Experimental Study and Performance Analysis of a Recuperative Supercritical CO2 Brayton Cycle
Abstract
1. Introduction
2. Experimental Setup and Methodology
2.1. Experimental Rig Description
2.2. Experimental Methodology
2.2.1. Determination of Steady-State Conditions
2.2.2. Uncertainty Analysis
2.2.3. Controllable System Variables
2.2.4. Steady-State Experimental Condition
3. Results and Discussion
3.1. Cooling System Adjustment
3.2. Working Fluid Flow Rate Analysis
3.3. Pressure Analysis
3.4. Temperature Analysis
- (a)
- High-Temperature Points
- (b)
- Low-Temperature Points
- (c)
- Intermediate-Temperature Points
3.5. Heat Exchange Analysis
3.6. Expansion Valve Related Calculations
3.7. Validation of Experimental Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | |
HP | high pressure |
LP | low pressure |
S-CO2 | supercritical carbon dioxide |
Symbols | |
temperature (°C) | |
P | pressure (MPa) |
isentropic efficiency of expansion valve | |
electric heater heat input (kJ/s) | |
potential to realize work (kJ/s) | |
Subscripts | |
H | high temperature |
L | low temperature |
in | inlet |
out | outlet |
R1 | Regeneratator 1 |
R2 | Regeneratator 2 |
w | cooling water |
References
- Dostal, V.; Hejzlar, P.; Driscoll, M.J. The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles. Nucl. Technol. 2006, 154, 283–301. [Google Scholar] [CrossRef]
- Wright, S.A.; Radel, R.F.; Vernon, M.E.; Rochau, G.E.; Pickard, P.S. Operation and Analysis of a Supercritical CO2 Brayton Cycle; SNL: Albuquerque, NM, USA, 2010; p. 101. [Google Scholar]
- Conboy, T.; Wright, S.; Pasch, J.; Fleming, D.; Rochau, G.; Fuller, R. Performance characteristics of an operating supercritical CO2 Brayton cycle. J. Eng. Gas Turbines Power 2012, 134, 111703. [Google Scholar] [CrossRef]
- Pasch, J.; Conboy, T.; Fleming, D.; Rochau, G. Supercritical CO2 Recompression Brayton Cycle: Completed Assembly Description; Sandia National Laboratories (SNL): Albuquerque, NM, USA, 2012. [Google Scholar]
- Conboy, T.; Pasch, J.; Fleming, D. Control of a supercritical CO2 recompression Brayton cycle demonstration loop. J. Eng. Gas Turbines Power 2013, 135, 111701. [Google Scholar] [CrossRef]
- Moore, J.; Brun, K.; Evans, N.; Bueno, P.; Kalra, C. Development of a 1 MWe supercritical CO2 Brayton cycle test loop. In Proceedings of the 4th International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 9–10 September 2014. [Google Scholar]
- Cho, J.; Choi, M.; Baik, Y.-J.; Lee, G.; Ra, H.-S.; Kim, B.; Kim, M. Development of the turbomachinery for the supercritical carbon dioxide power cycle. Int. J. Energy Res. 2016, 40, 587–599. [Google Scholar] [CrossRef]
- Cho, J.; Shin, H.; Cho, J.; Kang, Y.-S.; Ra, H.-S.; Roh, C.; Lee, B.; Lee, G.; Kim, B.; Baik, Y.-J. Preliminary experimental study of a supercritical CO2 power cycle test loop with a high-speed turbogenerator using R134a under similarity conditions. Front. Energy 2017, 11, 452–460. [Google Scholar] [CrossRef]
- Cho, J.; Shin, H.; Cho, J.; Ra, H.-S.; Roh, C.; Lee, B.; Lee, G.; Baik, Y.-J. Development of the supercritical carbon dioxide power cycle experimental loop with a turbo-generator. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Cho, J.; Shin, H.; Cho, J.; Ra, H.-S.; Roh, C.; Lee, B.; Lee, G.; Choi, B.; Baik, Y.-J. Preliminary power generating operation of the supercritical carbon dioxide power cycle experimental test loop with a turbo-generator. In Proceedings of the 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, PA, USA, 27–29 March 2018. [Google Scholar]
- Li, H.; Zhang, Y.; Yao, M.; Yang Yu Han, W.; Bai, W. Design assessment of a 5 MW fossilfired supercritical CO2 power cycle pilot loop. Energy 2019, 174, 792–804. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Gao, W.; Yao, M. Preliminary design study on a multi-megawatts Fossil-based supercritical CO2 recompression and reheat integral test facility. In Proceedings of the 5th International Symposium—Supercritical CO2 Power Cycles, San Antonio, TX, USA, 28–31 March 2016; p. 17. [Google Scholar]
- Marion, J.; Kutin, M.; McClung, A.; Mortzheim, J.; Ames, R. The STEP 10 MWe sCO2 pilot plant demonstration. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2019. [Google Scholar]
- Li, X.; Shu, G.; Tian, H.; Shi, L.; Huang, G.; Chen, T.; Liu, P. Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery. Energy 2017, 140, 696–707. [Google Scholar] [CrossRef]
- Shi, L.; Shu, G.; Tian, H.; Huang, G.; Li, X.; Chen, T.; Li, L. Experimental investigation of a CO2-based Transcritical Rankine Cycle (CTRC) for exhaust gas recovery. Energy 2018, 165, 1149–1159. [Google Scholar] [CrossRef]
- Shi, L.; Shu, G.; Tian, H.; Huang, G.; Chen, T.; Li, X.; Li, D. Experimental comparison between four CO2-based transcritical Rankine cycle (CTRC) systems for engine waste heat recovery. Energy Convers. Manag. 2017, 150, 159–171. [Google Scholar] [CrossRef]
- Liu, P.; Shu, G.; Tian, H.; Feng, W.; Shi, L.; Xu, Z. Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in Organic Rankine Cycle for waste heat recovery from diesel engines. Energy Convers. Manag. 2019, 198, 111776. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, K.; Li, X.; Guo, J.; Huai, X. Thermodynamic analysis and equilibration response time prediction of recuperator in the SCO2 Brayton cycle. Energy 2024, 308, 132807. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Y.; Wang, J.; Liu, R.-L.; Zang, J.-G. Experimental study of thermal-hydraulic performance of a printed circuit heat exchanger with straight channels. Int. J. Heat Mass Transf. 2020, 160, 120109. [Google Scholar] [CrossRef]
- Xing, K.; Xiao, G.; Xu, H.; Ji, Y. Experimental and numerical investigation on the dynamic characteristics of a lab-scale transcritical CO2 loop. Energy Convers. Manag. 2021, 245, 114384. [Google Scholar] [CrossRef]
- Xing, K.; Ji, Y.; Wang, Z.; Wang, M.; Liu, Y.; Xu, H.; Xiao, G. A potentially non-contact monitor method for CO2 at the pseudo-critical region using infrared spectrometer. J. CO2 Util. 2022, 56, 101842. [Google Scholar] [CrossRef]
Measurement Parameter | Measurement Location | Instrument Type | Measurement Range | Accuracy |
---|---|---|---|---|
Flow rate | Plunger pump inlet | Coriolis flow meter | 0–220 kg/h | 0.2% |
Flow rate | Chiller outlet | Electromagnetic flow meter | 0–1.4 m3/h | 0.2% |
Temperature | Measurement points 1–10 | PT100 sensor | −50–400 °C | Class A |
Pressure | Measurement points 1–10 | Pressure sensor | 0–100 MPa | 0.3% |
Measured or Calculated Parameter | Uncertainty |
---|---|
Temperature | ±0.5% |
Pressure | ±10 kPa |
Primary cycle flow rate | ±0.2% |
Recuperator heat exchange rate | ±3.56% |
Variable | Control Panel Adjustment Range | Corresponding Adjustment Range | Minimum Adjustment Increment | Corresponding Minimum Adjustment |
---|---|---|---|---|
Compressor frequency | 0~50 Hz | 0~50 Hz | 1 Hz | 1 Hz |
expansion Valve opening | 0~100% | 0~100% | 0.1% | 0.1% |
Electric heating power | 0~100% | 0~15 kW | 0.1% | Nonlinear relation between increment and adjustment value |
Cooling water pump flow rate | 0~60% | 0~9.2 L/min | 0.1% | Measured by cooling water flow meter (accuracy: 0.1 L/min) |
Test Phase | Control Panel Display Values | |||
---|---|---|---|---|
Compressor Frequency | Expansion Valve Opening | Electric Heating Power | Cooling Water Flow Rate | |
Steady-state experiment | 35 Hz | 55% | 58% | 11% |
Adjusting compressor frequency | (35 Hz → 34 Hz → 33 Hz) | 55% | 58% | 11% |
Adjusting expansion valve opening | 35 Hz | (55% → 54% → 53% → 52%) | 58% | 11% |
Adjusting electric heating power | 35 Hz | 55% | (58% → 55% → 52% → 50% → 48% → 45%) | 11% |
Adjusting cooling water flow rate | 35 Hz | 55% | 58% | (11% → 12% → 13%) |
Temperature (°C) | Pressure (MPa) | Compressor Frequency (Hz) | Expansion Valve Opening (%) | Electric Heating Power (%) | Cooling Water Pump Flow Rate (%) |
---|---|---|---|---|---|
70 | 9 | 35 | 49.5 | 48 | 18 |
70 | 10 | 35 | 43 | 40 | 6 |
70 | 11 | 35 | 38 | 36 | 5.7 |
85 | 9 | 35 | 53 | 49.8 | 48 |
85 | 10 | 35 | 45 | 38.3 | 5.8 |
85 | 11 | 33 | 43 | 34.5 | 5.2 |
100 | 9 | 35 | 67.5 | 59 | 65 |
100 | 12 | 35 | 44.5 | 46.5 | 9 |
100 | 13 | 35 | 42.5 | 43 | 6.5 |
100 | 14 | 40 | 37 | 39 | 5.3 |
150 | 9 | 33 | 69 | 60 | 65 |
150 | 12 | 38 | 50 | 48.2 | 7.2 |
150 | 13 | 38 | 49 | 48.3 | 6.9 |
Expansion Valve Inlet Pressure (MPa) | Compressor Outlet Pressure (MPa) | Low-Temperature Recuperator High-Pressure Side Outlet Pressure (MPa) | High-Temperature Recuperator High-Pressure Side Outlet Pressure (MPa) | Electric Heater Outlet Pressure (MPa) |
---|---|---|---|---|
9 | 9.127 ± 0.01 | 9.037 ± 0.01 | 9.033 ± 0.01 | 9.046 ± 0.01 |
12 | 12.109 ± 0.02 | 12.037 ± 0.02 | 12.006 ± 0.01 | 12.043 ± 0.01 |
13 | 13.134 ± 0.04 | 13.066 ± 0.03 | 13.052 ± 0.03 | 13.092 ± 0.03 |
Expansion Valve Inlet Pressure (MPa) | Expansion Valve Outlet Pressure (MPa) | High-Temperature Recuperator Low-Pressure Side Outlet Pressure (MPa) | Low-Temperature Recuperator Low-Pressure Side Outlet Pressure (MPa) | Condenser Outlet Pressure (MPa) |
---|---|---|---|---|
9 | 7.387 ± 0.01 | 7.385 ± 0.01 | 6.055 ± 0.01 | 6.052 ± 0.01 |
12 | 8.145 ± 0.01 | 8.138 ± 0.01 | 7.619 ± 0.01 | 7.627 ± 0.01 |
13 | 8.730 ± 0.03 | 8.715 ± 0.035 | 8.349 ± 0.04 | 8.361 ± 0.04 |
Cycle Parameters | Expansion Valve Inlet Pressure (MPa) | ||
---|---|---|---|
9 | 12 | 13 | |
Isentropic Efficiency of Expansion Valve | 0.372 | 0.210 | 0.143 |
Electric Heater Heat Input /(kJ/s) | 7.571 | 3.698 | 3.011 |
Potential to Realize Work /(kJ/s) | 0.219 | 0.140 | 0.095 |
Simulation Working Condition | System Parameters | Experimental Value | Simulation Value | Error |
---|---|---|---|---|
Cycle system Maximum temperature: 150 °C Maximum pressure: 12 MPa | Piston pump inlet pressure P1 (Pa) | 7.63 × 106 | 7.69 × 106 | 0.78% |
Piston pump inlet temperature T1 (K) | 303.75 | 305.98 | 0.73% | |
Piston pump outlet pressure P2 (Pa) | 1.21 × 107 | 1.22 × 107 | 0.71% | |
Piston pump outlet temperature T2 (K) | 315.14 | 322.41 | 2.31% | |
Low-temperature heat exchanger low-temperature side outlet pressure P3 (Pa) | 1.20 × 107 | 1.20 × 107 | 0.31% | |
Low-temperature heat exchanger low-temperature side outlet temperature T3 (K) | 328.70 | 331.37 | 0.81% | |
Electric heater inlet pressure P4 (Pa) | 1.20 × 107 | 1.20 × 107 | 0.05% | |
Electric heater inlet temperature T4 (K) | 340.46 | 342.98 | 0.74% | |
Electric heater outlet pressure P5 (Pa) | 1.20 × 107 | 1.20 × 107 | 0.36% | |
Electric heater outlet temperature T5 (K) | 408.35 | 408.21 | 0.03% | |
High-temperature heat exchanger high-temperature side outlet pressure P7 (Pa) | 8.14 × 106 | 8.09 × 106 | 0.58% | |
High-temperature heat exchanger high-temperature side outlet temperature T7 (K) | 351.57 | 353.09 | 0.43% | |
Condenser inlet pressure P8 (Pa) | 7.62 × 106 | 7.69 × 106 | 0.93% | |
Condenser inlet temperature T8 (K) | 315.94 | 319.29 | 1.06% | |
Main cycle mass flow rate (kg/s) | 0.029 | 0.029 | 0.76% | |
Cooling water mass flow rate (kg/s) | 0.037 | 0.037 | 0.33% | |
Cooling water inlet temperature (K) | 285.15 | 288.37 | 1.13% | |
Cooling water outlet temperature (K) | 313.04 | 306.65 | 2.04% | |
Electric heater power (W) | 3708.00 | 3268.50 | 11.85% | |
Condenser power (W) | 3711.60 | 3067.50 | 17.35% | |
High-temperature heat exchanger power (W) | 1399.60 | 1173.40 | 16.16% | |
Low-temperature heat exchanger power (W) | 1723.20 | 1673.50 | 2.88% | |
Piston pump power (W) | 300.00 | 252.12 | 15.96% | |
Cycle system Maximum temperature: 150 °C Maximum pressure: 13 MPa | Piston pump inlet pressure P1 (Pa) | 8.36 × 106 | 8.41 × 106 | 0.62% |
Piston pump inlet temperature T1 (K) | 308.06 | 308.19 | 0.04% | |
Piston pump outlet pressure P2 (Pa) | 1.32 × 107 | 1.33 × 107 | 1.14% | |
Piston pump outlet temperature T2 (K) | 320.88 | 322.94 | 0.64% | |
Low-temperature heat exchanger low-temperature side outlet pressure P3 (Pa) | 1.31 × 107 | 1.31 × 107 | 0.20% | |
Low-temperature heat exchanger low-temperature side outlet temperature T3 (K) | 333.86 | 338.61 | 1.42% | |
Electric heater inlet pressure P4 (Pa) | 1.31 × 107 | 1.31 × 107 | 0.30% | |
Electric heater inlet temperature T4 (K) | 344.69 | 349.29 | 1.33% | |
Electric heater outlet pressure P5 (Pa) | 1.31 × 107 | 1.31 × 107 | 0.00% | |
Electric heater outlet temperature T5 (K) | 406.29 | 405.45 | 0.21% | |
High-temperature heat exchanger high-temperature side outlet pressure P7 (Pa) | 8.71 × 106 | 8.73 × 106 | 0.17% | |
High-temperature heat exchanger high-temperature side outlet temperature T7 (K) | 353.38 | 356.97 | 1.02% | |
Condenser inlet pressure P8 (Pa) | 8.35 × 106 | 8.73 × 106 | 4.55% | |
Condenser inlet temperature T8 (K) | 321.39 | 325.07 | 1.15% | |
Main cycle mass flow rate (kg/s) | 0.025 | 0.0294 | 18.63% | |
Cooling water mass flow rate (kg/s) | 0.028 | 2.80 × 10−2 | 0.27% | |
Cooling water inlet temperature (K) | 285.15 | 289.28 | 1.45% | |
Cooling water outlet temperature (K) | 318.60 | 313.54 | 1.59% | |
Electric heater power (W) | 3023.63 | 2910.10 | 3.75% | |
Condenser power (W) | 2790.60 | 3111.9 | 11.51% | |
High-temperature heat exchanger power (W) | 1029.40 | 945.68 | 8.13% | |
Low-temperature heat exchanger power (W) | 1323.4 | 1564.6 | 18.23% | |
Piston pump power (W) | 83.93 | 97.68 | 16.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Ke, J.; Liu, M.; Ming, P.; Yu, G. Experimental Study and Performance Analysis of a Recuperative Supercritical CO2 Brayton Cycle. Energies 2025, 18, 2986. https://doi.org/10.3390/en18112986
Zhang S, Ke J, Liu M, Ming P, Yu G. Experimental Study and Performance Analysis of a Recuperative Supercritical CO2 Brayton Cycle. Energies. 2025; 18(11):2986. https://doi.org/10.3390/en18112986
Chicago/Turabian StyleZhang, Shucheng, Juntao Ke, Min Liu, Pingjian Ming, and Guopeng Yu. 2025. "Experimental Study and Performance Analysis of a Recuperative Supercritical CO2 Brayton Cycle" Energies 18, no. 11: 2986. https://doi.org/10.3390/en18112986
APA StyleZhang, S., Ke, J., Liu, M., Ming, P., & Yu, G. (2025). Experimental Study and Performance Analysis of a Recuperative Supercritical CO2 Brayton Cycle. Energies, 18(11), 2986. https://doi.org/10.3390/en18112986