2962. [Google Scholar] [CrossRef]
- Chang, J.K.; Hsu, Y.L.; Teng, I.C.; Kuo, P.L. Piceatannol stimulates osteoblast differentiation that may be mediated by increased bone morphogenetic protein-2 production. Eur. J. Pharmacol. 2006, 551, 1–9. [Google Scholar] [CrossRef]
- Wattel, A.; Kamel, S.; Prouillet, C.; Petit, J.P.; Lorget, F.; Offord, E.; Brazier, M. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J. Cell Biochem. 2004, 92, 285–295. [Google Scholar] [CrossRef]
- He, X.; Andersson, G.; Lindgren, U.; Li, Y. Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochem. Biophys. Res. Commun. 2010, 401, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.M.; Hwang, J.K. Effects of (+)-catechin on the function of osteoblastic cells. Biol. Pharm. Bull. 2003, 26, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Whittemore, R.; Knafl, K. The integrative review: Updated methodology. J. Adv. Nurs. 2005, 52, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Larsen, B.A.; Klinedinst, B.S.; Le, S.T.; Pappas, C.; Wolf, T.; Meier, N.F.; Lim, Y.L.; Willette, A.A. Beer, wine, and spirits differentially influence body composition in older white adults—A United Kingdom Biobank study. Obes. Sci. Pract. 2022, 8, 641–656. [Google Scholar] [CrossRef]
- Cardoso, L.M.D.F.; Pimenta, N.D.M.A.; Fiochi, R.D.S.F.; Mota, B.F.M.; Monnerat, J.A.S.; Teixeira, C.C.; Ramalho, R.B.D.R.; Maldronato, I.W.; Dolisnky, M.; Boaventura, G.T.; et al. Effects of red wine, grape juice and resveratrol consumption on bone parameters of Wistar rats submitted to high-fat diet and physical training. Nutr. Hosp. 2017, 35, 416–420. [Google Scholar]
- McLernon, D.J.; Powell, J.J.; Jugdaohsingh, R.; Macdonald, H.M. Do lifestyle choices explain the effect of alcohol on bone mineral density in women around menopause? Am. J. Clin. Nutr. 2012, 95, 1261–1269. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Skinner, J.; Guile, G.R.; Cassidy, A.; Spector, T.D.; MacGregor, A.J. Diet and bone mineral density study in postmenopausal women from the TwinsUK registry shows a negative association with a traditional English dietary pattern and a positive association with wine. Am. J. Clin. Nutr. 2011, 94, 1371–1375. [Google Scholar] [CrossRef]
- Yin, J.; Winzenberg, T.; Quinn, S.; Giles, G.; Jones, G. Beverage-specific alcohol intake and bone loss in older men and women: A longitudinal study. Eur. J. Clin. Nutr. 2011, 65, 526–532. [Google Scholar] [CrossRef]
- Broulík, P.D.; Vondrová, J.; Růzicka, P.; Sedlácek, R.; Zíma, T. The effect of chronic alcohol administration on bone mineral content and bone strength in male rats. Physiol. Res. 2010, 59, 599–604. [Google Scholar] [CrossRef]
- Tucker, K.L.; Jugdaohsingh, R.; Powell, J.J.; Qiao, N.; Hannan, M.T.; Sripanyakorn, S.; Cupples, L.A.; Kiel, D.P. Effects of beer, wine, and liquor intakes on bone mineral density in older men and women. Am. J. Clin. Nutr. 2009, 89, 1188–1896. [Google Scholar] [CrossRef] [PubMed]
- Mukamal, K.J.; Robbins, J.A.; Cauley, J.A.; Kern, L.M.; Siscovick, D.S. Alcohol consumption, bone density, and hip fracture among older adults: The cardiovascular health study. Osteoporos. Int. 2007, 18, 593–602. [Google Scholar] [CrossRef]
- Pedrera-Zamorano, J.D.; Lavado-Garcia, J.M.; Roncero-Martin, R.; Calderon-Garcia, J.F.; Rodriguez-Dominguez, T.; Canal-Macias, M.L. Effect of beer drinking on ultrasound bone mass in women. Nutrition 2009, 25, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Diaz Curiel, M.; Carrasco de la Peña, J.L.; Honorato Perez, J.; Perez Cano, R.; Rapado, A.; Ruiz Martinez, I. Study of bone mineral density in lumbar spine and femoral neck in a Spanish population. Multicentre Research Project on Osteoporosis. Osteoporos. Int. 1997, 7, 59–64. [Google Scholar] [CrossRef]
- Rühling, S.; Scharr, A.; Sollmann, N.; Wostrack, M.; Löffler, M.T.; Menze, B.; Sekuboyina, A.; El Husseini, M.; Braren, R.; Zimmer, C.; et al. Proposed diagnostic volumetric bone mineral density thresholds for osteoporosis and osteopenia at the cervicothoracic spine in correlation to the lumbar spine. Eur. Radiol. 2022, 32, 6207–6214. [Google Scholar] [CrossRef]
- Su, Y.; Chen, Z.; Xie, W. Swimming as Treatment for Osteoporosis: A Systematic Review and Meta-analysis. Biomed. Res. Int. 2020, 2020, 6210201. [Google Scholar] [CrossRef]
- Morgan, S.L.; Prater, G.L. Quality in dual-energy X-ray absorptiometry scans. Bone 2017, 104, 13–28. [Google Scholar] [CrossRef]
- Silva, T.R.D.; Martins, C.C.; Ferreira, L.L.; Spritzer, P.M. Mediterranean diet is associated with bone mineral density and muscle mass in postmenopausal women. Climacteric 2019, 22, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Colica, C.; Mazza, E.; Ferro, Y.; Fava, A.; de Bonis, D.; Greco, M.; Foti, D.P.; Gulletta, E.; Romeo, S.; Pujia, A.; et al. Dietary Patterns and Fractures Risk in the Elderly. Front. Endocrinol. 2017, 8, 344. [Google Scholar] [CrossRef]
- McNaughton, S.A.; Wattanapenpaiboon, N.; Wark, J.D.; Nowson, C.A. An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J. Nutr. 2011, 141, 1516–1523. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Bueno Ottoboni, A.M.M.; Fiorini, A.M.R.; Guiguer, É.L.; Nicolau, C.C.T.; Goulart, R.A.; Flato, U.A.P. Grape juice or wine: Which is the best option? Crit. Rev. Food Sci. Nutr. 2020, 60, 3876–3889. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Giampieri, F.; Chisari, E.; Micek, A.; Paladino, N.; Forbes-Hernández, T.Y.; Quiles, J.L.; Battino, M.; La Vignera, S.; Musumeci, G.; et al. Alcohol Consumption, Bone Mineral Density, and Risk of Osteoporotic Fractures: A Dose-Response Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1515. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, P.L.M.; Handan, B.A.; de Moura, C.F.G.; Assis, L.R.; Fernandes, K.R.; Renno, A.C.M.; Ribeiro, D.A. Protective effect of grape or apple juices in bone tissue of rats exposed to cadmium: Role of RUNX-2 and RANKL expression. Environ. Sci. Pollut. Res. Int. 2018, 25, 15785–15792. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Corona, G.; Vena, W.; Pizzocaro, A.; Giagulli, V.A.; Francomano, D.; Rastrelli, G.; Mazziotti, G.; Aversa, A.; Isidori, A.M.; Pivonello, R.; et al. Testosterone supplementation and bone parameters: A systematic review and meta-analysis study. J. Endocrinol. Investig. 2022, 45, 911–926. [Google Scholar] [CrossRef]
- Liberale, L.; Bonaventura, A.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of Red Wine Consumption on Cardiovascular Health. Curr. Med. Chem. 2019, 26, 3542–3566. [Google Scholar] [CrossRef]
- Sabetta, W.; Centrone, M.; D’Agostino, M.; Difonzo, G.; Mansi, L.; Tricarico, G.; Venerito, P.; Picardi, E.; Ceci, L.R.; Tamma, G.; et al. “Good Wine Makes Good Blood”: An Integrated Approach to Characterize Autochthonous Apulian Grapevines as Promising Candidates for Healthy Wines. Int. J. Biol. Sci. 2022, 18, 2851–2866. [Google Scholar] [CrossRef]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and Cardiovascular Health: A Comprehensive Review. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef]
- Boccardi, V.; Tagliafico, L.; Persia, A.; Page, E.; Ottaviani, S.; Cremonini, A.L.; Borgarelli, C.; Pisciotta, L.; Mecocci, P.; Nencioni, A.; et al. The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review. Nutrients 2024, 16, 3431. [Google Scholar] [CrossRef]
PubMed | Scopus | Embase |
---|---|---|
(“wine”[MeSH Terms] OR “wine”[All Fields]) AND (“bone density”[MeSH Terms] OR (“bone”[All Fields] AND “density”[All Fields]) OR “bone density”[All Fields] OR (“bone”[All Fields] AND “mineral”[All Fields] AND “density”[All Fields]) OR “bone mineral density”[All Fields] OR “BMD”[All Fields]) | (TITLE-ABS-KEY (wine) AND TITLE-ABS-KEY (bone AND mineral AND density OR BMD) | ‘wine’ AND ‘bone mineral density’ |
Author and Year | Type of Study | Population (N), Sex and Age | Type of Wine | Details Consumption |
---|---|---|---|---|
Larsen et al. 2022 [27] | Clinical Prospective cohort | Men N = 1103 (59%) Age (years): 65.7 ± 7.3 Women N = 766 (41%) Age (years): 63 ± 7.5 | RW and WW | Weekly 1 glass–175 mL RW–Men: 4.4 ± 5.6 RW–Women: 2.9 ± 3.5 WW–Men: 1.7 ± 3.8 WW–Women: 3 ± 4.2 Alcohol (g/w): NR |
Cardoso et al. 2017 [28] | Animal Wistar rats | Female N = 50 Age (days): 90 | RW | Daily 10 mL |
McLernon et al. 2012 [29] | Clinical Cross-sectional | Women N = 3218 Age (years): 50–62 54.8 ± 2.2 | NR | Daily >0.0–0.5 drink 787 (24.5) a >0.5–0.1 drink 580 (18.0) a >0.1 drink 425 (13.2) a Alcohol (g/d) 1.3 (0.0–5.1) a |
Fairweather-Tait et al. 2011 [30] | Clinical Co-twin control | Women N = 2464 Age (years): 56.3 ± 11.9 | NR | Daily Alcohol (g/d) 9.2 ± 12.3 |
Yin et al. 2011 [31] | Clinical Longitudinal | Men N = 434 Age (years): 63.5 ± 7.6 Women N = 428 Age (years): 62.6 ± 7.2 | RW and WW | Daily Men Alcohol ≤ 20 (g/d) Alcohol > 20(g/d) Women Alcohol ≤ 10 (g/d) Alcohol > 10(g/d) |
Broulík et al. 2010 [32] | Animal Velaz Prague | Male N = 8 Age (months): 2 | NR | Daily 7.6 g of 95% alcohol/kg = 1 L wine Alcohol mixed in water (190 mL 95% ethanol/1000 mL) |
Tucker et al. 2009 [33] | Clinical Cohort | Men N = 1182 Age (years): 61.5 ± 9.3 Women Postmenopausal N = 1289 Age (years): 62.5 ± 68.1 Premenopausal N = 248 Age (years): 48.3 ± 4.7 | NR | Daily 1 glass = 118 mL–13.2 g alcohol >0–0.5 glass 0.5–1 glass 1–2 glasses >2 glasses |
Author and Year | Analysis Performed | Evaluated Sites | BMD | Effect on BMD |
---|---|---|---|---|
Larsen et al., 2022 [27] | Dual-energy X-ray absorptiometry | Full body | Men (g/cm2): 1.3 ± 0.1 Women (g/cm2): 1.1 ± 0.1 RW (g/cm2): 1.21 ± 0.14 WW (g/cm2): 1.17 ± 0.14 | RW: Negative WW: Positive |
Cardoso et al., 2017 [28] | Dual-energy X-ray absorptiometry | Femur | 0.175 ± 0.01 (g/cm2) | Positive |
McLernon et al., 2012 [29] | Dual-energy X-ray absorptiometry | FN and spine | FN (g/cm2): Mean 0.84–0.85 Spine (g/cm2): Mean 1.02–1.04 | Positive for FN and spine |
Fairweather-Tait et al., 2011 [30] | Dual-energy X-ray absorptiometry | Hip, FN, and spine | Hip (g/cm2): 0.77 ± 0.12 FN (g/cm2): 0.87 ± 0.15 Spine (g/cm2): 0.95 ± 0.15 | Positive for spine |
Yin et al., 2011 [31] | Dual-energy X-ray absorptiometry | Hip and spine | Men Alcohol ≤ 20 g/d Spine (g/cm2): 1.05 ± 0.16 Hip (g/cm2): 1.02 ± 0.14 Alcohol > 20 g/d Spine (g/cm2): 1.07 ± 0.18 Hip (g/cm2): 1.04 ± 0.14 Women Alcohol ≤ 10 g/d Spine (g/cm2): 0.97 ± 0.16 Hip (g/cm2): 0.92 ± 0.15 Alcohol > 10 g/d Spine (g/cm2): 0.97 ± 0.14 Hip (g/cm2): 0.9 1 ± 0.11 | RW: Positive for spine in men WW: Negative |
Broulík et al., 2010 [32] | X-ray | Femur | 1.480 ± 0.04 (g/mL) | Negative |
Tucker et al., 2009 [33] | Dual-energy X-ray absorptiometry | Hip, FN, trochanter, spine | Men >0–0.5 glass Hip (g/cm2): 1.035 (1.022–1.049) a FN (g/cm2): 0.970 (0.957–0.983) a Trochanter (g/cm2): 0.878 (0.865–0.891) a Spine (g/cm2): 1.313 (1.292–1.333) a 0.5–1 glass Hip (g/cm2): 1.058 (1.034–1.082) a FN (g/cm2): 0.988 (0.965–1.011) a Trochanter (g/cm2): 0.902 (0.878–0.926) a Spine (g/cm2): 1.357 (1.320–1.394) a 1–2 glasses Hip (g/cm2): 1.038 (1.005–1.072) a FN (g/cm2): 0.961 (0.929–0.993) a Trochanter (g/cm2): 0.893 (0.860–0.926) a Spine (g/cm2): 1.314 (1.263–1.364) a >2 glasses Hip (g/cm2): 1.059 (1.016–1.102) a FN (g/cm2): 0.974 (0.933–1.015) a Trochanter (g/cm2): 0.910 (0.868–0.953) a Spine (g/cm2): 1.398 (1.333–1.464) a Postmenopausal >0–0.5 glass Hip (g/cm2): 0.895 (0.880–0.910) a FN (g/cm2): 0.853 (0.838–0.867) a Trochanter (g/cm2): 0.703 (0.689–0.716) a Spine (g/cm2): 1.132 (1.110–1.155) a 0.5–1 glass Hip (g/cm2): 0.904 (0.880–0.928) a FN (g/cm2): 0.853 (0.829–0.877) a Trochanter (g/cm2): 0.711 (0.689–0.733) a Spine (g/cm2): 1.160 (1.124–1.197) a 1–2 glasses Hip (g/cm2): 0.905 (0.874–0.937) a FN (g/cm2): 0.858 (0.826–0.889) a Trochanter (g/cm2): 0.704 (0.675–0.733) a Spine (g/cm2): 1.161 (1.113–1.209) a >2 glasses Hip (g/cm2): 0.938 (0.895–0.980) a FN (g/cm2): 0.891 (0.849–0.933) a Trochanter (g/cm2): 0.754 (0.715–0.793) a Spine (g/cm2): 1.206 (1.142–1.270) a Premenopausal >0–0.5 glass Hip (g/cm2): 0.988 (0.967–1.009) a FN (g/cm2): 0.949 (0.926–0.971) a Trochanter (g/cm2): 0.777 (0.757–0.798) a Spine (g/cm2): 1.243 (1.213–1.272) a 0.5–1 glass Hip (g/cm2): 1.022 (0.989–1.056) a FN (g/cm2): 0.981 (0.947–1.016) a Trochanter (g/cm2): 0.798 (0.767–0.830) a Spine (g/cm2): 1.273 (1.227–1.319) a | Positive in postmenopausal women in all sites |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, N.D.; Frigério, P.B.; Duarte, F.d.S.; Okamoto, R.; Buchaim, D.V.; Rosa Junior, G.M.; Bueno, C.R.d.S.; Reis, C.H.B.; Buchaim, R.L.; Issa, J.P.M. Influence of Wine on Bone Mineral Density. Nutrients 2025, 17, 1981. https://doi.org/10.3390/nu17121981
Duarte ND, Frigério PB, Duarte FdS, Okamoto R, Buchaim DV, Rosa Junior GM, Bueno CRdS, Reis CHB, Buchaim RL, Issa JPM. Influence of Wine on Bone Mineral Density. Nutrients. 2025; 17(12):1981. https://doi.org/10.3390/nu17121981
Chicago/Turabian StyleDuarte, Nathália Dantas, Paula Buzo Frigério, Felipe de Souza Duarte, Roberta Okamoto, Daniela Vieira Buchaim, Geraldo Marco Rosa Junior, Cleuber Rodrigo de Souza Bueno, Carlos Henrique Bertoni Reis, Rogerio Leone Buchaim, and João Paulo Mardegan Issa. 2025. "Influence of Wine on Bone Mineral Density" Nutrients 17, no. 12: 1981. https://doi.org/10.3390/nu17121981
APA StyleDuarte, N. D., Frigério, P. B., Duarte, F. d. S., Okamoto, R., Buchaim, D. V., Rosa Junior, G. M., Bueno, C. R. d. S., Reis, C. H. B., Buchaim, R. L., & Issa, J. P. M. (2025). Influence of Wine on Bone Mineral Density. Nutrients, 17(12), 1981. https://doi.org/10.3390/nu17121981