Measurement, Determinants, and Implications of Energy Intake in Athletes
Abstract
1. Introduction
2. Measures of Energy Status
3. Appetite Regulating Hormone Response to Exercise
3.1. Hormone Introduction
3.2. Exercise Effects on Leptin, Ghrelin, PYY, and GLP-1
4. Appetite and Food Intake in Response to Chronic Exercise
5. Challenges of Achieving Proper Energy Intake for Athletes
6. Aberrant Energy Intake: Low Energy Availability
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Hubert, P.; King, N.; Blundell, J. Uncoupling the effects of energy expenditure and energy intake: Appetite response to short-term energy deficit induced by meal omission and physical activity. Appetite 1998, 31, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; King, N.A. Physical activity and regulation of food intake: Current evidence. Med. Sci. Sports Exerc. 1999, 31, S573–S583. [Google Scholar] [CrossRef] [PubMed]
- King, N.A.; Burley, V.J.; Blundell, J.E. Exercise-induced suppression of appetite: Effects on food intake and implications for energy balance. Eur. J. Clin. Nutr. 1994, 48, 715–724. [Google Scholar] [PubMed]
- Hopkins, M.; Blundell, J.E. Energy balance, body composition, sedentariness and appetite regulation: Pathways to obesity. Clin. Sci. 2016, 130, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- King, N.A.; Hopkins, M.; Caudwell, P.; Stubbs, R.J.; Blundell, J.E. Individual variability following 12 weeks of supervised exercise: Identification and characterization of compensation for exercise-induced weight loss. Int. J. Obes. 2008, 32, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Church, T.S.; Martin, C.K.; Thompson, A.M.; Earnest, C.P.; Mikus, C.R.; Blair, S.N. Changes in weight, waist circumference and compensatory responses with different doses of exercise among sedentary, overweight postmenopausal women. PloS ONE 2009, 4, e4515. [Google Scholar] [CrossRef]
- Barwell, N.D.; Malkova, D.; Leggate, M.; Gill, J.M. Individual responsiveness to exercise-induced fat loss is associated with change in resting substrate utilization. Metabolism 2009, 58, 1320–1328. [Google Scholar] [CrossRef]
- De Souza, M.J.; Nattiv, A.; Joy, E.; Misra, M.; Williams, N.I.; Mallinson, R.J.; Gibbs, J.C.; Olmsted, M.; Goolsby, M.; Matheson, G.; et al. 2014 Female Athlete Triad Coalition Consensus Statement on Treatment and Return to Play of the Female Athlete Triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br. J. Sports Med. 2014, 48, 289. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.K.; Burke, L.M.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.K.; Meyer, N.L.; et al. IOC author consensus statement update 2018: Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2018, 52, 687–697. [Google Scholar] [CrossRef]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P.; American College of Sports, M. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef]
- Loucks, A.B. Energy balance and body composition in sports and exercise. J. Sports Sci. 2004, 22, 1–14. [Google Scholar] [CrossRef]
- Loucks, A.B.; Thuma, J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrinol. Metab. 2003, 88, 297–311. [Google Scholar] [CrossRef]
- Loucks, A.B. Energy balance and energy availability. In The Encyclopaedia of Sports Medicine: An IOC Medical Commission Publication; International Olympic Committee: Lausanne, Switzerland, 2013; Volume 19, pp. 72–87. [Google Scholar]
- Lieberman, J.L.; De Souza, M.J.; Wagstaff, D.A.; Williams, N.I. Menstrual Disruption with Exercise is not Linked to an Energy Availability Threshold. Med. Sci. Sports Exerc. 2018, 50, 551–561. [Google Scholar] [CrossRef]
- Reed, J.L.; De Souza, M.J.; Mallinson, R.J.; Scheid, J.L.; Williams, N.I. Energy availability discriminates clinical menstrual status in exercising women. J. Int. Soc. Sports Nutr. 2015, 12, 11. [Google Scholar] [CrossRef]
- Burke, L.M.; Lundy, B.; Fahrenholtz, I.L.; Melin, A.K. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 350–363. [Google Scholar] [CrossRef]
- Burke, L.M.; Cox, G.R.; Cummings, N.K.; Desbrow, B. Guidelines for daily carbohydrate intake. Sports Med. 2001, 31, 267–299. [Google Scholar] [CrossRef]
- Hill, R.; Davies, P. The validity of self-reported energy intake as determined using the doubly labelled water technique. Br. J. Nutr. 2001, 85, 415–430. [Google Scholar] [CrossRef]
- Capling, L.; Beck, K.; Gifford, J.; Slater, G.; Flood, V.; O’Connor, H. Validity of dietary assessment in athletes: A systematic review. Nutrients 2017, 9, 1313. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Meredith, K.; Cox, G.R.; Hopkins, W.G.; Burke, L.M. Variability in estimation of self-reported dietary intake data from elite athletes resulting from coding by different sports dietitians. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 152–165. [Google Scholar] [CrossRef]
- Murakami, H.; Kawakami, R.; Nakae, S.; Nakata, Y.; Ishikawa-Takata, K.; Tanaka, S.; Miyachi, M. Accuracy of wearable devices for estimating total energy expenditure: Comparison with metabolic chamber and doubly labeled water method. Jama Intern. Med. 2016, 176, 702–703. [Google Scholar] [CrossRef]
- Lemos, T.; Gallagher, D. Current body composition measurement techniques. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 310–314. [Google Scholar] [CrossRef]
- Fosbol, M.O.; Zerahn, B. Contemporary methods of body composition measurement. Clin. Physiol. Funct. Imaging 2015, 35, 81–97. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef]
- Davidson, T. Appetite Regulation. In International Encyclopedia of the Social & Behavioral Sciences; Smelser, N., Baltes, P., Eds.; Pergamon: Oxford, UK, 2001; pp. 592–594. [Google Scholar]
- Elliott-Sale, K.J.; Tenforde, A.S.; Parziale, A.L.; Holtzman, B.; Ackerman, K.E. Endocrine Effects of Relative Energy Deficiency in Sport. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 335–349. [Google Scholar] [CrossRef]
- Lakhdar, N.; Saad, H.B.; Denguezli, M.; Zaouali, M.; Zbidi, A.; Tabka, Z.; Bouassida, A. Effects of intense cycling training on plasma leptin and adiponectin and its relation to insulin resistance. Neuroendocrinol. Lett. 2013, 34, 229–235. [Google Scholar]
- Zaccaria, M.; Ermolao, A.; Brugin, E.; Bergamin, M. Plasma leptin and energy expenditure during prolonged, moderate intensity, treadmill exercise. J. Endocrinol. Investig. 2013, 36, 396–401. [Google Scholar] [CrossRef]
- Jurimae, J.; Ramson, R.; Maestu, J.; Jurimae, T.; Arciero, P.J.; Braun, W.A.; LeMura, L.M.; Von Duvillard, S.P. Interactions between adipose, bone, and muscle tissue markers during acute negative energy balance in male rowers. J. Sports Med. Phys. Fit. 2011, 51, 347–354. [Google Scholar]
- Inoue, D.S.; Panissa, V.L.; Antunes, B.M.; Oliveira, F.P.; Malta, R.B.; Caldeira, R.S.; Campos, E.Z.; Pimentel, G.D.; Franchini, E.; Lira, F.S. Reduced leptin level is independent of fat mass changes and hunger scores from high-intensity intermittent plus strength training. J. Sports Med. Phys. Fit. 2018, 58, 1045–1051. [Google Scholar] [CrossRef]
- Nindl, B.C.; Kraemer, W.J.; Arciero, P.J.; Samatallee, N.; Leone, C.D.; Mayo, M.F.; Hafeman, D.L. Leptin concentrations experience a delayed reduction after resistance exercise in men. Med. Sci. Sports Exerc. 2002, 34, 608–613. [Google Scholar]
- King, J.A.; Garnham, J.O.; Jackson, A.P.; Kelly, B.M.; Xenophontos, S.; Nimmo, M.A. Appetite-regulatory hormone responses on the day following a prolonged bout of moderate-intensity exercise. Physiol. Behav. 2015, 141, 23–31. [Google Scholar] [CrossRef]
- Douglas, J.A.; King, J.A.; McFarlane, E.; Baker, L.; Bradley, C.; Crouch, N.; Hill, D.; Stensel, D.J. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men. Appetite 2015, 92, 57–65. [Google Scholar] [CrossRef]
- Plinta, R.; Olszanecka-Glinianowicz, M.; Drosdzol-Cop, A.; Chudek, J.; Skrzypulec-Plinta, V. The effect of three-month pre-season preparatory period and short-term exercise on plasma leptin, adiponectin, visfatin, and ghrelin levels in young female handball and basketball players. J. Endocrinol. Investig. 2012, 35, 595–601. [Google Scholar]
- Varady, K.A.; Bhutani, S.; Church, E.C.; Phillips, S.A. Adipokine responses to acute resistance exercise in trained and untrained men. Med. Sci. Sports Exerc. 2010, 42, 456–462. [Google Scholar] [CrossRef]
- Zafeiridis, A.; Smilios, I.; Considine, R.V.; Tokmakidis, S.P. Serum leptin responses after acute resistance exercise protocols. J. Appl. Physiol. 2003, 94, 591–597. [Google Scholar] [CrossRef]
- Schubert, M.M.; Sabapathy, S.; Leveritt, M.; Desbrow, B. Acute exercise and hormones related to appetite regulation: A meta-analysis. Sports Med. 2014, 44, 387–403. [Google Scholar] [CrossRef]
- Deighton, K.; Barry, R.; Connon, C.E.; Stensel, D.J. Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise. Eur. J. Appl. Physiol. 2013, 113, 1147–1156. [Google Scholar] [CrossRef]
- Ghanbari-Niaki, A. Ghrelin and glucoregulatory hormone responses to a single circuit resistance exercise in male college students. Clin. Biochem. 2006, 39, 966–970. [Google Scholar] [CrossRef]
- Broom, D.R.; Miyashita, M.; Wasse, L.K.; Pulsford, R.; King, J.A.; Thackray, A.E.; Stensel, D.J. Acute effect of exercise intensity and duration on acylated ghrelin and hunger in men. J. Endocrinol. 2017, 232, 411–422. [Google Scholar] [CrossRef]
- Alajmi, N.; Deighton, K.; King, J.A.; Reischak-Oliveira, A.; Wasse, L.K.; Jones, J.; Batterham, R.L.; Stensel, D.J. Appetite and energy intake responses to acute energy deficits in females versus males. Med. Sci. Sports Exerc. 2016, 48, 412. [Google Scholar] [CrossRef]
- Schmidt, A.; Maier, C.; Schaller, G.; Nowotny, P.; Bayerle-Eder, M.; Buranyi, B.; Luger, A.; Wolzt, M. Acute exercise has no effect on ghrelin plasma concentrations. Horm. Metab. Res. 2004, 36, 174–177. [Google Scholar]
- Dall, R.; Kanaley, J.; Hansen, T.K.; Moller, N.; Christiansen, J.S.; Hosoda, H.; Kangawa, K.; Jorgensen, J. Plasma ghrelin levels during exercise in healthy subjects and in growth hormone-deficient patients. Eur. J. Endocrinol. 2002, 147, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Deighton, K.; Batterham, R.L.; Stensel, D.J. Appetite and gut peptide responses to exercise and calorie restriction. The effect of modest energy deficits. Appetite 2014, 81, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Holliday, A.; Blannin, A. Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration. J. Endocrinol. 2017, 235, 193–205. [Google Scholar] [CrossRef]
- Howe, S.M.; Hand, T.M.; Larson-Meyer, D.E.; Austin, K.J.; Alexander, B.M.; Manore, M.M. No Effect of Exercise Intensity on Appetite in Highly-Trained Endurance Women. Nutrients 2016, 8, 223. [Google Scholar] [CrossRef]
- Kojima, C.; Kasai, N.; Ishibashi, A.; Murakami, Y.; Ebi, K.; Goto, K. Appetite regulations after sprint exercise under hypoxic condition in female athletes. J. Strength Cond. Res. /Natl. Strength Cond. Assoc. 2017. [Google Scholar] [CrossRef] [PubMed]
- Misra, M. Neuroendocrine mechanisms in athletes. Handb. Clin. Neurol. 2014, 124, 373–386. [Google Scholar] [CrossRef]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef]
- Zhou, Y.; Rui, L. Leptin signaling and leptin resistance. Front. Med. 2013, 7, 207–222. [Google Scholar] [CrossRef]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W.; Woods, S.C.; Porte, D., Jr.; Seeley, R.J.; Baskin, D.G. Central nervous system control of food intake. Nature 2000, 404, 661. [Google Scholar] [CrossRef] [PubMed]
- Perello, M.; Scott, M.M.; Sakata, I.; Lee, C.E.; Chuang, J.C.; Osborne-Lawrence, S.; Rovinsky, S.A.; Elmquist, J.K.; Zigman, J.M. Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. J. Comp. Neurol. 2012, 520, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Klibanski, A. Endocrine consequences of anorexia nervosa. Lancet. Diabetes Endocrinol. 2014, 2, 581–592. [Google Scholar] [CrossRef]
- Misra, M.; Miller, K.K.; Tsai, P.; Gallagher, K.; Lin, A.; Lee, N.; Herzog, D.B.; Klibanski, A. Elevated peptide YY levels in adolescent girls with anorexia nervosa. J. Clin. Endocrinol. Metab. 2006, 91, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Price, S.L.; Bloom, S.R. Protein PYY and its role in metabolism. Front. Horm. Res. 2014, 42, 147–154. [Google Scholar] [CrossRef]
- Sun, E.W.; Martin, A.M.; Young, R.L.; Keating, D.J. The regulation of peripheral metabolism by gut-derived hormones. Front. Endocrinol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Tomasik, P.J.; Sztefko, K.; Malek, A. GLP-1 as a satiety factor in children with eating disorders. Horm. Metab. Res. 2002, 34, 77–80. [Google Scholar] [CrossRef]
- Haskell, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Stensel, D. Exercise, appetite and appetite-regulating hormones: Implications for food intake and weight control. Ann. Nutr. Metab. 2010, 57, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Whybrow, S.; Hughes, D.A.; Ritz, P.; Johnstone, A.M.; Horgan, G.W.; King, N.; Blundell, J.E.; Stubbs, R.J. The effect of an incremental increase in exercise on appetite, eating behaviour and energy balance in lean men and women feeding ad libitum. Br. J. Nutr. 2008, 100, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.M.; Palumbo, E.; Seay, R.F.; Spain, K.K.; Clarke, H.E. Energy compensation after sprint-and high-intensity interval training. PloS ONE 2017, 12, e0189590. [Google Scholar] [CrossRef] [PubMed]
- Quatromoni, P.A. Clinical observations from nutrition services in college athletics. J. Am. Diet. Assoc. 2008, 108, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Heaney, S.; O’Connor, H.; Michael, S.; Gifford, J.; Naughton, G. Nutrition knowledge in athletes: A systematic review. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Trakman, G.L.; Forsyth, A.; Devlin, B.L.; Belski, R. A Systematic Review of Athletes’ and Coaches’ Nutrition Knowledge and Reflections on the Quality of Current Nutrition Knowledge Measures. Nutrients 2016, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Parks, R.B.; Helwig, D.; Dettmann, J.; Taggart, T.; Woodruff, B.; Horsfall, K.; Brooks, M.A. Developing a Performance Nutrition Curriculum for Collegiate Athletics. J. Nutr. Educ. Behav. 2016, 48, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.V.; Jagim, A.R.; Oliver, J.M.; Greenwood, M.; Busteed, D.R.; Jones, M.T. Gender differences and access to a sports dietitian influence dietary habits of collegiate athletes. J. Int. Soc. Sports Nutr. 2016, 13, 38. [Google Scholar] [CrossRef]
- Spronk, I.; Kullen, C.; Burdon, C.; O’Connor, H. Relationship between nutrition knowledge and dietary intake. Br. J. Nutr. 2014, 111, 1713–1726. [Google Scholar] [CrossRef]
- Full-Time Sports Dietitians. Available online: http://www.sportsrd.org/?page_id=1176 (accessed on 25 January 2019).
- Heaney, S.; O’Connor, H.; Naughton, G.; Gifford, J. Towards an Understanding of the Barriers to Good Nutrition for Elite Athletes. Int. J. Sports Sci. Coach. 2008, 3, 391–401. [Google Scholar] [CrossRef]
- Birkenhead, K.L.; Slater, G. A review of factors influencing athletes’ food choices. Sports Med. 2015, 45, 1511–1522. [Google Scholar] [CrossRef]
- Robins, A.; Hetherington, M.M. A comparison of pre-competition eating patterns in a group of non-elite triathletes. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 442–457. [Google Scholar] [CrossRef]
- Smart, L.R.; Bisogni, C.A. Personal food systems of male college hockey players. Appetite 2001, 37, 57–70. [Google Scholar] [CrossRef]
- Long, D.; Perry, C.; Unruh, S.A.; Lewis, N.; Stanek-Krogstrand, K. Personal Food Systems of Male Collegiate Football Players: A Grounded Theory Investigation; National Athletic Trainers’ Association, Inc.: Carrollton, TX, USA, 2011. [Google Scholar]
- Cummings, N.; Crawford, R.; Cort, M.; Pelly, F. Providing meals for athletic groups. In Clinical Sports Nutrition, 3rd ed.; McGraw-Hill Australia: Sydney, Australia, 2006; pp. 785–803. [Google Scholar]
- Pelly, F.E.; Burkhart, S.J.; Dunn, P. Factors influencing food choice of athletes at international competition events. Appetite 2018, 121, 173–178. [Google Scholar] [CrossRef]
- Bolt, U.; Allen, M. Faster Than Lightning: My Autobiography; HarperSport: New York, NY, USA, 2013. [Google Scholar]
- Torstveit, M.; Sundgot-Borgen, J. Participation in leanness sports but not training volume is associated with menstrual dysfunction: A national survey of 1276 elite athletes and controls. Br. J. Sports Med. 2005, 39, 141–147. [Google Scholar] [CrossRef]
- Sundgot-Borgen, J. Risk and trigger factors for the development of eating disorders in female elite athletes. Med. Sci. Sports Exerc. 1994, 26, 414–419. [Google Scholar] [CrossRef]
- Kong, P.; Harris, L.M. The sporting body: Body image and eating disorder symptomatology among female athletes from leanness focused and nonleanness focused sports. J. Psychol. 2015, 149, 141–160. [Google Scholar] [CrossRef]
- Joy, E.; Kussman, A.; Nattiv, A. 2016 update on eating disorders in athletes: A comprehensive narrative review with a focus on clinical assessment and management. Br. J. Sports Med. 2016, 50, 154–162. [Google Scholar] [CrossRef]
- Berglund, L.; Sundgot-Borgen, J.; Berglund, B. Adipositas athletica: A group of neglected conditions associated with medical risks. Scand. J. Med. Sci. Sports 2011, 21, 617–624. [Google Scholar] [CrossRef]
- Burke, L.M.; Close, G.L.; Lundy, B.; Mooses, M.; Morton, J.P.; Tenforde, A.S. Relative Energy Deficiency in Sport in Male Athletes: A Commentary on Its Presentation Among Selected Groups of Male Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J.; Williams, N.I.; Nattiv, A.; Joy, E.; Misra, M.; Loucks, A.B.; Matheson, G.; Olmsted, M.P.; Barrack, M.; Mallinson, R.J. Misunderstanding the Female Athlete Triad: Refuting the IOC Consensus Statement on Relative Energy Deficiency in Sport (RED-S); BMJ Publishing Group Ltd. and British Association of Sport and Exercise Medicine: London, UK, 2014. [Google Scholar]
- Hackney, A.C. Effects of endurance exercise on the reproductive system of men: The “exercise-hypogonadal male condition”. J. Endocrinol. Investig. 2008, 31, 932–938. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Barrack, M.T.; Nattiv, A.; Fredericson, M. Parallels with the Female Athlete Triad in Male Athletes. Sports Med. 2016, 46, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Kraus, E.; Tenforde, A.S.; Nattiv, A.; Sainani, K.L.; Kussman, A.; Deakins-Roche, M.; Singh, S.; Kim, B.Y.; Barrack, M.T.; Fredericson, M. Bone stress injuries in male distance runners: Higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br. J. Sports Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Fredericson, M.; Nattiv, A.; Keflezighi, M.; De Souza, M.J.; Misra, M.; Tenforde, A.S. The Male Athlete Triad: Updates and Parallels with the Female Athlete. In Proceedings of the American College of Sports Medicine Annual Meeting, Minneapolis, MN, USA, 30 May 2018. [Google Scholar]
EA Range | Effect on Body Mass/Composition |
---|---|
>45 kcal/kg FFM/day | Gain of body mass, muscle hypertrophy, carbohydrate loading |
(>188 kJ/kg FFM/day) | |
~45 kcal/kg FFM/day | Maintenance of body size and mass; focus on skill development |
(188 kJ/kg FFM/day) | |
30–45 kcal/kg FFM/day | Loss of body mass or fat |
(125–188 kJ/kg FFM/day) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holtzman, B.; Ackerman, K.E. Measurement, Determinants, and Implications of Energy Intake in Athletes. Nutrients 2019, 11, 665. https://doi.org/10.3390/nu11030665
Holtzman B, Ackerman KE. Measurement, Determinants, and Implications of Energy Intake in Athletes. Nutrients. 2019; 11(3):665. https://doi.org/10.3390/nu11030665
Chicago/Turabian StyleHoltzman, Bryan, and Kathryn E. Ackerman. 2019. "Measurement, Determinants, and Implications of Energy Intake in Athletes" Nutrients 11, no. 3: 665. https://doi.org/10.3390/nu11030665
APA StyleHoltzman, B., & Ackerman, K. E. (2019). Measurement, Determinants, and Implications of Energy Intake in Athletes. Nutrients, 11(3), 665. https://doi.org/10.3390/nu11030665