A Cross-Sectional Analysis of Food Perceptions, Food Preferences, Diet Quality, and Health in a Food Desert Campus
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Study Design
2.3. Participant Categorizations
2.4. Sensory and Dietary Assessments
2.5. Clinical Outcomes
2.6. Cognitive Outcomes
2.7. Statistical Analysis
3. Results
3.1. Food Identification
3.2. Taste Intensities and Food Liking Ratings
3.2.1. Taster Status Had Minimal Effect on Taste Intensities and Liking Ratings of Foods
3.2.2. Food Security Status and Financial Stability Perception Influenced the Taste Intensities and Liking Ratings of Specific Foods
3.2.3. Ethnicity and Sex Influenced the Flavor and Taste Intensities, and Liking Ratings of Specific Foods
3.3. Preference Test Results
3.4. Importance Ratings of Taste, Cost, Availability, Convenience, and Nutrition for Food Consumption
3.4.1. Perception of Financial Stability and Food Security Status Influenced Perceptions around Food
3.4.2. Sex Influenced the Importance of Availability and Taste for Consumption of Specific Foods
3.4.3. Taster Status Influenced the Importance of Nutrition and Health Benefits for Consumption of Specific Foods
3.5. Clinical, Cognitive Function, and Dietary Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCrickerd, K.; Forde, C.G. Sensory Influences on Food Intake Control: Moving beyond Palatability: Sensory Influences on Food Intake. Obes. Rev. 2016, 17, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Forde, C.G.; de Graaf, K. Influence of Sensory Properties in Moderating Eating Behaviors and Food Intake. Front. Nutr. 2022, 9, 1–6. [Google Scholar] [CrossRef]
- Diószegi, J.; Llanaj, E.; Ádány, R. Genetic Background of Taste Perception, Taste Preferences, and Its Nutritional Implications: A Systematic Review. Front. Genet. 2019, 10, 1272. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Henderson, S.A.; Levine, A.; Hann, C. Taste and Food Preferences as Predictors of Dietary Practices in Young Women. Public Health Nutr. 1999, 2, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Henderson, S.A.; Hann, C.S.; Berg, W.A.; Ruffin, M.T. Genetic Taste Markers and Preferences for Vegetables and Fruit of Female Breast Care Patients. J. Am. Diet. Assoc. 2000, 100, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Dinehart, M.E.; Hayes, J.E.; Bartoshuk, L.M.; Lanier, S.L.; Duffy, V.B. Bitter Taste Markers Explain Variability in Vegetable Sweetness, Bitterness, and Intake. Physiol. Behav. 2006, 87, 304–313. [Google Scholar] [CrossRef]
- Kaminski, L.C.; Henderson, S.A.; Drewnowski, A. Young Women’s Food Preferences and Taste Responsiveness to 6-n-Propylthiouracil (PROP). Physiol. Behav. 2000, 68, 691–697. [Google Scholar] [CrossRef]
- Yackinous, C.A.; Guinard, J.-X. Relation between PROP (6-n-Propylthiouracil) Taster Status, Taste Anatomy and Dietary Intake Measures for Young Men and Women. Appetite 2002, 38, 201–209. [Google Scholar] [CrossRef]
- Barham, H.P.; Taha, M.A.; Broyles, S.T.; Stevenson, M.M.; Zito, B.A.; Hall, C.A. Association Between Bitter Taste Receptor Phenotype and Clinical Outcomes Among Patients With COVID-19. JAMA Netw. Open 2021, 4, e2111410. [Google Scholar] [CrossRef] [PubMed]
- Gervis, J.E.; Coltell, O.; Sorlí, J.V.; Corella, D.; Lichtenstein, A.H. Abstract P284: Higher Bitter Taste Perception Is Associated With Lower Diabetes Risk Among Older Adults With Metabolic Syndrome—The PREDIMED-PLUS Trial. Circulation 2020, 141, AP284. [Google Scholar] [CrossRef]
- Dhillon, J.; Diaz Rios, L.K.; Aldaz, K.J.; De La Cruz, N.; Vu, E.; Asad Asghar, S.; Kuse, Q.; Ortiz, R.M. We Don’t Have a Lot of Healthy Options: Food Environment Perceptions of First-Year, Minority College Students Attending a Food Desert Campus. Nutrients 2019, 11, 816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HUNGER IN OUR COMMUNITY. Available online: https://mmcfb.org/learn/hunger-in-our-community.html (accessed on 19 April 2020).
- Branen, L.; Fletcher, J. Comparison of College Students’ Current Eating Habits and Recollections of Their Childhood Food Practices. J. Nutr. Educ. 1999, 31, 304–310. [Google Scholar] [CrossRef]
- Gundersen, C.; Ziliak, J.P. Food Insecurity And Health Outcomes. Health Aff. 2015, 34, 1830–1839. [Google Scholar] [CrossRef] [Green Version]
- Dush, J.L. Adolescent Food Insecurity: A Review of Contextual and Behavioral Factors. Public Health Nurs. 2020, 37, 327–338. [Google Scholar] [CrossRef]
- Williams, J.A.; Bartoshuk, L.M.; Fillingim, R.B.; Dotson, C.D. Exploring Ethnic Differences in Taste Perception. CHEMSE 2016, 41, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westenhoefer, J. Age and Gender Dependent Profile of Food Choice. In Forum of Nutrition; Elmadfa, I., Ed.; S. Karger AG: Basel, Switzerland, 2005; Volume 57, pp. 44–51. ISBN 978-3-8055-7872-1. [Google Scholar]
- Satia, J.A. Diet-Related Disparities: Understanding the Problem and Accelerating Solutions. J. Am. Diet. Assoc. 2009, 109, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Products Data Briefs Number 397 February 2021. Available online: https://www.cdc.gov/nchs/products/databriefs/db397.htm (accessed on 1 September 2022).
- Lee, S.H.; Moore, L.V.; Park, S.; Harris, D.M.; Blanck, H.M. Adults Meeting Fruit and Vegetable Intake Recommendations—United States, 2019. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Lehto, E.; Ray, C.; Haukkala, A.; Yngve, A.; Thorsdottir, I.; Roos, E. Predicting Gender Differences in Liking for Vegetables and Preference for a Variety of Vegetables among 11-Year-Old Children. Appetite 2015, 95, 285–292. [Google Scholar] [CrossRef]
- Stea, T.H.; Nordheim, O.; Bere, E.; Stornes, P.; Eikemo, T.A. Fruit and Vegetable Consumption in Europe According to Gender, Educational Attainment and Regional Affiliation—A Cross-Sectional Study in 21 European Countries. PLoS ONE 2020, 15, e0232521. [Google Scholar] [CrossRef]
- Alkerwi, A.; Vernier, C.; Sauvageot, N.; Crichton, G.E.; Elias, M.F. Demographic and Socioeconomic Disparity in Nutrition: Application of a Novel Correlated Component Regression Approach. BMJ Open 2015, 5, e006814. [Google Scholar] [CrossRef]
- Pechey, R.; Monsivais, P. Socioeconomic Inequalities in the Healthiness of Food Choices: Exploring the Contributions of Food Expenditures. Prev. Med. 2016, 88, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Turrell Socioeconomic Differences in Food Preference and Their Influence on Healthy Food Purchasing Choices: SES, Food Preference and Food Choice. J. Hum. Nutr. Diet. 1998, 11, 135–149. [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity—A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Wright, R.S.; Gerassimakis, C.; Bygrave, D.; Waldstein, S.R. Dietary Factors and Cognitive Function in Poor Urban Settings. Curr. Nutr. Rep. 2017, 6, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrose, M. Hunger and Health—The Impact of Poverty, Food Insecurity, and Poor Nutrition on Health and Well-Being. Food Res. Action Cent. 2019, 20. [Google Scholar]
- Hayes, J.E.; Keast, R.S.J. Two Decades of Supertasting: Where Do We Stand? Physiol. Behav. 2011, 104, 1072–1074. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.-H.; Chung, J.-W.; Kim, Y.-K.; Chung, S.-C.; Lee, S.-W.; Kho, H.-S. The Relationship between PTC Taster Status and Taste Thresholds in Young Adults. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2005, 99, 711–715. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Duffy, V.B.; Miller, I.J. PTC/PROP Tasting: Anatomy, Psychophysics, and Sex Effects. Physiol. Behav. 1994, 56, 1165–1171. [Google Scholar] [CrossRef]
- Coleman-Jensen, A.; Rabbitt, M.; Hales, L.; Gregory, C. Six-Item Short Form of the Food Security Survey Module 2021. Available online: https://www.ers.usda.gov/topics/food-nutrition-assistance/food-security-in-the-u-s/survey-tools/#six (accessed on 1 April 2017).
- Kalva, J.J.; Sims, C.A.; Puentes, L.A.; Snyder, D.J.; Bartoshuk, L.M. Comparison of the Hedonic General Labeled Magnitude Scale with the Hedonic 9-Point Scale: Hedonic GLMS Compared with Hedonic 9-Point Scale. J. Food Sci. 2014, 79, S238–S245. [Google Scholar] [CrossRef]
- Lawless, H.; Heymann, H. Sensory Evaluation of Food-Principles and Practices; Springer: New York, NY, USA, 2010. [Google Scholar]
- Resurreccion, A. Consumer Sensory Testing for Product Development; Aspen Publishers, Inc.: Chicago, IL, USA, 1998. [Google Scholar]
- Stone, H.; Sidel, J. Sensory Evaluation Practices, 3rd ed.; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Automated Self-Administered 24-Hour (ASA24®) Dietary Assessment Tool. Available online: https://epi.grants.cancer.gov/asa24/ (accessed on 7 April 2022).
- ASA24® & the Healthy Eating Index (HEI)|EGRP/DCCPS/NCI/NIH. Available online: https://epi.grants.cancer.gov/asa24/resources/hei.html (accessed on 1 September 2022).
- HEI Scoring Algorithm|EGRP/DCCPS/NCI/NIH. Available online: https://epi.grants.cancer.gov/hei/hei-scoring-method.html (accessed on 1 September 2022).
- Brickenkamp, R.; Zillmer, E. D2 Test of Attention; Hogrefe: Göttingen, Germany, 1998. [Google Scholar]
- Braun School of Public Health, Hebrew University–Hadassah Medical School, Jerusalem, Israel; Berry, E.M. Food Security and Nutrition as the Neglected Missing Links in Cultural Evolution: The Role of the Sociotype. Rambam Maimonides Med. J. 2022, 13, e0020. [Google Scholar] [CrossRef]
- Drewnowski, A.; Kawachi, I. Diets and Health: How Food Decisions Are Shaped by Biology, Economics, Geography, and Social Interactions. Big Data 2015, 3, 193–197. [Google Scholar] [CrossRef]
- Catanzaro, D.; Chesbro, E.C.; Velkey, A.J. Relationship between Food Preferences and PROP Taster Status of College Students. Appetite 2013, 68, 124–131. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Mennella, J.A. Flavor Perception in Human Infants: Development and Functional Significance. Digestion 2011, 83, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennella, J.A.; Jagnow, C.P.; Beauchamp, G.K. Prenatal and Postnatal Flavor Learning by Human Infants. Pediatrics 2001, 107, e88. [Google Scholar] [CrossRef] [Green Version]
- Mennella, J.A.; Lukasewycz, L.D.; Castor, S.M.; Beauchamp, G.K. The Timing and Duration of a Sensitive Period in Human Flavor Learning: A Randomized Trial. Am. J. Clin. Nutr. 2011, 93, 1019–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajonc, R.B. Mere Exposure: A Gateway to the Subliminal. Curr. Dir. Psychol. Sci. 2001, 10, 5. [Google Scholar] [CrossRef]
- Barragán, R.; Coltell, O.; Portolés, O.; Asensio, E.; Sorlí, J.; Ortega-Azorín, C.; González, J.; Sáiz, C.; Fernández-Carrión, R.; Ordovas, J.; et al. Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. Nutrients 2018, 10, 1539. [Google Scholar] [CrossRef] [Green Version]
- Khataan, N.H.; Stewart, L.; Brenner, D.M.; Cornelis, M.C.; El-Sohemy, A. TAS2R38 Genotypes and Phenylthiocarbamide Bitter Taste Perception in a Population of Young Adults. J. Nutr. Nutr. 2009, 2, 251–256. [Google Scholar] [CrossRef]
- Steptoe, A.; Pollard, T.M.; Wardle, J. Development of a Measure of the Motives Underlying the Selection of Food: The Food Choice Questionnaire. Appetite 1995, 25, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.H.; Wardle, J. Sex Differences in Fruit and Vegetable Intake in Older Adults. Appetite 2003, 40, 269–275. [Google Scholar] [CrossRef]
- Svendsen, K.; Torheim, L.E.; Fjelberg, V.; Sorprud, A.; Narverud, I.; Retterstøl, K.; Bogsrud, M.P.; Holven, K.B.; Myhrstad, M.C.W.; Telle-Hansen, V.H. Gender Differences in Nutrition Literacy Levels among University Students and Employees: A Descriptive Study. J. Nutr. Sci. 2021, 10, e56. [Google Scholar] [CrossRef] [PubMed]
- Spronk, I.; Kullen, C.; Burdon, C.; O’Connor, H. Relationship between Nutrition Knowledge and Dietary Intake. Br. J. Nutr. 2014, 111, 1713–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.W.; Wolfson, J.A. Food Insecurity Among Older Adults: 10-Year National Trends and Associations with Diet Quality. J. Am. Geriatr. Soc. 2021, 69, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef]
- Petersen, K.S.; Kris-Etherton, P.M. Diet Quality Assessment and the Relationship between Diet Quality and Cardiovascular Disease Risk. Nutrients 2021, 13, 4305. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Steffen, L.M.; Selvin, E.; Rebholz, C.M. Diet Quality, Change in Diet Quality, and Risk of Incident Cardiovascular Disease and Diabetes. Public Health Nutr. 2020, 23, 329–338. [Google Scholar] [CrossRef]
- Bruss, M.B.; Applegate, B.; Quitugua, J.; Palacios, R.T.; Morris, J.R. Ethnicity and Diet of Children: Development of Culturally Sensitive Measures. Health Educ. Behav. 2007, 34, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Devine, C.M.; Sobal, J.; Bisogni, C.A.; Connors, M. Food Choices in Three Ethnic Groups: Interactions of Ideals, Identities, and Roles. J. Nutr. Educ. 1999, 31, 86–93. [Google Scholar] [CrossRef]
- Hiza, H.A.B.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet Quality of Americans Differs by Age, Sex, Race/Ethnicity, Income, and Education Level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef]
- Bennett, G.; Bardon, L.A.; Gibney, E.R. A Comparison of Dietary Patterns and Factors Influencing Food Choice among Ethnic Groups Living in One Locality: A Systematic Review. Nutrients 2022, 14, 941. [Google Scholar] [CrossRef]
- Elfassy, T.; Sotres-Alvarez, D.; Van Horn, L.; Angell, S.; Schneiderman, N.; Rundek, T.; Raij, L.; Smoller, S.W.; Mossavar-Rahmani, Y.; Daviglus, M.L.; et al. Daily Intake of Sodium and Potassium Among Diverse US Hispanics/Latinos, the Hispanic Community Health Study/Study of Latinos. Am. J. Hypertens. 2019, 32, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, O.; Falcon, L.; Tucker, K. Intake and Food Sources of Macronutrients among Older Hispanic Adults: Association with Ethnicity, Acculturation, and Length of Residence in the United States. J. Am. Diet. Assoc. 2003, 100, 665–673. [Google Scholar] [CrossRef]
- Cason, K.; Nieto-Montenegro, S.; Chavez-Martinez, A. Food Choices, Food Sufficiency Practices, and Nutrition Education Needs of Hispanic Migrant Workers in Pennsylvania. Top. Clin. Nutr. 2006, 21, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Caswell, J.A.; Yaktine, A.L.; Allotments, C.; Examination of the Adequacy of Food Resources and SNAP Allotments; Food and Nutrition Board; Committee on National Statistics; Institute of Medicine; National Research Council. Food Security and Access to a Healthy Diet in Low-Income Populations; National Academies Press (US): Washington, DC, USA, 2013. [Google Scholar]
- Moran, A.J.; Khandpur, N.; Polacsek, M.; Rimm, E.B. What Factors Influence Ultra-Processed Food Purchases and Consumption in Households with Children? A Comparison between Participants and Non-Participants in the Supplemental Nutrition Assistance Program (SNAP). Appetite 2019, 134, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krølner, R.; Rasmussen, M.; Brug, J.; Klepp, K.-I.; Wind, M.; Due, P. Determinants of Fruit and Vegetable Consumption among Children and Adolescents: A Review of the Literature. Part II: Qualitative Studies. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolf, S.; Aron, L.; Dubay, L.; Simon, S.; Zimmerman, E.; Luk, K. How Are Income and Wealth Linked to Health and Longevity? Urban Institute. Available online: https://community-wealth.org/content/how-are-income-and-wealth-linked-health-and-longevity (accessed on 22 September 2022).
- Klimova, B.; Dziuba, S.; Cierniak-Emerych, A. The Effect of Healthy Diet on Cognitive Performance Among Healthy Seniors—A Mini Review. Front. Hum. Neurosci. 2020, 14, 325. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, A.M.; Kang, J.H.; Feskens, E.J.M.; de Groot, C.P.G.M.; Grodstein, F.; van de Rest, O. Association of Long-Term Adherence to the Mind Diet with Cognitive Function and Cognitive Decline in American Women. J. Nutr. Health Aging 2018, 22, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Portela-Parra, E.T.; Leung, C.W. Food Insecurity Is Associated with Lower Cognitive Functioning in a National Sample of Older Adults. J. Nutr. 2019, 149, 1812–1817. [Google Scholar] [CrossRef] [PubMed]
- Arán Filippetti, V.; Gutierrez, M.; Krumm, G.; Mateos, D. Convergent Validity, Academic Correlates and Age- and SES-Based Normative Data for the D2 Test of Attention in Children. Appl. Neuropsychol. Child 2021, 11, 629–639. [Google Scholar] [CrossRef]
- Medicine (US), I. Socioeconomic Disparities: Food Insecurity and Obesity; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Bradley, R.H.; Corwyn, R.F. Socioeconomic Status and Child Development. Annu. Rev. Psychol. 2002, 53, 371–399. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, D.; Amestoy, M.E.; Fiocco, A.J. The Mediating Role of Allostatic Load in the Relationship between Early Life Adversity and Cognitive Function across the Adult Lifespan. Psychoneuroendocrinology 2022, 141, 105761. [Google Scholar] [CrossRef]
- Lee, H.; Schafer, M. Are Positive Childhood Experiences Linked to Better Cognitive Functioning in Later Life?: Examining the Role of Life Course Pathways. J. Aging Health 2021, 33, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Kremen, W.S.; Beck, A.; Elman, J.A.; Gustavson, D.E.; Reynolds, C.A.; Tu, X.M.; Sanderson-Cimino, M.E.; Panizzon, M.S.; Vuoksimaa, E.; Toomey, R.; et al. Influence of Young Adult Cognitive Ability and Additional Education on Later-Life Cognition. Proc. Natl. Acad. Sci. USA 2019, 116, 2021–2026. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.A.; Ortiz, K.; Arévalo, S.P.; Diminich, E.D.; Briceño, E.; Vega, I.E.; Tarraf, W. Age of Migration and Cognitive Function Among Older Latinos in the United States. J. Alzheimer’s Dis. 2020, 76, 1493–1511. [Google Scholar] [CrossRef] [PubMed]
- Letang, S.K.; Lin, S.S.-H.; Parmelee, P.A.; McDonough, I.M. Ethnoracial Disparities in Cognition Are Associated with Multiple Socioeconomic Status-Stress Pathways. Cogn. Res. 2021, 6, 64. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Venegas, C.; Downer, B.; Langa, K.M.; Wong, R. Cognitive Functioning of U.S. Adults by Race and Hispanic Origin. In Contextualizing Health and Aging in the Americas; Vega, W.A., Angel, J.L., Gutiérrez Robledo, L.M.F., Markides, K.S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 85–107. ISBN 978-3-030-00583-2. [Google Scholar]
- Kheloui, S.; Brouillard, A.; Rossi, M.; Marin, M.-F.; Mendrek, A.; Paquette, D.; Juster, R.-P. Exploring the Sex and Gender Correlates of Cognitive Sex Differences. Acta Psychol. 2021, 221, 103452. [Google Scholar] [CrossRef]
- Upadhayay, N.; Guragain, S. Comparison of Cognitive Functions Between Male and Female Medical Students: A Pilot Study. J. Clin. Diagn. Res. 2014, 8, BC12–BC15. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, J.; McEwen, B.S. Sex in the Brain: Hormones and Sex Differences. Dialogues Clin. Neurosci. 2016, 18, 373–383. [Google Scholar] [CrossRef]
- Díaz-Morales, J.F.; Escribano, C. Social Jetlag, Academic Achievement and Cognitive Performance: Understanding Gender/Sex Differences. Chronobiol. Int. 2015, 32, 822–831. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cheng, Z. Cross-Sectional Studies: Strengths, Weaknesses, and Recommendations. Chest 2020, 158, S65–S71. [Google Scholar] [CrossRef]
- Carlson, M.D.A.; Morrison, R.S. Study Design, Precision, and Validity in Observational Studies. Available online: https://www.liebertpub.com/doi/10.1089/jpm.2008.9690 (accessed on 1 September 2022).
Food Type | Correctly Identified | Incorrectly Identified |
---|---|---|
Almonds | 98% | 2% |
Asparagus | 83.60% | 59% |
Avocado | 99.60% | 0.40% |
Broccoli | 99.60% | 0.40% |
Carrots | 100% | 0% |
Cauliflower | 96.80% | 3.20% |
Celery | 95.60% | 4.40% |
Collard Greens | 4.40% | 95.60% |
Green Beans | 63.20% | 8% |
Kiwi | 99.20% | 0.80% |
Olives | 97.60% | 2.40% |
Peach | 72.80% | 32% |
Peanuts | 92% | 8% |
Pistachio | 92.80% | 7.20% |
Plums | 76.80% | 23.20% |
Pomegranate | 90.09% | 9.91% |
Spinach | 76% | 24% |
Strawberries | 100% | 0% |
Taster Status | Food Security Status | Perception of Financial Stability | Sex | Ethnicity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Super Tasters (n = 169) | Non-Tasters (n = 81) | High Food Security Status (n = 102) | Low Food Security Status (n = 138) | Financially Stable (n = 127) | Financially Unstable (n = 113) | Males (n = 76) | Females (n = 174) | Hispanic (n = 136) | Non-Hispanic (n = 112) | |
Clinical Outcomes | ||||||||||
Age (year) | 20.35 ± 1.4 1 | 20.16 ± 1.56 | 20.25 ± 1.47 | 20.31 ± 1.46 | 20.17 ± 1.36 | 20.42 ± 1.56 | 20.3 ± 1.43 | 20.28 ± 1.46 | 20.36 ± 1.39 | 20.21 ± 1.51 |
Body Mass (kg) | 71 ± 18 | 73 ± 21 | 71 ± 18 | 71 ± 20 | 71 ± 17 | 71 ± 21 | 79 ± 20 * | 68 ± 18 | 72 ± 19 | 71 ± 19 |
BMI (kg/m2) | 26 ± 6 | 26 ± 7 | 26 ± 7 | 26 ± 6 | 26 ± 6 | 27 ± 7 | 26 ± 5 | 26 ± 7 | 27 ± 6 | 26 ± 7 |
Waist Circumference (cm) | 83 ± 13 | 84 ± 15 | 83 ± 13 | 83 ± 14 | 82 ± 12 | 84 ± 15 | 87 ± 13 * | 82 ± 14 | 85 ± 13 | 81 ± 14 |
Total Fat % | 30 ± 10 | 29 ± 11 | 29 ± 10 | 30 ± 11 | 28 ± 10 | 31 ± 11 | 20 ± 7 * | 33 ± 9 | 31 ± 10 * | 27 ± 11 |
Trunk Fat % | 28 ± 10 | 27 ± 11 | 27 ± 10 | 27 ± 11 | 27 ± 10 | 28 ± 11 | 22 ± 9 * | 30 ± 10 | 29 ± 10 | 26 ± 11 |
Systolic BP (mmHg) | 110 ± 13 | 112 ± 12 | 112 ± 12 | 109 ± 12 | 112 ± 12 | 109 ± 12 | 122 ± 12 * | 106 ± 9 | 110 ± 13 | 112 ± 12 |
Diastolic BP (mmHg) | 72 ± 8 | 72 ± 7 | 72 ± 7 | 72 ± 7 | 72 ± 7 | 72 ± 8 | 74 ± 7 * | 71 ± 7 | 72 ± 8 | 72 ± 7 |
Mean Arterial Pressure | 85 ± 8 | 86 ± 8 | 85 ± 8 | 84 ± 8 | 85 ± 8 | 84 ± 8 | 90 ± 8 * | 83 ± 7 | 84 ± 9 | 86 ± 8 |
FBG (mg/dL) | 91 ± 12 | 90 ± 11 | 90 ± 10 | 91 ± 13 | 90 ± 10 | 92 ± 13 | 93 ± 15 * | 90 ± 10 | 91 ± 11 | 91 ± 13 |
Reactive Hyperemia Index | 1.74 ± 0.56 | 1.64 ± 0.43 | 1.65 ± 0.43 | 1.76 ± 0.59 | 1.78 ± 0.52 | 1.64 ± 0.54 | 1.87 ± 0.61 * | 1.62 ± 0.46 | 1.74 ± 0.57 | 1.66 ± 0.46 |
Augmentation Index | −6.6 ± 12.07 | −6.12 ± 10.81 | −5.3 ± 16.21 | −7.07 ± 7.63 | −5.95 ± 14.35 | −6.8 ± 8.43 | −8.97 ± 6.01 | −5.33 ± 13.23 | −7.5 ± 7.88 | −5.01 ± 15.27 |
Augmentation Index@75 | −9.14 ± 12.09 | −6.26 ± 10.11 | −7.49 ± 16.32 | −8.97 ± 7.02 | −9.01 ± 14.82 | −7.68 ± 6.88 | −12.12 ± 8.26 * | −6.47 ± 12.33 | −10.35 ± 7.8 | −5.3 ± 14.75 |
Cognitive Function Outcomes | ||||||||||
Total Number of Correct Words Recalled | 5.8 ± 1.4 | 5.7 ± 1.4 | 5.9 ± 1.4 | 5.6 ± 1.4 | 5.7 ± 1.3 | 5.8 ± 1.5 | 5.6 ± 1.3 | 5.8 ± 1.5 | 5.6 ± 1.4 | 5.9 ± 1.5 |
Concentration Performance (CP) | 153.13 ± 32.76 | 144.47 ± 32.04 | 156.87 ± 30.21 * | 146.53 ± 33.89 | 154.83 ± 28.99 | 146.53 ± 36.08 | 158.03 ± 31.86 * | 146.96 ± 32.61 | 145.74 ± 30.75 * | 155.88 ± 34.3 |
Quantitative Performance (TN) | 361.58 ± 67.27 | 354.17 ± 69.78 | 366.71 ± 65.16 | 355.94 ± 70.11 | 365.96 ± 64.21 | 354.4 ± 72.06 | 373.76 ± 68.32 * | 352.81 ± 67.13 | 352.08 ± 59.86 | 368.1 ± 76.02 |
Qualitative Performance (TNE) | 350.34 ± 67.45 | 338.28 ± 67.68 | 356.91 ± 64.59 | 340.9 ± 69.24 | 354.76 ± 62.46 | 339.77 ± 72.46 | 362.2 ± 67.98 * | 339.55 ± 66.5 | 337.74 ± 59.93 * | 357.12 ± 74.75 |
Errors of Omission | 9.29 ± 12.34 | 13.43 ± 16.57 | 8.01 ± 10.08 * | 12.62 ± 16.35 | 9.31 ± 10.75 | 12.17 ± 17.19 | 9.79 ± 11.41 | 11 ± 14.95 | 11.99 ± 16.53 | 9.15 ± 9.92 |
Errors of Commission | 1.95 ± 3.19 | 2.46 ± 4.72 | 1.78 ± 4.11 | 2.43 ± 3.56 | 1.88 ± 4.09 | 2.46 ± 3.46 | 1.78 ± 4.71 | 2.26 ± 3.25 | 2.35 ± 4.79 | 1.83 ± 1.84 |
Total Error % (E%) | 3.17 ± 3.73 | 4.44 ± 4.43 | 2.69 ± 2.78 * | 4.23 ± 4.67 | 3.04 ± 2.96 | 4.17 ± 4.94 | 3.12 ± 3.13 | 3.78 ± 4.33 | 4.07 ± 4.87 * | 3.03 ± 2.53 |
HEI Scores | ||||||||||
HEI Total | 49.2 ± 14.2 | 51.4 ± 14.0 | 51.5 ± 14.9 | 48.6 ± 13.5 | 51.6 ± 13.9 | 47.8 ± 14.2 | 47.2 ± 12.6 * | 51.1 ± 14.7 | 49.9 ± 14.0 | 50.0 ± 14.5 |
HEI Total Fruits | 1.9 ± 2.1 | 1.8 ± 2.0 | 2.1 ± 2.1 | 1.7 ± 2.0 | 2.0 ± 2.1 | 1.7 ± 2.0 | 1.1 ± 1.7 * | 2.2 ± 2.1 | 2.2 ± 2.1 * | 1.4 ± 1.9 |
HEI Whole Fruits | 2.1 ± 2.3 | 2.0 ± 2.3 | 2.4 ± 2.4 | 1.8 ± 2.3 | 2.3 ± 2.3 | 1.9 ± 2.3 | 1.2 ± 2.0 * | 2.5 ± 2.3 | 2.4 ± 2.4 | 1.7 ± 2.2 |
HEI Total Vegetables | 3.0 ± 1.8 | 3.4 ± 1.8 | 3.1 ± 1.8 | 3.2 ± 1.8 | 3.2 ± 1.8 | 3.1 ± 1.8 | 3.1 ± 1.7 | 3.2 ± 1.8 | 3.0 ± 1.8 | 3.4 ± 1.7 |
HEI Total Dairy | 4.3 ± 3.7 | 4.7 ± 3.8 | 4.3 ± 3.7 | 4.5 ± 3.7 | 4.6 ± 3.7 | 4.2 ± 3.7 | 5.2 ± 3.9 * | 4.1 ± 3.6 | 4.4 ± 3.6 | 4.4 ± 3.8 |
HEI Protein | 4.0 ± 1.6 | 4.3 ± 1.4 | 4.1 ± 1.6 | 4.1 ± 1.5 | 4.2 ± 1.5 | 4.0 ± 1.6 | 4.5 ± 1.2 * | 4.0 ± 1.6 | 4.1 ± 1.6 | 4.2 ± 1.5 |
HEI Sodium | 3.6 ± 3.5 | 3.6 ± 3.7 | 4.0 ± 3.6 | 3.3 ± 3.5 | 3.8 ± 3.6 | 3.4 ± 3.5 | 2.9 ± 3.4 * | 3.9 ± 3.6 | 4.2 ± 3.5 * | 2.9 ± 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldaz, K.J.; Flores, S.O.; Ortiz, R.M.; Diaz Rios, L.K.; Dhillon, J. A Cross-Sectional Analysis of Food Perceptions, Food Preferences, Diet Quality, and Health in a Food Desert Campus. Nutrients 2022, 14, 5215. https://doi.org/10.3390/nu14245215
Aldaz KJ, Flores SO, Ortiz RM, Diaz Rios LK, Dhillon J. A Cross-Sectional Analysis of Food Perceptions, Food Preferences, Diet Quality, and Health in a Food Desert Campus. Nutrients. 2022; 14(24):5215. https://doi.org/10.3390/nu14245215
Chicago/Turabian StyleAldaz, Kaitlyn J., Sigry Ortiz Flores, Rudy M. Ortiz, L. Karina Diaz Rios, and Jaapna Dhillon. 2022. "A Cross-Sectional Analysis of Food Perceptions, Food Preferences, Diet Quality, and Health in a Food Desert Campus" Nutrients 14, no. 24: 5215. https://doi.org/10.3390/nu14245215