Lactobacillus Acidophilus/Bifidobacterium Infantis Probiotics Are Beneficial to Extremely Low Gestational Age Infants Fed Human Milk
Abstract
:1. Introduction
2. Methods
2.1. The German Neonatal Network
2.2. Prophylactic Probiotic Supplementation
2.3. Subgroups Stratified to Type of Milk Feeding
2.4. Definitions
2.5. Statistical Analyses
2.6. Ethical Approval
3. Results
3.1. Human Milk Feeding Has Increased in GNN Centers from 2013 to 2018
3.2. Formula-Fed Infants Have an Increased Risk for Adverse Short-Term Outcomes
3.3. Probiotics Reduce the Risk for Clinical Sepsis in Infants with Human Milk and Formula Exposure
3.4. Probiotics Have a Growth-Promoting Effect in Exclusively Human-Milk-Fed Infants
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
BPD | bronchopulmonary dysplasia |
HM | human milk |
ELGAN | extremely low gestational age neonates |
FIP | focal intestinal perforation |
GNN | German Neonatal Network |
NEC | necrotizing enterocolitis |
NICU | neonatal intensive care unit |
ROP | retinopathy of prematurity |
SGA | small for gestational age |
References
- Underwood, M.A.; Kalanetra, K.M.; Bokulich, N.A.; Lewis, Z.T.; Mirmiran, M.; Tancredi, D.J.; Mills, D.A. A comparison of two probiotic strains of bifidobacteria in premature infants. J. Pediatr. 2013, 163, 1585–1591. [Google Scholar] [CrossRef] [Green Version]
- Warner, B.B.; Tarr, P.I. Necrotizing enterocolitis and preterm infant gut bacteria. Semin. Fetal Neonatal Med. 2016, 21, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.; Greisen, G.; Schrøder, M.; Brok, J. Prophylactic probiotics for preterm infants: A systematic review and meta-analysis of observational studies. Neonatology 2016, 109, 105–112. [Google Scholar] [CrossRef]
- Graspeuntner, S.; Waschina, S.; Kunzel, S.; Twisselmann, N.; Rausch, T.K.; Cloppenborg-Schmidt, K.; Viemann, D.; Herting, E.; Göpel, W.; Baines, J.F. Gut dysbiosis with Bacilli dominance and accumulation of fermentation products precedes late-onset sepsis in preterm infants. Clin. Infect. Dis. 2019, 69, 268–277. [Google Scholar] [CrossRef]
- Costeloe, K.; Hardy, P.; Juszczak, E.; Wilks, M.; Millar, M.R. Study PPI. Bifidobacterium breve BBG-001 in very preterm infants: A randomised controlled phase 3 trial. Lancet 2016, 387, 649–660. [Google Scholar] [CrossRef]
- Repa, A.; Thanhaeuser, M.; Endress, D.; Weber, M.; Kreissl, A.; Binder, C.; Berger, A.; Haiden, N. Probiotics (Lactobacillus acidophilus and Bifidobacterium infantis) prevent NEC in VLBW infants fed breast milk but not formula. Pediatr. Res. 2015, 77, 381–388. [Google Scholar] [CrossRef]
- Samuels, N.; van de Graaf, R.; Been, J.V.; de Jonge, R.C.J.; Hanff, L.M.; Wijnen, R.M.H.; Kornelisse, R.F.; Reiss, I.K.M.; Vermeulen, M.J. Necrotising enterocolitis and mortality in preterm infants after introduction of probiotics: A quasi-experimental study. Sci. Rep. 2016, 6, 31643. [Google Scholar] [CrossRef] [Green Version]
- Härtel, C.; Pagel, J.; Rupp, J.; Bendiks, M.; Guthmann, F.; Rieger-Fackeldey, E.; Heckmann, M.; Franz, A.; Schiffmann, J.H.; Zimmermann, B. Prophylactic Use of Lactobacillus acidophilus/Bifidobacterium infantis Probiotics and Outcome in Very Low Birth Weight Infants. J. Pediatr. 2014, 165, 285–289.e1. [Google Scholar] [CrossRef] [PubMed]
- Humberg, A.; Härtel, C.; Rausch, T.K.; Stichtenoth, G.; Jung, P.; Wieg, C.; Kribs, A.; von der Wense, A.; Weller, U.; Höhn, T.; et al. German Neonatal Network. Active perinatal care of preterm infants in the German Neonatal Network. Arch. Dis. Child Fetal Neonatal Ed. 2020, 105, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Autran, C.A.; Kellman, B.P.; Kim, J.H.; Asztalos, E.; Blood, A.B.; Spence, E.C.H.; Patel, A.L.; Hou, J.; Lewis, N.E. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 2018, 67, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Narayan, N.R.; Méndez-Lagares, G.; Ardeshir, A.; Lu, D.; Van Rompay, K.K.; Hartigan-O’Connor, D.J. Persistent effects of early infant diet and associated microbiota on the juvenile immune system. Gut Microbes 2015, 6, 284–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zivkovic, A.M.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4653–4658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methods for estimating the due date. Committee Opinion No 700. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2017, 129, 2150–2154. [Google Scholar]
- Voigt, M.; Rochow, N.; Straube, S.; Olbertz, D.M.; Jorch, G. Birth weight percentile charts based on daily measurements for very preterm male and female infants at the age of 154-223 days. J. Perinat Med. 2010, 38, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatrics 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenton, T.R. A new growth chart for preterm babies: Babson and Benda’s chart updated with recent data and a new format. BMC Pediatr. 2003, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Geffers, C.; Baerwolff, S.; Schwab, F.; Gastmeier, P. Incidence of healthcare- associated infections in high-risk neonates: Results from the German surveillance system for very-low-birthweight infants. J. Hosp. Infect. 2008, 68, 214–221. [Google Scholar] [CrossRef]
- Daniels, M.C.; Adair, L.S. Breast-Feeding Influences Cognitive Development in Filipino Children. J. Nutr. 2005, 135, 2589–2595. [Google Scholar] [CrossRef] [Green Version]
- Meinzen-Derr, J.; Poindexter, B.; Wrage, L.; Morrow, A.L.; Stoll, B.; Donovan, E.F. Role of human milk in extremely low birth weight infants’ risk of necrotizing enterocolitis or death. J. Perinatol. 2009, 29, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Sisk, P.M.; Lovelady, C.A.; Dillard, R.G.; Gruber, K.J.; O’Shea, T.M. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J. Perinatol. 2007, 27, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Corpeleijn, W.E.; Kouwenhoven, S.M.; Paap, M.C.; Van Vliet, I.; Scheerder, I.; Muizer, Y.; Helder, O.K.; van Goudoever, J.B.; Vermeulen, M.J. Intake of own mother’s milk during the first days of life is associated with decreased morbidity and mortality in very low birth weight infants during the first 60 days of life. Neonatology 2012, 102, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G. Growth Characteristics of Breast-Fed Compared to Formula-Fed Infants. Biol. Neonate 1998, 74, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Spiegler, J.; Preuss, M.; Gebauer, C.; Bendiks, M.; Herting, E.; Goepel, W. Does breastmilk influence the development of bronchopulmonary dysplasia? J. Pediatr. 2016, 169, 76–80 e4. [Google Scholar] [CrossRef] [PubMed]
- Battersby, C.; Statnikov, Y.; Santhakumaran, S.; Gray, D.; Modi, N.; Costeloe, K.; UK Neonatal Collaborative and Medicines for Neonates Investigator Group. The United Kingdom National Neonatal Research Database: A validation study. PLoS ONE 2018, 13, e0201815. [Google Scholar] [CrossRef]
- Rochow, N.; Landau-Crangle, E.; Fusch, C. Challenges in breast milk fortification for preterm infants. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 276–284. [Google Scholar] [CrossRef]
- Mills, L.; Modi, N. Clinician enteral feeding preferences for very preterm babies in the UK. Arch. Dis. Child Fetal Neonatal Ed. 2015, 100, F372–F373. [Google Scholar] [CrossRef]
- Steenhout, P.; Rochat, F.; Hager, C. The effect of Bifidobacterium lactis on the growth of infants: A pooled analysis of randomized controlled studies. Ann. Nutr. Metab. 2009, 55, 334–340. [Google Scholar] [CrossRef]
- Kitajima, H.; Sumida, Y.; Tanaka, R. Early administration of Bifidobacterium breve to preterm infants: Randomized controlled trial. Arch. Dis. Child Fetal Neonatal Ed. 1997, 76, F101–F107. [Google Scholar] [CrossRef]
- Sari, F.N.; Eras, Z.; Dizdar, E.A.; Erdeve, O.; Uras, N.; Dilmen, U. Do oral probiotics affect growth and neurodevelopmental outcomes in very low-birth-weight preterm infants? Am. J. Perinatol. 2012, 29, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Aceti, A.; Gori, D.; Barone, G.; Callegari, M.L.; Fantini, M.P.; Indrio, F.; Maggio, L.; Meneghin, F.; Morelli, L.; Zuccotti, G.; et al. Probiotics and time to achieve full enteral feeding in human milk-fed and formula-fed preterm infants: Systematic review and meta-analysis. Nutrients 2016, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Marwah, G.; Westgarth, M.; Buys, N.; Ellwood, D.; Gray, P.H. Effects of Probiotics on Necrotizing Enterocolitis, Sepsis, Intraventricular Hemorrhage, Mortality, Length of Hospital Stay, and Weight Gain in Very Preterm Infants: A Meta-Analysis. Adv. Nutr. 2017, 8, 749–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquot, A.; Neveu, D.; Aujoulat, F.; Mercier, G.; Marchandin, H.; Jumas-Bilak, E.; Picaud, J.C. Dynamics and clinical evolution of bacterial gut microflora in extremely premature patients. J. Pediatr. 2011, 158, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Aceti, A.; Maggio, L.; Beghetti, I.; Gori, D.; Barone, G.; Callegari, M.; Fantini, M.P.; Indrio, F.; Meneghin, F.; Morelli, L.; et al. Probiotics Prevent Late-Onset Sepsis in Human Milk-Fed, Very Low Birth Weight Preterm Infants: Systematic Review and Meta-Analysis. Nutrients 2017, 9, 904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinemann, A.S.; Pirr, S.; Fehlhaber, B.; Mellinger, L.; Burgmann, J.; Busse, M.; Ginzel, M.; Friesenhagen, J.; von Köckritz-Blickwede, M.; Ulas, T.; et al. In neonates S100A8/S100A9 alarmins prevent the expansion of a specific inflammatory monocyte population promoting septic shock. FASEB J. 2017, 31, 1153–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Underwood, M.A.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut. Pediatr. Res. 2015, 77, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Härtel, C.; Pagel, J.; Spiegler, J.; Buma, J.; Henneke, P.; Zemlin, M.; Viemann, D.; Gille, C.; Gehring, S.; Frommhold, D.; et al. Lactobacillus acidophilus/Bifidobacterium infantis probiotics are associated with increased growth of VLBWI among those exposed to antibiotics. Sci. Rep. 2017, 7, 5633. [Google Scholar] [CrossRef] [Green Version]
- Marißen, J.; Haiß, A.; Meyer, C.; Van Rossum, T.; Bünte, L.M.; Frommhold, D.; Gille, C.; Goedicke-Fritz, S.; Göpel, W.; Hudalla, H. Efficacy of Bifidobacterium longum, B. infantis and Lactobacillus acidophilus probiotics to prevent gut dysbiosis in preterm infants of 28+0-32+6 weeks of gestation: A randomised, placebo-controlled, double-blind, multicentre trial: The PRIMAL Clinical Study protocol. BMJ Open 2019, 9, e032617. [Google Scholar] [CrossRef] [Green Version]
I HM | II Mix | III Formula | |
---|---|---|---|
Surgery for NEC | OR 1.37 (95% CI: 0.69–2.73) p = 0.38 | OR 0.84 (95% CI: 0.59–1.15) p = 0.26 | OR 0.89 (95% CI: 0.5–2.0) p = 0.9 |
Clinical sepsis | OR 0.95 (95% CI: 0.73–1.22) p = 0.67 | OR 0.69 (95% CI: 0.59–0.79) p < 0.001 * | OR 1.20 (95% CI: 0.9–1.7) p = 0.243 |
Sepsis (BC positive) | OR 1.09 (95% CI: 0.78–1.53) p = 0.60 | OR 0.89 (95% CI: 0.74–1.06) p = 0.19 | 1.10 (95% CI: 0.7–1.8) p = 0.662 |
ROP | OR 1.51 (95% CI: 0.73–3.10) p = 0.27 | OR 1.04 (95% CI: 0.72–1.51) p = 0.83 | OR 1.35 (95% CI: 0.63–2.94) p = 0.44 |
BPD | OR 0.86 (95% CI: 0.65–1.14) p = 0.31 | OR 0.90 (95% CI: 0.77–1.05) p = 0.19 | 1.31 (95% CI: 0.87–1.96) p= 0.19 |
I HM | II Mix | III Formula | |
---|---|---|---|
Body weight at discharge (z-score, Fenton) | B = 0.261 95% CI: 0.48–0.71 p <0.001 * | B = 0.026 95% CI: 0.01–0.1 p = 0.029 # | B = 0.015 95% CI: −0.12–0.18 p = 0.72 |
Weight gain (z-score, Fenton) | B = 0.23 95% CI: 0.42–0.62 p < 0.001 * | B= 0.022 95% CI: −0.01–0.1 p = 0.078 | B= 0.06 95% CI: −0.04–0.26 p = 0.14 |
Growth velocity (g/day) | B = 0.224 95% CI: 2.82–4.35 p < 0.001 * | B = 0.00 95% CI: −0.61–0.62 p = 0.98 | B = −0.06 95% CI: −2.90–−0.45 p = 0.15 |
Growth velocity of body length (mm/day) | B = 0.179 95% CI: 0.13–0.24 p < 0.001 * | B = 0.019 95% CI: −0.01–0.04 p = 0.184 | B = −0.012 95% CI: −0.11–0.08 p = 0.761 |
Head growth velocity (mm/day) | B = 0.117 95% CI: 0.05–0.12 p < 0.001* | B = 0.03 95% CI: 0.003–0.04 p = 0.023 # | B = -0.002 95% CI: −0.08–0.07 p = 0.966 |
I HM | II Mix | III Formula | p-Value (HM vs. Formula) | Total | |
---|---|---|---|---|---|
Number of infants n, (%) | 1568, (20.9) | 5221, (69.5) | 727, (9.6) | 7516, (100) | |
Gestational age (weeks) | 26.4/1.68 (26.57) | 26.52/1.61 (26.7) | 26.6/1.95 (26.9) | 0.024 # | 26.5/1.63 (26.7) |
Birth weight (g) | 841/257 (830) | 861/245 (850) | 858/243 (850) | 0.067 # | 855/248 (845) |
Z–score (birth weight) | −0.25/0.98 (−0.15) | −0.20/−0.92 (0.13) | −0.25/−0.16 (0.03) | 0.661 # | −0.22/0.93 (−0.14) |
Gender, male (%) | 54.4 | 52.9 | 52.4 | 0.380 | 53.2 |
Multiples (%) | 30.9 | 34.4 | 26.1 | 0.020 | 33.1 |
SGA (%) | 14.6 | 12.1 | 13.6 | 0.526 | 12.9 |
Caesarean section (%) | 88.4 | 90.8 | 87.3 | 0.471 | 89.9 |
Vaginal delivery (%) | 11.6 | 9.2 | 12.7 | 0.471 | 10.1 |
Hospitalization (days) | 83/39 (79) | 87/38 (81) | 85/45 (80) | 0.372 # | 85/40 (80) |
Time to full enteral feeds (days) | 18.5/14.6 (14.0) | 17.7/14.3 (14.0) | 19.8/1 (17.8) | 0.341 # | 18.2/15.1 (14.0) |
Duration of intravenous line (days) | 26.0/23.7 (18.0) | 26.2/25.1(18.0) | 28.1/27.6 (18.0) | 0.779 # | 26.4/25.3 (18.0) |
I HM | II Mix | III Formula | p-Value (HM vs. Formula) | Total | |
---|---|---|---|---|---|
Number of infants n, (%) | 1568 (20.9) | 5221 (69.5) | 727 (9.6) | 7516 (100) | |
Antibiotic treatment (%) | 94.3 | 93.5 | 95.3 | 0.323 | 93.7 |
Probiotic prophylaxis (%) | 74.8 | 78.3 | 74.9 | 0.935 | 76.5 |
Surgery for NEC (%) | 3.1 | 3.8 | 6.2 | <0.001 # | 3.9 |
BC-confirmed sepsis (%) | 14.6 | 16.8 | 15.7 | 0.506 | 16.3 |
Clinical sepsis (%) | 34.0 | 35.5 | 40.2 | 0.004 | 35.6 |
BPD (%) | 26.4 | 28.5 | 28.7 | 0.240 | 28.0 |
Severe ROP (%) | 3.2 | 3.6 | 6.5 | 0.004 | 3.9 |
Weight (g) at discharge | 2460/750 (2460) | 2711/733 (2650) | 2752/1020 (2731) | <0.001 # | 2653/818 (2615) |
Z-score (birth weight) | −1.73/−1.63 (0.03) | −1.35/−1.32 (0.85) | −1.22/−1.22 (0.79) | <0.001 # | −1.40/0.88 (−1.36) |
Weight gain velocity (g/day) | 19.1/ 6.3 (19.7) | 21.5/ 9.3 (21.6) | 22.2/ 10.1 (22.4) | <0.001 # | 21.1/9.09 (21.4) |
Weight at discharge (z-scores, Fenton) | −1.53/1.42 (0.03) | −1.16/−1.12 (0.83) | −1.03/−0.99 (0.79) | <0.001 # | −1.2/0.86 (−1.15) |
Growth velocity of body length (mm/day) | 1.36/0.44 (1.37) | 1.43/0.39 (1.42) | 1.49/0.48 (1.45) | <0.001 # | 1.42/0.41 (1.41) |
Head growth velocity (mm/day) | 0.98/0.37 (0.98) | 1.03/0.28 (1.03) | 1.06/0.40 (1.02) | <0.001 # | 1.02/0.31 (1.02) |
I HM | p | II Mix | p | III Formula | p | ||||
---|---|---|---|---|---|---|---|---|---|
No Probiotics | Probiotics | No Probiotics | Probiotics | No Probiotics | Probiotics | ||||
Number of infants n, (%) | 395 (25.2) | 1173 (74.8) | 1135 (21.7) | 4086 (78.3) | 182 (25.1) | 545 (74.9) | |||
NEC (%) | 2.8 | 3.3 | 0.65 | 4.4 | 3.6 | 0.21 | 7.2 | 5.9 | 0.54 |
Clinical sepsis (%) | 36.6 | 33.2 | 0.02 | 41.3 | 33.9 | <0.001# | 37.0 | 41.0 | 0.35 |
BC-confirmed sepsis (%) | 14.6 | 14.6 | 0.98 | 18.2 | 16.5 | 0.17 | 15.0 | 15.8 | 0.79 |
Severe ROP (%) | 2.7 | 3.5 | 0.45 | 3.8 | 3.6 | 0.76 | 2.9 | 7.4 | 0.34 |
BPD | 30.5 | 25.0 | 0.003 | 29.5 | 28.2 | 0.38 | 26.5 | 29.3 | 0.48 |
I HM | p | II Mix | p | III Formula | p | ||||
---|---|---|---|---|---|---|---|---|---|
No Probiotics | Probiotics | No Probiotics | Probiotics | No Probiotics | Probiotics | ||||
Weight (g) at discharge # | 2213/782 (2190) | 2542/721 (2535) | <0.001 | 2692/833 (2670) | 2716/756 (2640) | 0.99 | 2455/1128 (2540) | 2844/958 (2800) | <0.001 |
Weight at discharge; z-score, Fenton # | −2.13/1.13 (−2.11) | −1.49/0.87 (−1.43) | <0.001 | −1.36/0.91 (−1.31) | −1.35/0.83 (−1,33) | 0.79 | −1.29/0.83 (−1.19) | −1.21/.78 (−1.23) | 0.64 |
Weight gain (z-scores, Fenton) | −1.83/1.16 (−1.72) | −1.30/0.83 (−1.27) | <0.001 | −1.23/0.91 (−1.13) | −1.14/0.80 (−1.12) | 0.05 | −1.12/0.82 (−1.06) | −1.01/0.78 (−0.99) | 0.51 |
Growth velocity (g/day) # | 18.81/7.37 (16.19) | 20.69/6.63 (20.87) | <0.001 | 21.48/13.10 (21.60) | 21.49/7.97 (21.62) | 0.32 | 22.80/16.01 (22.00) | 21.91/7.12 (22.47) | 0.36 |
Head growth velocity (mm/day) | 0.930/0.502 (0.89) | 0.996/0.320 (1.0) | <0.001 | 1.012/0.332 (1.008) | 1.11/0.261 (1.028) | 0.017 | 1.058/0.389 (1.036) | 1.056/0.400 (1.017) | 0.89 |
Growth velocity (body length; mm/day) | 1.210/0.442 (1.216) | 1.403/0.429 (1.4) | <0.001 | 1.413/0.407 (1.406) | 1.432/0.380 (1.422) | 0.139 | 1.511/0.654 (1.451) | 1.49/0.43 (1.452) | 0.775 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortmann, I.; Marißen, J.; Siller, B.; Spiegler, J.; Humberg, A.; Hanke, K.; Faust, K.; Pagel, J.; Eyvazzadeh, L.; Brenner, K.; et al. Lactobacillus Acidophilus/Bifidobacterium Infantis Probiotics Are Beneficial to Extremely Low Gestational Age Infants Fed Human Milk. Nutrients 2020, 12, 850. https://doi.org/10.3390/nu12030850
Fortmann I, Marißen J, Siller B, Spiegler J, Humberg A, Hanke K, Faust K, Pagel J, Eyvazzadeh L, Brenner K, et al. Lactobacillus Acidophilus/Bifidobacterium Infantis Probiotics Are Beneficial to Extremely Low Gestational Age Infants Fed Human Milk. Nutrients. 2020; 12(3):850. https://doi.org/10.3390/nu12030850
Chicago/Turabian StyleFortmann, Ingmar, Janina Marißen, Bastian Siller, Juliane Spiegler, Alexander Humberg, Kathrin Hanke, Kirstin Faust, Julia Pagel, Leila Eyvazzadeh, Kim Brenner, and et al. 2020. "Lactobacillus Acidophilus/Bifidobacterium Infantis Probiotics Are Beneficial to Extremely Low Gestational Age Infants Fed Human Milk" Nutrients 12, no. 3: 850. https://doi.org/10.3390/nu12030850
APA StyleFortmann, I., Marißen, J., Siller, B., Spiegler, J., Humberg, A., Hanke, K., Faust, K., Pagel, J., Eyvazzadeh, L., Brenner, K., Roll, C., Pirr, S., Viemann, D., Stavropoulou, D., Henneke, P., Tröger, B., Körner, T., Stein, A., Derouet, C., ... Härtel, C. (2020). Lactobacillus Acidophilus/Bifidobacterium Infantis Probiotics Are Beneficial to Extremely Low Gestational Age Infants Fed Human Milk. Nutrients, 12(3), 850. https://doi.org/10.3390/nu12030850