Production and Optimisation of Oxygenated Biofuel Blend Components via the Ethanolysis of Lignocellulosic Biomass: A Response Surface Methodology
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Acid-Catalysed Ethanolysis
2.3. Analytical Methods
2.3.1. Analysis of Raw Corn Cob and Residues
2.3.2. Analysis of Liquid Products
2.4. Response Surface Methodology
3. Results and Discussion
3.1. Characterisation of Corn Cob
3.2. Characterisation of Reaction Products
3.3. Experimental Design
3.4. Model Analysis
3.5. The Effect of Reaction Parameters
3.5.1. The Effect of Process Variables on EL Yield
The Effect of Temperature on the EL Yield
The Effect of Corn Cob Content on the Yield of EL
The Effect of Corn Cob:H2SO4 Ratio on the Yield of EL
The Effect of Reaction Time on the Yield of EL
3.5.2. The Effect of Process Variables on DEE Yield
The Effect of Temperature on the DEE Yield
The Effect of Corn Cob Content on the Yield of DEE
The Effect of the Corn Cob: H2SO4 Ratio on the Yield of DEE
The Effect of Reaction Time on the Yield of DEE
3.5.3. The Effect of Process Variables on Solid Residue Responses
The Effect of Temperature on Solid Residue Responses
The Effect of Corn Cob Content on Solid Residue Yield
The Effect of the Corn Cob:H2SO4 Ratio on Solid Residue Yield
The Effect of Reaction Time on Solid Residue Yield
3.6. Process Optimisation
3.6.1. Maximising EL Yield
3.6.2. Material Balance Under Optimum Conditions
- 2.
- Additionally, 2 moles of H2O are formed per mole of EL via complex reactions:
- Three moles of H2O are formed via the cellulose → EG → HMF → EMF → EL pathway.
- One mole of H2O is consumed during the hydrolysis of cellulose to glucose.
- 3.
- The moisture in the corn cob (2.3 wt %) was present as H2O at the end of ethanolysis. This was added to the amount formed during ethanolysis.
- 4.
- Total losses were assumed to be volatile losses of ethanol, due to its low boiling point of 78.2 °C.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Energy Information Administration. EIA Projects Nearly 50% Increase in World Energy Usage by 2050, Led by Growth in Asia; U.S. Energy Information Administration: Washington, DC, USA, 2020.
- Karakurt, I.; Aydin, G. Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries. Energy 2023, 263, 125650. [Google Scholar] [CrossRef]
- Amin, A.Z. Global Energy Transformation: A Roadmap to 2050; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Holzleitner, M.; Moser, S.; Puschnigg, S. Evaluation of the impact of the new Renewable Energy Directive 2018/2001 on third-party access to district heating networks to enforce the feed-in of industrial waste heat. Util. Policy 2020, 66, 101088. [Google Scholar] [CrossRef]
- Renewable Energy Directive. Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Off. J. Eur. Union 2015, 239, 1–29. [Google Scholar]
- European Environment Agency. Use of Renewable Energy for Transport in Europe; European Environment Agency: Copenhagen, Denmark, 2023.
- Department for Business, Energy and Industrial Strategy. 2020 UK Greenhouse Gas Emissions, Final Figures; Department for Business, Energy and Industrial Strategy: London, UK, 2022.
- Alamgir Ahmad, K.; Haider Siddiqui, M.; Pant, K.K.; Nigam, K.D.P.; Shetti, N.P.; Aminabhavi, T.M.; Ahmad, E. A critical review on suitability and catalytic production of butyl levulinate as a blending molecule for green diesel. Chem. Eng. J. 2022, 447, 137550. [Google Scholar] [CrossRef]
- Bozell, J.J. Connecting Biomass and Petroleum Processing with a Chemical Bridge. Science 2010, 329, 522–523. [Google Scholar] [CrossRef]
- European Council. Council and Parliament Reach Provisional Deal on Renewable Energy Directive; European Council: Brussels, Belgium, 2023.
- Piskun, A.S. Catalytic Conversion of Levulinic Acid to γ-Valerolactone Using Supported Ru Catalysts: From Molecular to Reactor Level. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2016. [Google Scholar]
- Leonard, R.H. Levulinic acid as a basic chemical raw material. Ind. Eng. Chem. 1956, 48, 1330–1341. [Google Scholar] [CrossRef]
- Démolis, A.; Essayem, N.; Rataboul, F. Synthesis and Applications of Alkyl Levulinates. ACS Sustain. Chem. Eng. 2014, 2, 1338–1352. [Google Scholar] [CrossRef]
- Nelson Appaturi, J.; Andas, J.; Ma, Y.-K.; Phoon, B.L.; Muazu Batagarawa, S.; Khoerunnisa, F.; Hazwan Hussin, M.; Ng, E.-P. Recent advances in heterogeneous catalysts for the synthesis of alkyl levulinate biofuel additives from renewable levulinic acid: A comprehensive review. Fuel 2022, 323, 124362. [Google Scholar] [CrossRef]
- Wiseman, S.; Michelbach, C.A.; Li, H.; Tomlin, A.S. Predicting the physical properties of three-component lignocellulose derived advanced biofuel blends using a design of experiments approach. Sustain. Energy Fuels 2023, 7, 5283–5300. [Google Scholar] [CrossRef]
- Antonetti, C.; Gori, S.; Licursi, D.; Pasini, G.; Frigo, S.; López, M.; Parajó, J.C.; Raspolli Galletti, A.M. One-Pot Alcoholysis of the Lignocellulosic Eucalyptus nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel. Catalysts 2020, 10, 509. [Google Scholar] [CrossRef]
- Frigo, S.; Pasini, G.; Caposciutti, G.; Antonelli, M.; Galletti, A.M.R.; Gori, S.; Costi, R.; Arnone, L. Utilisation of advanced biofuel in CI internal combustion engine. Fuel 2021, 297, 120742. [Google Scholar] [CrossRef]
- Wiseman, S.; Li, H.; Tomlin, A.S. Combustion and Emission Performance of Acid-Catalysed Butanol Alcoholysis Derived Advanced Biofuel Blends from a Compression Ignition Engine; SAE Technical Paper 2025-01-8445; SAE International: Warrendale, PA, USA, 2025. [Google Scholar] [CrossRef]
- Christensen, E.; Williams, A.; Paul, S.; Burton, S.; McCormick, R.L. Properties and Performance of Levulinate Esters as Diesel Blend Components. Energy Fuels 2011, 25, 5422–5428. [Google Scholar] [CrossRef]
- Koivisto, E.; Ladommatos, N.; Gold, M. Compression Ignition and Exhaust Gas Emissions of Fuel Molecules Which Can Be Produced from Lignocellulosic Biomass: Levulinates, Valeric Esters, and Ketones. Energy Fuels 2015, 29, 5875–5884. [Google Scholar] [CrossRef]
- Howard, M.S.; Issayev, G.; Naser, N.; Sarathy, S.M.; Farooq, A.; Dooley, S. Ethanolic gasoline, a lignocellulosic advanced biofuel. Sustain. Energy Fuels 2019, 3, 409–421. [Google Scholar] [CrossRef]
- Michelbach, C.; Hakimov, K.; Farooq, A.; Tomlin, A.S. Predicting the autoignition behaviour of tailorable advanced biofuel blends using automatically generated mechanisms. Proc. Combust. Inst. 2024, 40, 105667. [Google Scholar] [CrossRef]
- BS EN 228:2012+A1:2017; Automotive Fuels. Unleaded Petrol. Requirements and Test Methods. Milton Keynes:BSI. 2023. iTeh Inc.: San Francisco, CA, USA, 2017. Available online: https://bsol.bsigroup.com (accessed on 19 May 2025).
- Zhu, S.; Guo, J.; Wang, X.; Wang, J.; Fan, W. Alcoholysis: A Promising Technology for Conversion of Lignocellulose and Platform Chemicals. ChemSusChem 2017, 10, 2547–2559. [Google Scholar] [CrossRef]
- Fernandes, D.R.; Rocha, A.S.; Mai, E.F.; Mota, C.J.A.; da Silva, V.T. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A Gen. 2012, 425–426, 199–204. [Google Scholar] [CrossRef]
- Lee, A.; Chaibakhsh, N.; Rahman, M.B.A.; Basri, M.; Tejo, B.A. Optimized enzymatic synthesis of levulinate ester in solvent-free system. Ind. Crops Prod. 2010, 32, 246–251. [Google Scholar] [CrossRef]
- Le Van Mao, R.; Zhao, Q.; Dima, G.; Petraccone, D. New Process for the Acid-Catalyzed Conversion of Cellulosic Biomass (AC3B) into Alkyl Levulinates and Other Esters Using a Unique One-Pot System of Reaction and Product Extraction. Catal. Lett. 2011, 141, 271–276. [Google Scholar] [CrossRef]
- Raspolli Galletti, A.M.; Antonetti, C.; Fulignati, S.; Licursi, D. Direct Alcoholysis of Carbohydrate Precursors and Real Cellulosic Biomasses to Alkyl Levulinates: A Critical Review. Catalysts 2020, 10, 1221. [Google Scholar] [CrossRef]
- Leal Silva, J.F.; Grekin, R.; Mariano, A.P.; Maciel Filho, R. Making Levulinic Acid and Ethyl Levulinate Economically Viable: A Worldwide Technoeconomic and Environmental Assessment of Possible Routes. Energy Technol. 2018, 6, 613–639. [Google Scholar] [CrossRef]
- Saravanamurugan, S.; Nguyen Van Buu, O.; Riisager, A. Conversion of Mono- and Disaccharides to Ethyl Levulinate and Ethyl Pyranoside with Sulfonic Acid-Functionalized Ionic Liquids. ChemSusChem 2011, 4, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Saravanamurugan, S.; Riisager, A. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catal. Commun. 2012, 17, 71–75. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539. [Google Scholar] [CrossRef]
- Peng, L.; Lin, L.; Li, H.; Yang, Q. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Appl. Energy 2011, 88, 4590–4596. [Google Scholar] [CrossRef]
- McNamara, C.; O’Shea, A.; Rao, P.; Ure, A.; Ayarde-Henríquez, L.; Ghaani, M.R.; Ross, A.; Dooley, S. Steady states and kinetic modelling of the acid-catalysed ethanolysis of glucose, cellulose, and corn cob to ethyl levulinate. Energy Adv. 2024, 3, 1439–1458, Erratum in Energy Adv. 2024, 3, 3007–3008. [Google Scholar] [CrossRef]
- O’Shea, A.; McNamara, C.; Rao, P.; Howard, M.; Ghanni, M.R.; Dooley, S. A hierarchical surrogate approach to biomass ethanolysis reaction kinetic modelling. React. Chem. Eng. 2025, 10, 344–359. [Google Scholar] [CrossRef]
- Olson, E.S.; Kjelden, M.R.; Schlag, A.J.; Sharma, R. Levulinate Esters from Biomass Wastes. Chem. Mater. Renew. Resour. 2001, 784, 51–63. [Google Scholar]
- Tan, J.; Liu, Q.; Chen, L.; Wang, T.; Ma, L.; Chen, G. Efficient production of ethyl levulinate from cassava over Al2(SO4)3 catalyst in ethanol–water system. J. Energy Chem. 2017, 26, 115–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.K.; Hou, T.; Liu, H.; Han, L.; Xiao, W. Efficient microwave-assisted production of biofuel ethyl levulinate from corn stover in ethanol medium. J. Energy Chem. 2017, 27, 890–897. [Google Scholar] [CrossRef]
- Chang, C.; Xu, G.; Jiang, X.-Q. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresour. Technol. 2012, 121, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Y.; Zhao, G.; Chen, X.; Han, L.; Xiao, W. Impact of biomass feedstock variability on acid-catalyzed alcoholysis performance. Fuel Process. Technol. 2018, 180, 14–22. [Google Scholar] [CrossRef]
- Rizqullah, H.; Yang, J.; Lee, J.W. Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds. Korean J. Chem. Eng. 2022, 39, 2754–2763. [Google Scholar] [CrossRef]
- Yang, J.; Park, J.; Son, J.; Kim, B.; Lee, J.W. Enhanced ethyl levulinate production from citrus peels through an in-situ hydrothermal reaction. Bioresour. Technol. Rep. 2018, 2, 84–87. [Google Scholar] [CrossRef]
- Pereira, L.M.S.; Milan, T.M.; Tapia-Blácido, D.R. Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass Bioenergy 2021, 151, 106166. [Google Scholar] [CrossRef]
- Özgür, C.; Mert, M.E. Prediction and optimization of the process of generating green hydrogen by electrocatalysis: A study using response surface methodology. Fuel 2022, 330, 125610. [Google Scholar] [CrossRef]
- Chernick, D.; Dupont, V.; Ross, A.B. The Potential to Produce Bio-Based Ammonia Adsorbents from Lignin-Rich Residues. Clean Technol. 2025, 7, 30. [Google Scholar] [CrossRef]
- Jiang, N.; Zhao, Y.; Qiu, C.; Shang, K.; Lu, N.; Li, J.; Wu, Y.; Zhang, Y. Enhanced catalytic performance of CoO-CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM). Appl. Catal. B Environ. 2019, 259, 118061. [Google Scholar] [CrossRef]
- Lucas, J.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd edition. J. Qual. Technol. 2010, 42, 228–230. [Google Scholar] [CrossRef]
- Roudi, A.M.; Salem, S.; Abedini, M.; Maslahati, A.; Imran, M. Response Surface Methodology (RSM)-Based Prediction and Optimization of the Fenton Process in Landfill Leachate Decolorization. Processes 2021, 9, 2284. [Google Scholar] [CrossRef]
- StateEase. Design Expert (13); StateEase: Minneapolis, MN, USA, 2023. [Google Scholar]
- Ragab, S.; Elkatory, M.R.; Hassaan, M.A.; El Nemr, A. Experimental, predictive and RSM studies of H2 production using Ag-La-CaTiO3 for water-splitting under visible light. Sci. Rep. 2024, 14, 1019. [Google Scholar] [CrossRef] [PubMed]
- Yabalak, E.; Görmez, Ö.; Gizir, A.M. Subcritical water oxidation of propham by H2O2 using response surface methodology (RSM). J. Environ. Sci. Health Part B 2018, 53, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Chen, B.; Zheng, Z.; Li, K.; Tao, H. One-pot ethanolysis of carbohydrates to promising biofuels: 5-ethoxymethylfurfural and ethyl levulinate. Asia-Pac. J. Chem. Eng. 2017, 12, 527–535. [Google Scholar] [CrossRef]
- Yu, F.; Zhong, R.; Chong, H.; Smet, M.; Dehaen, W.; Sels, B.F. Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chem. 2017, 19, 153–163. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, G.; Chang, C.; Fang, S.; Liu, Z.; Du, F. Direct Conversion of Carbohydrates into Ethyl Levulinate with Potassium Phosphotungstate as an Efficient Catalyst. Catalysts 2015, 5, 1897–1910. [Google Scholar] [CrossRef]
- Wen, Z.; Ma, Z.; Mai, F.; Yan, F.; Yu, L.; Jin, M.; Sang, Y.; Bai, Y.; Cui, K.; Wu, K.; et al. Catalytic Ethanolysis of Microcrystalline Cellulose over a Sulfonated Hydrothermal Carbon Catalyst. Catal. Today 2020, 355, 272–279. [Google Scholar] [CrossRef]
- Pasquale, G.; Vázquez, P.; Romanelli, G.; Baronetti, G. Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catal. Commun. 2012, 18, 115–120. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Jia, Y.; Xu, G.; Chang, C.; Guo, Q.; Tao, H.; Zou, C.; Li, K. Experimental and theoretical studies on glucose conversion in ethanol solution to 5-ethoxymethylfurfural and ethyl levulinate catalyzed by a Brønsted acid. Phys. Chem. Chem. Phys. 2021, 23, 19729–19739. [Google Scholar] [CrossRef]
- Nandiwale, K.Y.; Niphadkar, P.S.; Deshpande, S.S.; Bokade, V.V. Esterification of renewable levulinic acid to ethyl levulinate biodiesel catalyzed by highly active and reusable desilicated H-ZSM-5. J. Chem. Technol. Biotechnol. 2014, 89, 1507–1515. [Google Scholar] [CrossRef]
- Sarve, D.T.; Singh, S.K.; Ekhe, J.D. Kinetic and mechanistic study of ethanol dehydration to diethyl ether over Ni-ZSM-5 in a closed batch reactor. React. Kinet. Mech. Catal. 2020, 131, 261–281. [Google Scholar] [CrossRef]
- de Oliveira, T.K.R.; Rosset, M.; Perez-Lopez, O.W. Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catal. Commun. 2018, 104, 32–36. [Google Scholar] [CrossRef]
- Varisli, D.; Dogu, T.; Dogu, G. Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chem. Eng. Sci. 2007, 62, 5349–5352. [Google Scholar] [CrossRef]
- Amine, M.; Awad, E.N.; Ibrahim, V.; Barakat, Y. Effect of ethyl acetate addition on phase stability, octane number and volatility criteria of ethanol-gasoline blends. Egypt. J. Pet. 2018, 27, 567–572. [Google Scholar] [CrossRef]
- Parray, R.A.; Bhattacharya, T.K. Effectiveness of Ethyl Acetate, 1-Octanol, and Soy Biodiesel in Stabilizing Ethanol–Diesel Fuel Blends and Performance of Compression Ignition Engine on Stabilized Fuel Blends. ACS Omega 2022, 7, 1648–1657. [Google Scholar] [CrossRef]
- Asakawa, M.; Shrotri, A.; Kobayashi, H.; Fukuoka, A. Solvent basicity controlled deformylation for the formation of furfural from glucose and fructose. Green Chem. 2019, 21, 6146–6153. [Google Scholar] [CrossRef]
- Phung, T.K.; Busca, G. Diethyl ether cracking and ethanol dehydration: Acid catalysis and reaction paths. Chem. Eng. J. 2015, 272, 92–101. [Google Scholar] [CrossRef]
Factor | Code | Level | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | +1 | +2 | ||
Temperature ‘T’ (°C) | A | 130 | 150 | 170 | 190 | 210 |
Corn cob ‘CC’ (wt. %) | B | 5 | 10 | 15 | 20 | 25 |
CC:H2SO4 (mass ratio) ‘CC:HS’ | C | 10:1 | 15:1 | 20:1 | 25:1 | 30:1 |
Time (hour) | D | 2 | 4 | 5 | 8 | 10 |
Biochemical Analysis (wt % Dry) | Elemental Analysis (wt % Dry Ash-Free) | Proximate Analysis (wt % Dry) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cellulose | Hemicellulose | Lignin | C | H | N | O | Volatile Matter | Fixed Carbon | Ash |
44.94 ±0.87 | 32.33 ±0.38 | 9.09 ±1.12 | 47.62 ±0.19 | 5.33 ±0.05 | 0.59 ±0.03 | 46.46 ±0.16 | 74.14 ±0.80 | 23.56 ±0.36 | 2.29 ±0.27 |
Run | Factors | Responses | |||||
---|---|---|---|---|---|---|---|
T (°C) | CC (wt %) | CC:HS | Time (hour) | EL Yield (wt %) | DEE Yield (wt %) | Sol Res (wt %) | |
1 | 130 | 15 | 20 | 6 | 1.31 | 3.17 | 71.86 |
2 | 170 | 15 | 20 | 6 | 29.31 | 29.07 | 32.33 |
3 | 190 | 20 | 25 | 8 | 21.82 | 12.98 | 35.67 |
4 | 170 | 25 | 20 | 6 | 15.91 | 19.86 | 54.77 |
5 | 150 | 10 | 25 | 8 | 11.63 | 4.19 | 39.32 |
6 | 170 | 15 | 30 | 6 | 7.73 | 11.72 | 36.73 |
7 | 150 | 20 | 15 | 8 | 15.24 | 19.21 | 61.21 |
8 | 150 | 10 | 15 | 8 | 13.01 | 7.95 | 61.08 |
9 | 170 | 15 | 10 | 6 | 6.83 | 38.37 | 39.88 |
10 | 150 | 10 | 15 | 4 | 2.94 | 6.34 | 17.56 |
11 | 170 | 15 | 20 | 6 | 29.27 | 29.07 | 32.33 |
12 | 190 | 10 | 15 | 8 | 8.83 | 30.22 | 37.56 |
13 | 170 | 15 | 20 | 6 | 29.22 | 29.12 | 32.33 |
14 | 190 | 10 | 15 | 4 | 13.18 | 23.21 | 32.70 |
15 | 170 | 15 | 20 | 6 | 29.21 | 29.04 | 32.33 |
16 | 170 | 15 | 20 | 2 | 6.54 | 6.66 | 34.97 |
17 | 170 | 15 | 20 | 10 | 21.72 | 7.63 | 48.01 |
18 | 190 | 20 | 25 | 4 | 14.51 | 2.85 | 69.45 |
19 | 150 | 20 | 25 | 4 | 1.68 | 9.34 | 67.33 |
20 | 170 | 15 | 20 | 6 | 29.22 | 29.07 | 32.33 |
21 | 150 | 20 | 15 | 4 | 6.91 | 8.28 | 54.27 |
22 | 190 | 20 | 15 | 8 | 9.74 | 25.04 | 50.56 |
23 | 150 | 20 | 25 | 8 | 11.61 | 6.72 | 55.21 |
24 | 190 | 20 | 15 | 4 | 10.11 | 22.74 | 58.11 |
25 | 210 | 15 | 20 | 6 | 14.53 | 20.35 | 66.06 |
26 | 170 | 5 | 20 | 6 | 18.32 | 17.45 | 10.55 |
27 | 190 | 10 | 25 | 4 | 17.41 | 10.02 | 33.32 |
28 | 170 | 15 | 20 | 6 | 29.26 | 29.13 | 32.33 |
29 | 150 | 10 | 25 | 4 | 2.52 | 2.52 | 21.46 |
30 | 190 | 10 | 25 | 8 | 23.16 | 12.10 | 34.35 |
Summary of the Analysis of Variance (ANOVA) for the Models | |||||||||
---|---|---|---|---|---|---|---|---|---|
Responses | F-Value | p-Value | Adequate Precision | Sum of Squares (SS) | R2 | Adjusted R2 | Predicted R2 | ||
Total | Residual | Model | |||||||
EL Yield (wt %), Y1 | 72.09 | <0.0001 | 26.61 | 2436.89 | 54.09 | 2382.81 | 0.98 | 0.9 | 0.93 |
DEE Yield (wt %) Y2 | 33.19 | <0.0001 | 18.47 | 3179.47 | 149.38 | 3030.09 | 0.95 | 0.92 | 0.82 |
Sol Res Yield (wt %) Y3 | 56.90 | <0.0001 | 28.79 | 7371.38 | 238.18 | 7133.21 | 0.97 | 0.95 | 0.91 |
Products Yields (wt %) | ||||||||
---|---|---|---|---|---|---|---|---|
Diethyl Ether (%) | Furfural (%) | Ethyl Levulinate (%) | Levulinic Acid (%) | HMF (%) | Ethyl Acetate (%) * | Ethyl Formate (%) * | Corn Cob Conversion (%) | EtOH Reacted (%) |
27.64 | 2.53 | 29.38 | 2.50 | 3.05 | 19.85 | 4.96 | 70.80 | 41.99 |
Ethanol-Dependent | Corn cob Dependent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahil, M.A.; Aboelazayem, O.; Wiseman, S.; Herar, N.; Dupont, V.; Alazzawi, A.; Tomlin, A.S.; Ross, A.B. Production and Optimisation of Oxygenated Biofuel Blend Components via the Ethanolysis of Lignocellulosic Biomass: A Response Surface Methodology. Energies 2025, 18, 2985. https://doi.org/10.3390/en18112985
Nahil MA, Aboelazayem O, Wiseman S, Herar N, Dupont V, Alazzawi A, Tomlin AS, Ross AB. Production and Optimisation of Oxygenated Biofuel Blend Components via the Ethanolysis of Lignocellulosic Biomass: A Response Surface Methodology. Energies. 2025; 18(11):2985. https://doi.org/10.3390/en18112985
Chicago/Turabian StyleNahil, Mohamad A., Omar Aboelazayem, Scott Wiseman, Neel Herar, Valerie Dupont, Ali Alazzawi, Alison S. Tomlin, and Andrew B. Ross. 2025. "Production and Optimisation of Oxygenated Biofuel Blend Components via the Ethanolysis of Lignocellulosic Biomass: A Response Surface Methodology" Energies 18, no. 11: 2985. https://doi.org/10.3390/en18112985
APA StyleNahil, M. A., Aboelazayem, O., Wiseman, S., Herar, N., Dupont, V., Alazzawi, A., Tomlin, A. S., & Ross, A. B. (2025). Production and Optimisation of Oxygenated Biofuel Blend Components via the Ethanolysis of Lignocellulosic Biomass: A Response Surface Methodology. Energies, 18(11), 2985. https://doi.org/10.3390/en18112985