Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching
Abstract
:1. Introduction
2. Design Considerations
2.1. Manufacturing Process
2.2. Prototype Working Principle
2.3. System Model
3. Prototype Design
3.1. Prototype A
3.2. Prototype B
3.3. Prototype C
3.4. Release of the Pressure Sensor Prototypes
4. Experimental Results
4.1. Experimental Setup
4.2. Resonance Frequencies of the Prototypes
4.3. Pressure Measurements
4.4. Temperature-Drift Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jang, M.; Yun, K.S. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes. Micro Nano Syst. Lett. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Herrera-May, A.L.; López-Huerta, F.; Aguilera-Cortés, L.A. MEMS lorentz force magnetometers. In High Sensitivity Magnetometers; Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S., Eds.; High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation; Springer: Cham, Switzerland, 2017; Volume 19, pp. 253–277. [Google Scholar] [CrossRef]
- Lee, W.; Hall, N.A.; Zhou, Z.; Degertekin, F.L. Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 643–651. [Google Scholar] [CrossRef]
- Barrettino, D.; Graf, M.; Taschini, S.; Hafizovic, S.; Hagleitner, C.; Hierlemann, A. CMOS monolithic metal-oxide gas sensor microsystems. IEEE Sens. J. 2006, 6, 276–286. [Google Scholar] [CrossRef]
- Raman, J.; Cretu, E.; Rombouts, P.; Weyten, L. A closed-loop digitally controlled MEMS gyroscope with unconstrained sigma-delta force-feedback. IEEE Sens. J. 2009, 9, 297–305. [Google Scholar] [CrossRef]
- Chen, W.C.; Fang, W.; Li, S.S. High-Q integrated CMOS-MEMS resonators with deep-submicrometer gaps and quasi-linear frequency tuning. J. Microelectromech. Syst. 2012, 21, 688–701. [Google Scholar] [CrossRef]
- Silicon Labs. Available online: www.silabs.com (accessed on 5 March 2020).
- IHP Microelectronics. Available online: www.ihp-microelectronics.com (accessed on 12 September 2020).
- Sánchez-Chiva, J.M.; Valle, J.; Fernández, D.; Madrenas, J. A Mixed-Signal Control System for Lorentz-Force Resonant MEMS Magnetometers. IEEE Sens. J. 2019, 19, 7479–7488. [Google Scholar] [CrossRef] [Green Version]
- Banerji, S.; Fernández, D.; Madrenas, J. Characterization of CMOS-MEMS Resonant Pressure Sensors. IEEE Sens. J. 2017, 17, 6653–6661. [Google Scholar] [CrossRef] [Green Version]
- Michalik, P.; Sánchez-Chiva, J.M.; Fernández, D.; Madrenas, J. CMOS BEOL-embedded z-axis accelerometer. Electron. Lett. 2015, 51, 865–867. [Google Scholar] [CrossRef] [Green Version]
- Michalik, P.; Sánchez-Chiva, J.M.; Fernández, D.; Madrenas, J. CMOS BEOL-embedded lateral accelerometer. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Michalik, P.; Fernández, D.; Madrenas, J. Integrated Circuit Comprising Multi-Layer Micromechanical Structures with Improved Mass and Reliability by Using Modified Vias and a Method to Obtain Thereof. Patent Application EP 15,164,506, 21 April 2015. [Google Scholar]
- Fernández, D.; Ricart, J.; Madrenas, J. Experiments on the Release of CMOS-Micromachined Metal Layers. J. Sens. 2010, 2010, 937301. [Google Scholar] [CrossRef]
- Uranga, A.; Verd, J.; Barniol, N. CMOS-MEMS resonators: From devices to applications. Microelectron. Eng. 2015, 132, 58–73. [Google Scholar] [CrossRef]
- Dai, C.L.; Kuo, C.H.; Chiang, M.C. Microelectromechanical resonator manufactured using CMOS-MEMS technique. Microelectron. J. 2007, 38, 672–677. [Google Scholar] [CrossRef]
- Brand, O. Microsensor integration into systems-on-chip. Proc. IEEE 2006, 94, 1160–1175. [Google Scholar] [CrossRef]
- Baltes, H.; Brand, O.; Hierlemann, A.; Lange, D.; Hagleitner, C. CMOS MEMS—Present and future. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 24 January 2002; pp. 459–466. [Google Scholar] [CrossRef] [Green Version]
- Li, M.H.; Chen, C.Y.; Li, C.S.; Chin, C.H.; Li, S.S. A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator. J. Microelectromech. Syst. 2015, 24, 360–372. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, D.; Wang, J.; Li, Y.; Chen, J. A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. Sensors 2014, 14, 24244–24257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, J.; Lu, M.S. Design and Characterization of a CMOS MEMS Capacitive Squeeze-Film Pressure Sensor. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, 27–31 January 2019; pp. 755–758. [Google Scholar] [CrossRef]
- Van Beek, J.T.M.; Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 2011, 22, 13001. [Google Scholar] [CrossRef]
- Banerji, S.; Michalik, P.; Fernández, D.; Madrenas, J.; Mola, A.; Montanyà, J. CMOS-MEMS resonant pressure sensors: Optimization and validation through comparative analysis. Microsyst. Technol. 2017, 23, 3909–3925. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, J.; Luo, Z.; Chen, D.; Chen, J. A resonant pressure microsensor capable of self-temperature compensation. Sensors 2015, 15, 10048–10058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinnell, P.K.; Craddock, R. Advances in Silicon Resonant Pressure Transducers. Procedia Chem. 2009, 1, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Yi, Y.B.; Pourkamali, S. Thermal-piezoresistive resonators and self-sustained oscillators for gas recognition and pressure sensing. IEEE Sens. J. 2013, 13, 2863–2872. [Google Scholar] [CrossRef]
- Banerji, S. Development of System-on-Chip CMOS-MEMS Pressure Sensors. Ph.D. Thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, 2017. [Google Scholar]
- Pandey, A.K.; Pratap, R.; Chau, F.S. Effect of pressure on fluid damping in MEMS torsional resonators with flow ranging from continuum to molecular regime. Exp. Mech. 2008, 48, 91–106. [Google Scholar] [CrossRef]
- Rocha, L.A. Dynamics and Nonlinearities of the Electro-Mechanical Coupling in Inertial MEMS. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2005. [Google Scholar]
- Mitsuya, Y. Modified reynolds equation for ultra-thin film gas lubrication using 1.5-Order slip-flow model and considering surface accommodation coefficient. J. Tribol. 1993, 115, 289–294. [Google Scholar] [CrossRef]
- Li, G.X.; Hughes, H.G. Review of viscous damping in micromachined structures. In Micromachined Devices and Components VI; Peeters, E., Paul, O., Eds.; SPIE: Bellingham, WA, USA, 2000; Volume 4176, pp. 30–46. [Google Scholar] [CrossRef]
- Cieplak, M.; Koplik, J.; Bavanar, J.R. Molecular dynamics of flows in the Knudsen regime. Phys. A Stat. Mech. Appl. 2000, 287, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Gad-El-Hak, M. The fluid mechanics of microdevices—The freeman scholar lecture. J. Fluids Eng. Trans. ASME 1999, 121, 5–33. [Google Scholar] [CrossRef]
- Banerji, S.; Fernandez, D.; Madrenas, J. A Comprehensive High-Level Model for CMOS-MEMS Resonators. IEEE Sens. J. 2018, 18, 2632–2640. [Google Scholar] [CrossRef]
- Clark, J.V.; Misiats, O.; Sayed, S. Electrical Control of Effective Mass, Damping, and Stiffness of MEMS Devices. IEEE Sens. J. 2017, 17, 1363–1372. [Google Scholar] [CrossRef]
- Dai, C.L. A maskless wet etching silicon dioxide post-CMOS process and its application. Microelectron. Eng. 2006, 83, 2543–2550. [Google Scholar] [CrossRef]
- Valle, J.; Fernández, D.; Madrenas, J.; Barrachina, L. Curvature of BEOL Cantilevers in CMOS-MEMS Processes. J. Microelectromech. Syst. 2017, 26, 895–909. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Jan, M.T.; Ahmad, F.; Hamid, N.H.B.; Md Khir, M.H.B.; Ashraf, K.; Shoaib, M. Temperature dependent Young’s modulus and quality factor of CMOS-MEMS resonator: Modelling and experimental approach. Microelectron. Reliab. 2016, 57, 64–70. [Google Scholar] [CrossRef]
Release Time | Prototype A | Prototype B | Prototype C | Prototype A |
---|---|---|---|---|
30 min | 135 kHz | 109 kHz | 166 kHz | 135 kHz |
40 min | 142 kHz | 113 kHz | 171 kHz | 146 kHz |
50 min | 143 kHz | 110 kHz | 164 kHz | 130 kHz |
60 min | 132 kHz | 108 kHz | 166 kHz | - |
70 min | 126 kHz | 105 kHz | 158 kHz | 121 kHz |
Symbol | Parameters | 250 nm [10] | Prototype A, B and C | Units |
---|---|---|---|---|
W | Width | 140 | 146.22 | m |
L | Length | 140 | 146.22 | m |
Perforation Length | 18 | 17.56 | m | |
Perforations number | 36 (6 × 6) | 36 (6 × 6) | m | |
s | Spacing between two perforations | 4 | 5.86 | m |
Plate area | 7936 | 10,256 | m | |
Release time | 100 | 30 | min | |
Air gap | 2.5 | 2.23 | m | |
C | Capacitance | 28 | 72 | fF |
Symbol | Parameters | 250 nm [10] | Prototype A | Prototype B | Prototype C | Units |
---|---|---|---|---|---|---|
Thickness | 8 | 3.38 | 4.76 | 2 | m | |
m | Effective mass | 4.12 × | 1.53 × | 2.52 × | 5.5 × | kg |
Q | Quality factor | 61.87 | 87.65 | 67.63 | 37.90 | ratio |
Resonance frequency | 100 | 135 | 109 | 166 | kHz | |
b | Damping coefficient | 4.2 × | 1.48 × | 2.55 × | 1.51 × | Ns/m |
Curvature capacitance | - | 1.226 × | 1.53 × | 3.6 × | fF | |
Spring coefficient | 177.24 | 110.08 | 118.2 | 59.8 | N/m |
Parameters | [19] | This Work | ||
---|---|---|---|---|
Resonator type | Capacitive | Capacitive/Thermal | Capacitive | Capacitive |
Process | SOI | CMOS | CMOS | CMOS |
Release process | DRIE front side and Backside wet SiO etching | DRIE and isotropic Si etching | backside DRIE and wet metal etching | Wet SiO etching |
Technology | - | 0.35 m | 0.35 m | 0.18 m |
Gap h | - | 0.6 m | 0.64 m | 2.23 m |
Materials | Si | SiO, Al, W | SiO, Al, W | SiO, Al, W |
Mode shape | Square diaphragm with “H” type beams | Double-ended tuning fork | Square plate | Square plate |
Sensitivity | 89.86 Hz/kPa | - | 793 Hz/kPa | −0.33%Q/kPa −3% Q/kPa −303%Q/kPa |
Resonant frequency | - | 1.2 MHz | 87.3 kHz | 135 kHz |
Environment | Vacuum | Barometer, different air pressures | Barometer, different air pressures | Barometer, different air pressures |
Quality factor | Beyond 22,000 | 3000 | ≈60/≈4 | 1200/89 |
DC BIAS | - | 45V | 30 V | 15V |
Area m | Diaphragm 5100 × 5100 Beams 1400 × 20 | 400 × 330 | 200 × 200 | 142.6 × 142.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata-Hernandez, D.; Fernández, D.; Banerji, S.; Madrenas, J. Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching. Sensors 2020, 20, 6037. https://doi.org/10.3390/s20216037
Mata-Hernandez D, Fernández D, Banerji S, Madrenas J. Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching. Sensors. 2020; 20(21):6037. https://doi.org/10.3390/s20216037
Chicago/Turabian StyleMata-Hernandez, Diana, Daniel Fernández, Saoni Banerji, and Jordi Madrenas. 2020. "Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching" Sensors 20, no. 21: 6037. https://doi.org/10.3390/s20216037
APA StyleMata-Hernandez, D., Fernández, D., Banerji, S., & Madrenas, J. (2020). Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching. Sensors, 20(21), 6037. https://doi.org/10.3390/s20216037