Comparison of Stabilization Systems for Soybean Wax Emulsions to Produce Sustainable Water-Resistant Paper Based Packaging: Surfactant vs. Pickering
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Soybean Wax Emulsions
2.3. Soybean Wax Emulsion Characterization
2.3.1. Dynamic Light Scattering for Particle Size, Particle Size Distribution, and Zeta Potential
2.3.2. Viscosity Measurement
2.3.3. Scanning Electron Microscopy (SEM) for Morphology of Dried Emulsion Particles
2.4. Coating Method and Characterization of Coated Paper
2.4.1. Coating Procedure
2.4.2. Scanning Electron Microscopy for Morphology of Coated Paper Samples
2.4.3. Cobb Test Analysis
2.4.4. Water Contact Angle (WCA) Analysis
2.4.5. Water Vapor Transmission Rate (WVTR) Measurement
2.4.6. Oil Resistance Analysis
2.4.7. Mechanical Properties Analysis
2.4.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Soybean Wax Emulsions
3.2. Characterization of Soybean Wax Emulsion Coated Paper
3.3. Water Barrier Properties and the Water Vapor Transmission Rate of SE- and PE-Coated Paper
3.4. Effect of Increasing Emulsion Coat Weight on Water Barrier Properties and the Water Vapor Transmission Rate
3.5. Oil Resistance Properties of SE- and PE-Coated Paper
3.6. Mechanical Properties of the Coated Paper
3.7. Storage Stability and Functionality of Soybean Wax Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moad, G.; Solomon, D.H. The critical importance of adopting whole-of-life strategies for polymers and plastics. Sustainability 2021, 13, 8218. [Google Scholar] [CrossRef]
- Dey, A.; Dhumal, C.V.; Sengupta, P.; Kumar, A.; Pramanik, N.K.; Alam, T. Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: A Review. J. Food Sci. Technol. 2021, 58, 3251–3269. [Google Scholar] [CrossRef]
- Andrady, A.L.; Neal, M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef]
- Samborska, V. Packaging Is the Source of 40% of the Planet’s Plastic Waste. Our World Data. 2024. Available online: https://ourworldindata.org/data-insights/packaging-is-the-source-of-40-of-the-planets-plastic-waste (accessed on 2 November 2025).
- Ali, S.S.; Elsamahy, T.; Koutra, E.; Kornaros, M.; El-Sheekh, M.; Abdelkarim, E.A.; Zhu, D.; Sun, J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 2021, 771, 144719. [Google Scholar] [CrossRef]
- Narancic, T.; O’Connor, K.E. Plastic Waste as a Global Challenge: Are Biodegradable Plastics the Answer to the Plastic Waste Problem? Microbiology 2019, 165, 129–137. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vethaak, A.D.; Lavorante, B.R.; Lundebye, A.K.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Eze, C.G.; Nwankwo, C.E.; Dey, S.; Sundaramurthy, S.; Okeke, E.S. Food chain microplastics contamination and impact on human health: A review. Environ. Chem. Lett. 2024, 22, 1889–1927. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Shruti, V.C.; Pérez-Guevara, F.; Roy, P.D. Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects. Sci. Total Environ. 2023, 856, 159164. [Google Scholar] [CrossRef]
- Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. Potential health impact of microplastics: A review of environmental distribution, human exposure, and toxic effects. Environ. Health 2023, 1, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Hamdani, S.S.; Li, Z.; Rolland, E.; Mohiuddin, M.; Rabnawaz, M. Barrier and mechanical properties of biodegradable paper bilayer-coated with plasticized starch and zein. J. Appl. Polym. Sci. 2023, 140, e53440. [Google Scholar] [CrossRef]
- Parvathy, P.A.; Sahoo, S.K. Hydrophobic, moisture resistant and biorenewable paper coating derived from castor oil based epoxy methyl ricinoleate with repulpable potential. Prog. Org. Coat. 2021, 158, 106347. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Panjagari, N.R.; Alam, T. An Overview of Paper and Paper Based Food Packaging Materials: Health Safety and Environmental Concerns. J. Food Sci. Technol. 2019, 56, 4391–4403. [Google Scholar] [CrossRef]
- Li, Z.; Rabnawaz, M. Oil-and water-resistant coatings for porous cellulosic substrates. ACS Appl. Polym. Mater. 2018, 1, 103–111. [Google Scholar] [CrossRef]
- Choi, J.O.; Jitsunari, F.; Asakawa, F.; Park, H.J.; Lee, D.S. Migration of surrogate contaminants in paper and paperboard into water through polyethylene coating layer. Food Addit. Contam. 2002, 19, 1200–1206. [Google Scholar] [CrossRef]
- Tyagi, P.; Salem, K.S.; Hubbe, M.A.; Pal, L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products—A review. Trends Food Sci. Technol. 2021, 115, 461–485. [Google Scholar] [CrossRef]
- North, E.J.; Halden, R.U. Plastics and environmental health: The road ahead. Rev. Environ. Health 2013, 28, 1–8. [Google Scholar] [CrossRef]
- Guzman-Puyol, S. Fluorinated compounds in paper and paperboard based food packaging materials. NPJ Sci. Food 2024, 8, 82. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Zeno, E.; Pollicino, A.; Serafini, P.M.; Tonelli, C. UV light-induced grafting of fluorinated monomer onto cellulose sheets. Cellulose 2011, 18, 117–126. [Google Scholar] [CrossRef]
- Gorrochategui, E.; Pérez-Albaladejo, E.; Casas, J.; Lacorte, S.; Porte, C. Perfluorinated Chemicals: Differential Toxicity, Inhibition of Aromatase Activity and Alteration of Cellular Lipids in Human Placental Cells. Toxicol. Appl. Pharmacol. 2014, 277, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, B.; Sarkar, S.; Chakraborty, R.; Saha, S.P.; Thirugnanam, A.; Roy, P.K.; Roy, S. Starch-based biodegradable films amended with nano-starch and tannic acid-coated nano-starch exhibit enhanced mechanical and functional attributes with antimicrobial activity. Carbohydr. Polym. 2024, 341, 122321. [Google Scholar] [CrossRef]
- Hansen, N.M.L.; Plackett, D. Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules 2008, 9, 1493–1505. [Google Scholar] [CrossRef]
- Hamdani, S.S.; Li, Z.; Rabnawaz, M.; Kamdem, D.P.; Khan, B.A. Chitosan–graft–poly (dimethylsiloxane)/zein coatings for the fabrication of environmentally friendly oil- and water-resistant paper. ACS Sustain. Chem. Eng. 2020, 8, 5147–5155. [Google Scholar] [CrossRef]
- Lin, D.; Kuang, Y.; Chen, G.; Kuang, Q.; Wang, C.; Zhu, P.; Peng, C.; Fang, Z. Enhancing moisture resistance of starch-coated paper by improving the film forming capability of starch film. Ind. Crops Prod. 2017, 100, 12–18. [Google Scholar] [CrossRef]
- Kunam, P.K.; Ramakanth, D.; Akhila, K.; Gaikwad, K.K. Bio-based materials for barrier coatings on paper packaging. Biomass Convers. Biorefin. 2024, 14, 12637–12652. [Google Scholar] [CrossRef] [PubMed]
- Pashova, S. Application of plant waxes in edible coatings. Coatings 2023, 13, 911. [Google Scholar] [CrossRef]
- Gupta, S.; Ivvala, J.; Grewal, H.S. Development of natural wax-based durable superhydrophobic coatings. Ind. Crops Prod. 2021, 171, 113871. [Google Scholar] [CrossRef]
- Glavan, A.C.; Martinez, R.V.; Subramaniam, A.B.; Yoon, H.J.; Nunes, R.M.; Lange, H.; Thuo, M.M.; Whitesides, G.M. Omniphobic “RF paper” produced by silanization of paper with fluoroalkyltrichlorosilanes. Adv. Funct. Mater. 2014, 24, 60–70. [Google Scholar] [CrossRef]
- Surendran, A.N.; Ajjarapu, K.P.K.; Arumugham, A.A.; Kate, K.; Satyavolu, J. Characterization of industry grade soybean wax for potential applications in natural fiber reinforced composite (NFRC) filaments. Ind. Crops Prod. 2022, 186, 115163. [Google Scholar] [CrossRef]
- Jo, H.M.; Kim, D.H.; Lee, S.H.; Lee, J.Y. Multi-layer barrier coating technology using nano-fibrillated cellulose and a hydrophobic coating agent. BioResources 2022, 17, 6222. [Google Scholar] [CrossRef]
- Saji, V.S. Wax-based artificial superhydrophobic surfaces and coatings. Colloids Surf. A 2020, 602, 125132. [Google Scholar] [CrossRef]
- Jahangiri, F.; Mohanty, A.; Pal, A.K.; Clemmer, R.; Gregori, S.; Misra, M. Wax coatings for paper packaging applications: Study of the coating effect on surface, mechanical, and barrier properties. ACS Environ. Au 2024, 5, 165–182. [Google Scholar] [CrossRef]
- Li, W.; Bouzidi, L.; Narine, S.S. Current research and development status and prospect of hot-melt adhesives: A review. Ind. Eng. Chem. Res. 2008, 47, 7524–7532. [Google Scholar] [CrossRef]
- Takemoto, M.; Kajiyama, M.; Mizumachi, H.; Takemura, A.; Ono, H. Miscibility and adhesive properties of ethylene vinyl acetate copolymer (EVA)-based hot-melt adhesives. I. Adhesive tensile strength. J. Appl. Polym. Sci. 2002, 83, 719–725. [Google Scholar] [CrossRef]
- Shen, T.; Fan, S.; Li, Y.; Xu, G.; Fan, W. Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue. Materials 2020, 13, 3308. [Google Scholar] [CrossRef]
- Celik, N.; Torun, I.; Ruzi, M.; Esidir, A.; Onses, M.S. Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem. Eng. J. 2020, 396, 125230. [Google Scholar] [CrossRef]
- Celik, N.; Kiremitler, N.B.; Ruzi, M.; Onses, M.S. Waxing the soot: Practical fabrication of all-organic superhydrophobic coatings from candle soot and carnauba wax. Prog. Org. Coat. 2021, 153, 106169. [Google Scholar] [CrossRef]
- Fei, T.; Walker, J.A.; Vickerman, K.L.; Stanley, L.M.; Jarboe, D.; Wang, T. Synthesis and characterization of soybean oil-based waxes and their application as paraffin substitute for corrugated coating. J. Ind. Eng. Chem. 2018, 58, 113–122. [Google Scholar] [CrossRef]
- Ryan, N.M.; Mcnally, G.M.; Welsh, J. The use of aqueous-based emulsion polymers as moisture barrier coatings for carton boards. Dev. Chem. Eng. Miner. Process. 2004, 12, 141–148. [Google Scholar] [CrossRef]
- Al-Yaqoobi, A.M.; Al-dulaimi, S.L.; Salman, R.H. Explore the Impact of Surfactant Type on the Stability and Separation Efficiency of Oil–Water Emulsions of Real Wastewater from Al-Basrah Crude Oil Using Microbubble Air Flotation. J. Ecol. Eng. 2024, 25, 367–378. [Google Scholar] [CrossRef]
- Naderizadeh, S.; Heredia-Guerrero, J.A.; Caputo, G.; Grasselli, S.; Malchiodi, A.; Athanassiou, A.; Bayer, I.S. Superhydrophobic coatings from beeswax-in-water emulsions with latent heat storage capability. Adv. Mater. Interfaces 2019, 6, 1801782. [Google Scholar] [CrossRef]
- Liu, D.; Duan, Y.; Wang, S.; Gong, M.; Dai, H. Improvement of oil and water barrier properties of food packaging paper by coating with microcrystalline wax emulsion. Polymers 2022, 14, 1786. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, P.; Qian, L.; Xiao, H. Fabrication of superhydrophobic paper surface via wax mixture coating. Chem. Eng. J. 2014, 250, 431–436. [Google Scholar] [CrossRef]
- Kaczerewska, O.; Martins, R.; Figueiredo, J.; Loureiro, S.; Tedim, J. Environmental behaviour and ecotoxicity of cationic surfactants towards marine organisms. J. Hazard. Mater. 2020, 392, 122299. [Google Scholar] [CrossRef] [PubMed]
- Pickering, S.U. CXCVI—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Li, W.; Jiao, B.; Li, S.; Faisal, S.; Shi, A.; Fu, W.; Chen, Y.; Wang, Q. Recent advances on Pickering emulsions stabilized by diverse edible particles: Stability mechanism and applications. Front. Nutr. 2022, 9, 864943. [Google Scholar] [CrossRef]
- Xiao, T.; Ma, X.; Hu, H.; Xiang, F.; Zhang, X.; Zheng, Y.; Dong, H.; Adhikari, B.; Wang, Q.; Shi, A. Advances in emulsion stability: A review on mechanisms, role of emulsifiers, and applications in food. Food Chem. X 2025, 29, 102792. [Google Scholar] [CrossRef]
- Liu, P.; Pei, X.; Cui, Z.; Song, B.; Jiang, J.; Binks, B.P. Recyclable nonionic–anionic bola surfactant as a stabilizer of size-controllable and pH-responsive Pickering emulsions. Langmuir 2023, 39, 841–850. [Google Scholar] [CrossRef]
- Huang, S.; Lv, J.; Liu, X.; Yuan, H.; Wang, Y.; Huan, S.; Shen, J.; Wang, C. Sustainable and green design of beeswax-based Pickering emulsion coating for food packaging. J. Clean. Prod. 2025, 495, 145096. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, C.; Meng, L.; Tang, X. Preparation and characterization of carnauba wax-based particle with hierarchical structure and its use as hydrophobic coating for chitosan films. Carbohydr. Polym. 2023, 319, 121224. [Google Scholar] [CrossRef]
- Liu, R.; Tian, X.; Wang, Z.; Zhang, J.; Lu, P.; Huang, C. Water vapor barrier coating based on nanocellulose crystals stabilized AESO oil-in-water Pickering emulsion. Prog. Org. Coat. 2021, 159, 106479. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Kan, L.; Shen, F.; Ling, H.; Wang, X. All-biomass-based eco-friendly waterproof coating for paper-based green packaging. Green Chem. 2022, 24, 7039–7048. [Google Scholar] [CrossRef]
- Jaekel, E.E.; Filonenko, S. Cationic CNC-stabilized Pickering emulsions of linseed oil for hydrophobic coatings. RSC Adv. 2023, 13, 16860–16866. [Google Scholar] [CrossRef]
- Daizy, M.; Ni, Y.; Bousfield, D.W.; Neivandt, D.J. Development of a soybean wax Pickering emulsion for sustainable hydrophobic modification of paper. ACS Sustain. Chem. Eng. 2025, 13, 13614–13627. [Google Scholar] [CrossRef]
- Yadav, M.; Behera, K.; Chang, Y.H.; Chiu, F.C. Cellulose nanocrystal reinforced chitosan based UV barrier composite films for sustainable packaging. Polymers 2020, 12, 202. [Google Scholar] [CrossRef]
- Metha, C.; Pawar, S.; Suvarna, V. Recent advancements in alginate-based films for active food packaging applications. Sustain. Food Technol. 2024, 2, 1246–1265. [Google Scholar] [CrossRef]
- Li, C.; Mei, Z.; Liu, Q.; Wang, J.; Xu, J.; Sun, D. Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method. Colloids Surf. A Physicochem. Eng. Asp. 2010, 356, 71–77. [Google Scholar] [CrossRef]
- T 441 OM-90; Technical Association of the Pulp and Paper Industry, Water Absorptiveness of Sized (Non-Bibulous) Paper and Paper Board (Cobb Test). Technical Association of the Pulp and Paper Industry (TAPPI): Peachtree Corners, GA, USA, 1990.
- T448 OM-89; Technical Association of the Pulp and Paper Industry, Water Vapor Transmission Rate of Sheet Materials at Standard Temperature and Humidity. Technical Association of the Pulp and Paper Industry (TAPPI): Peachtree Corners, GA, USA, 1989.
- T559 Pm-96; Technical Association of the Pulp and Paper Industry, Grease Resistance Test for Paper and Paperboard. Technical Association of the Pulp and Paper Industry (TAPPI): Peachtree Corners, GA, USA, 1996.
- T 494 OM-21; Technical Association of the Pulp and Paper Industry, Tensile Properties of Paper and Paperboard (Using Constant Rate of Elongation Apparatus). Technical Association of the Pulp and Paper Industry (TAPPI): Peachtree Corners, GA, USA, 2021.
- Varsou, D.D.; Afantitis, A.; Tsoumanis, A.; Papadiamantis, A.; Valsami-Jones, E.; Lynch, I.; Melagraki, G. Zeta-potential read-across model utilizing nanodescriptors extracted via the nanoxtract image analysis tool available on the enalos nanoinformatics cloud platform. Small 2020, 16, 1906588. [Google Scholar] [CrossRef]
- Souza, I.D.L.; Saez, V.; Mansur, C.R.E. Lipid nanoparticles containing coenzyme Q10 for topical applications: An overview of their characterization. Colloids Surf. B Biointerfaces 2023, 230, 113491. [Google Scholar] [CrossRef] [PubMed]
- Lowry, G.V.; Hill, R.J.; Harper, S.; Rawle, A.F.; Hendren, C.O.; Klaessig, F.; Nobbmann, U.; Sayre, P.; Rumble, J. Guidance to Improve the Scientific Value of Zeta-Potential Measurements in NanoEHS. Environ. Sci. Nano 2016, 3, 953–965. [Google Scholar] [CrossRef]
- Zadeh, S.S.S.; Egan, V.; Walsh, P. An experimental study on the mobility of droplets in liquid-liquid Taylor flows within circular capillaries. Int. J. Multiph. Flow 2022, 157, 104259. [Google Scholar] [CrossRef]
- Nair, A. Oil-and Water-Resistant Paper Coatings Using Low-Cost Biodegradable Polymer Blends for Packaging Applications. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2021. [Google Scholar]
- Li, Z.; Rabnawaz, M.; Khan, B. Response surface methodology design for biobased and sustainable coatings for water-and oil resistant paper. ACS Appl. Polym. Mater. 2020, 2, 1378–1387. [Google Scholar] [CrossRef]
- OECD. PFASs and Alternatives in Food Packaging (Paper and Paperboard): Report on the Commercial Availability and Current Uses; OECD Series on Risk Management of Chemicals No. 58; OECD: Paris, France, 2020; pp. 1–65. [Google Scholar] [CrossRef]
- Godawat, R.; Jamadagni, S.N.; Garde, S. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Proc. Natl. Acad. Sci. USA 2009, 106, 15119–15124. [Google Scholar] [CrossRef]
- Nowacka, M.; Rybak, K.; Wiktor, A.; Mika, A.; Boruszewski, P.; Woch, J.; Przybysz, K.; Witrowa-Rajchert, D. The quality and safety of food contact materials–paper and cardboard coated with paraffin emulsion. Food Control 2018, 93, 183–190. [Google Scholar] [CrossRef]
- de Campos, A.; Claro, P.C.; Luchesi, B.R.; Miranda, M.; Souza, F.V.; Ferreira, M.D.; Marconcini, J.M. Curaua cellulose sheets dip coated with micro and nano carnauba wax emulsions. Cellulose 2019, 26, 7983–7993. [Google Scholar] [CrossRef]
- Willberg-Keyriläinen, P.; Ropponen, J.; Alakomi, H.L.; Vartiainen, J. Cellulose fatty acid ester coated papers for stand-up pouch applications. J. Appl. Polym. Sci. 2018, 135, 46936. [Google Scholar] [CrossRef]
- Sundar, N.; Kumar, A.; Pavithra, A.; Ghosh, S. Studies on semi-crystalline poly lactic acid (PLA) as a hydrophobic coating material on kraft paper for imparting barrier properties in coated abrasive applications. Prog. Org. Coat. 2020, 145, 105682. [Google Scholar] [CrossRef]
- Sundar, N.; Keerthana, P.; Kumar, S.A.; Kumar, G.A.; Ghosh, S. Dual purpose, bio-based polylactic acid (PLA)-polycaprolactone (PCL) blends for coated abrasive and packaging industrial coating applications. J. Polym. Res. 2020, 27, 386. [Google Scholar] [CrossRef]
- Mesic, B.B.; Järnström, L.; Johnston, J. Latex-Based Barrier Dispersion Coating on Linerboard: Flexographic Multilayering versus Single Step Conventional Coating Technology. Nord. Pulp Pap. Res. J. 2015, 30, 350–360. [Google Scholar] [CrossRef]
- Basak, S.; Dangate, M.S.; Samy, S. Oil-and water-resistant paper coatings: A review. Prog. Org. Coat. 2024, 186, 107938. [Google Scholar] [CrossRef]
- dos Santos, A.D.A.; Matos, L.C.; Duraes, A.F.S.; Mendonca, M.C.; dos Santos Muguet, M.C.; Damasio, R.A.P.; Sanadi, A.R.; Tonoli, G.H.D. Kraftliner paper coated with cationic starch/glycerol and poly (vinyl alcohol) blends to generate water vapor and O2 barriers. Food Packag. Shelf Life 2025, 47, 101435. [Google Scholar] [CrossRef]
- Tayeb, A.H.; Tajvidi, M.; Bousfield, D. Paper-based oil barrier packaging using lignin-containing cellulose nanofibrils. Molecules 2020, 25, 1344. [Google Scholar] [CrossRef]
- Hamdani, S.S.; Elkholy, H.M.; Alghaysh, M.O.; Wyman, I.; Bher, A.; Auras, R.; Rabnawaz, M. Recyclable and Biodegradable Paper Coating with Functionalized PLA and PBAT. ACS Omega 2025, 10, 11483–11497. [Google Scholar] [CrossRef]
- Wang, H.; Mai, Y.A.; Qiu, W.; Liu, W.; Yang, D.; Fang, Z.; Qiu, X. Water-, Oil-, and Stain-Resistant Lignin-Based Degradable Waterborne Polyurethane for Paper Packaging Coating. ACS Sustain. Chem. Eng. 2025, 13, 1292–1303. [Google Scholar] [CrossRef]
- Vijayan, S.P.; Aparna, S.; Sahoo, S.K. Effect of beeswax on hydrophobicity, moisture resistance and transparency of UV curable linseed oil based coating for compostable paper packaging. Ind. Crops Prod. 2023, 197, 116645. [Google Scholar] [CrossRef]
- Khwaldia, K. Water vapor barrier and mechanical properties of paper-sodium caseinate and paper-sodium caseinate-paraffin wax films. J. Food Biochem. 2010, 34, 998–1013. [Google Scholar] [CrossRef]
- Arshad, M.; Shankar, S.; Mohanty, A.K.; Todd, J.; Riddle, R.; Van Acker, R.; Taylor, G.W.; Misra, M. Improving the barrier and mechanical properties of paper used for packing applications with renewable hydrophobic coatings derived from camelina oil. ACS Omega 2024, 9, 19786–19795. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Khan, A.; Rabnawaz, M. A plant oil-based eco-friendly approach for paper coatings and their packaging applications. Prog. Org. Coat. 2023, 176, 107386. [Google Scholar] [CrossRef]
- Cheikh, F.B.; Mabrouk, A.B.; Magnin, A.; Putaux, J.L.; Boufi, S. Chitin nanocrystals as Pickering stabilizer for O/W emulsions: Effect of the oil chemical structure on the emulsion properties. Colloids Surf. B Biointerfaces 2021, 200, 111604. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Wu, Y.; Wang, Y.; He, S.; Jiang, Y.; Li, X.; Wang, L.; Xu, Q.; Zhang, L.; Wang, H. Pickering emulsion gel stabilized by milk fat globule membrane/pectin enhanced probiotic stability. Food Chem. X 2025, 27, 102409. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Daizy, M.; Zhang, Y.; Bousfield, D.W.; Li, L.; Wang, J.; Neivandt, D.J. Comparison of Stabilization Systems for Soybean Wax Emulsions to Produce Sustainable Water-Resistant Paper Based Packaging: Surfactant vs. Pickering. Sustainability 2026, 18, 852. https://doi.org/10.3390/su18020852
Daizy M, Zhang Y, Bousfield DW, Li L, Wang J, Neivandt DJ. Comparison of Stabilization Systems for Soybean Wax Emulsions to Produce Sustainable Water-Resistant Paper Based Packaging: Surfactant vs. Pickering. Sustainability. 2026; 18(2):852. https://doi.org/10.3390/su18020852
Chicago/Turabian StyleDaizy, Mahbuba, Yu Zhang, Douglas W. Bousfield, Ling Li, Jinwu Wang, and David J. Neivandt. 2026. "Comparison of Stabilization Systems for Soybean Wax Emulsions to Produce Sustainable Water-Resistant Paper Based Packaging: Surfactant vs. Pickering" Sustainability 18, no. 2: 852. https://doi.org/10.3390/su18020852
APA StyleDaizy, M., Zhang, Y., Bousfield, D. W., Li, L., Wang, J., & Neivandt, D. J. (2026). Comparison of Stabilization Systems for Soybean Wax Emulsions to Produce Sustainable Water-Resistant Paper Based Packaging: Surfactant vs. Pickering. Sustainability, 18(2), 852. https://doi.org/10.3390/su18020852

