Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching
Abstract
1. Introduction
2. Design Considerations
2.1. Manufacturing Process
2.2. Prototype Working Principle
2.3. System Model
3. Prototype Design
3.1. Prototype A
3.2. Prototype B
3.3. Prototype C
3.4. Release of the Pressure Sensor Prototypes
4. Experimental Results
4.1. Experimental Setup
4.2. Resonance Frequencies of the Prototypes
4.3. Pressure Measurements
4.4. Temperature-Drift Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jang, M.; Yun, K.S. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes. Micro Nano Syst. Lett. 2017, 5, 4. [Google Scholar] [CrossRef]
- Herrera-May, A.L.; López-Huerta, F.; Aguilera-Cortés, L.A. MEMS lorentz force magnetometers. In High Sensitivity Magnetometers; Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S., Eds.; High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation; Springer: Cham, Switzerland, 2017; Volume 19, pp. 253–277. [Google Scholar] [CrossRef]
- Lee, W.; Hall, N.A.; Zhou, Z.; Degertekin, F.L. Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 643–651. [Google Scholar] [CrossRef]
- Barrettino, D.; Graf, M.; Taschini, S.; Hafizovic, S.; Hagleitner, C.; Hierlemann, A. CMOS monolithic metal-oxide gas sensor microsystems. IEEE Sens. J. 2006, 6, 276–286. [Google Scholar] [CrossRef]
- Raman, J.; Cretu, E.; Rombouts, P.; Weyten, L. A closed-loop digitally controlled MEMS gyroscope with unconstrained sigma-delta force-feedback. IEEE Sens. J. 2009, 9, 297–305. [Google Scholar] [CrossRef]
- Chen, W.C.; Fang, W.; Li, S.S. High-Q integrated CMOS-MEMS resonators with deep-submicrometer gaps and quasi-linear frequency tuning. J. Microelectromech. Syst. 2012, 21, 688–701. [Google Scholar] [CrossRef]
- Silicon Labs. Available online: www.silabs.com (accessed on 5 March 2020).
- IHP Microelectronics. Available online: www.ihp-microelectronics.com (accessed on 12 September 2020).
- Sánchez-Chiva, J.M.; Valle, J.; Fernández, D.; Madrenas, J. A Mixed-Signal Control System for Lorentz-Force Resonant MEMS Magnetometers. IEEE Sens. J. 2019, 19, 7479–7488. [Google Scholar] [CrossRef]
- Banerji, S.; Fernández, D.; Madrenas, J. Characterization of CMOS-MEMS Resonant Pressure Sensors. IEEE Sens. J. 2017, 17, 6653–6661. [Google Scholar] [CrossRef]
- Michalik, P.; Sánchez-Chiva, J.M.; Fernández, D.; Madrenas, J. CMOS BEOL-embedded z-axis accelerometer. Electron. Lett. 2015, 51, 865–867. [Google Scholar] [CrossRef]
- Michalik, P.; Sánchez-Chiva, J.M.; Fernández, D.; Madrenas, J. CMOS BEOL-embedded lateral accelerometer. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Michalik, P.; Fernández, D.; Madrenas, J. Integrated Circuit Comprising Multi-Layer Micromechanical Structures with Improved Mass and Reliability by Using Modified Vias and a Method to Obtain Thereof. Patent Application EP 15,164,506, 21 April 2015. [Google Scholar]
- Fernández, D.; Ricart, J.; Madrenas, J. Experiments on the Release of CMOS-Micromachined Metal Layers. J. Sens. 2010, 2010, 937301. [Google Scholar] [CrossRef]
- Uranga, A.; Verd, J.; Barniol, N. CMOS-MEMS resonators: From devices to applications. Microelectron. Eng. 2015, 132, 58–73. [Google Scholar] [CrossRef]
- Dai, C.L.; Kuo, C.H.; Chiang, M.C. Microelectromechanical resonator manufactured using CMOS-MEMS technique. Microelectron. J. 2007, 38, 672–677. [Google Scholar] [CrossRef]
- Brand, O. Microsensor integration into systems-on-chip. Proc. IEEE 2006, 94, 1160–1175. [Google Scholar] [CrossRef]
- Baltes, H.; Brand, O.; Hierlemann, A.; Lange, D.; Hagleitner, C. CMOS MEMS—Present and future. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 24 January 2002; pp. 459–466. [Google Scholar] [CrossRef]
- Li, M.H.; Chen, C.Y.; Li, C.S.; Chin, C.H.; Li, S.S. A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator. J. Microelectromech. Syst. 2015, 24, 360–372. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, D.; Wang, J.; Li, Y.; Chen, J. A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. Sensors 2014, 14, 24244–24257. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.; Lu, M.S. Design and Characterization of a CMOS MEMS Capacitive Squeeze-Film Pressure Sensor. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea, 27–31 January 2019; pp. 755–758. [Google Scholar] [CrossRef]
- Van Beek, J.T.M.; Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 2011, 22, 13001. [Google Scholar] [CrossRef]
- Banerji, S.; Michalik, P.; Fernández, D.; Madrenas, J.; Mola, A.; Montanyà, J. CMOS-MEMS resonant pressure sensors: Optimization and validation through comparative analysis. Microsyst. Technol. 2017, 23, 3909–3925. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Luo, Z.; Chen, D.; Chen, J. A resonant pressure microsensor capable of self-temperature compensation. Sensors 2015, 15, 10048–10058. [Google Scholar] [CrossRef] [PubMed]
- Kinnell, P.K.; Craddock, R. Advances in Silicon Resonant Pressure Transducers. Procedia Chem. 2009, 1, 104–107. [Google Scholar] [CrossRef]
- Guo, X.; Yi, Y.B.; Pourkamali, S. Thermal-piezoresistive resonators and self-sustained oscillators for gas recognition and pressure sensing. IEEE Sens. J. 2013, 13, 2863–2872. [Google Scholar] [CrossRef]
- Banerji, S. Development of System-on-Chip CMOS-MEMS Pressure Sensors. Ph.D. Thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, 2017. [Google Scholar]
- Pandey, A.K.; Pratap, R.; Chau, F.S. Effect of pressure on fluid damping in MEMS torsional resonators with flow ranging from continuum to molecular regime. Exp. Mech. 2008, 48, 91–106. [Google Scholar] [CrossRef]
- Rocha, L.A. Dynamics and Nonlinearities of the Electro-Mechanical Coupling in Inertial MEMS. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2005. [Google Scholar]
- Mitsuya, Y. Modified reynolds equation for ultra-thin film gas lubrication using 1.5-Order slip-flow model and considering surface accommodation coefficient. J. Tribol. 1993, 115, 289–294. [Google Scholar] [CrossRef]
- Li, G.X.; Hughes, H.G. Review of viscous damping in micromachined structures. In Micromachined Devices and Components VI; Peeters, E., Paul, O., Eds.; SPIE: Bellingham, WA, USA, 2000; Volume 4176, pp. 30–46. [Google Scholar] [CrossRef]
- Cieplak, M.; Koplik, J.; Bavanar, J.R. Molecular dynamics of flows in the Knudsen regime. Phys. A Stat. Mech. Appl. 2000, 287, 153–160. [Google Scholar] [CrossRef]
- Gad-El-Hak, M. The fluid mechanics of microdevices—The freeman scholar lecture. J. Fluids Eng. Trans. ASME 1999, 121, 5–33. [Google Scholar] [CrossRef]
- Banerji, S.; Fernandez, D.; Madrenas, J. A Comprehensive High-Level Model for CMOS-MEMS Resonators. IEEE Sens. J. 2018, 18, 2632–2640. [Google Scholar] [CrossRef]
- Clark, J.V.; Misiats, O.; Sayed, S. Electrical Control of Effective Mass, Damping, and Stiffness of MEMS Devices. IEEE Sens. J. 2017, 17, 1363–1372. [Google Scholar] [CrossRef]
- Dai, C.L. A maskless wet etching silicon dioxide post-CMOS process and its application. Microelectron. Eng. 2006, 83, 2543–2550. [Google Scholar] [CrossRef]
- Valle, J.; Fernández, D.; Madrenas, J.; Barrachina, L. Curvature of BEOL Cantilevers in CMOS-MEMS Processes. J. Microelectromech. Syst. 2017, 26, 895–909. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Jan, M.T.; Ahmad, F.; Hamid, N.H.B.; Md Khir, M.H.B.; Ashraf, K.; Shoaib, M. Temperature dependent Young’s modulus and quality factor of CMOS-MEMS resonator: Modelling and experimental approach. Microelectron. Reliab. 2016, 57, 64–70. [Google Scholar] [CrossRef]










| Release Time | Prototype A | Prototype B | Prototype C | Prototype A |
|---|---|---|---|---|
| 30 min | 135 kHz | 109 kHz | 166 kHz | 135 kHz |
| 40 min | 142 kHz | 113 kHz | 171 kHz | 146 kHz |
| 50 min | 143 kHz | 110 kHz | 164 kHz | 130 kHz |
| 60 min | 132 kHz | 108 kHz | 166 kHz | - |
| 70 min | 126 kHz | 105 kHz | 158 kHz | 121 kHz |
| Symbol | Parameters | 250 nm [10] | Prototype A, B and C | Units |
|---|---|---|---|---|
| W | Width | 140 | 146.22 | m |
| L | Length | 140 | 146.22 | m |
| Perforation Length | 18 | 17.56 | m | |
| Perforations number | 36 (6 × 6) | 36 (6 × 6) | m | |
| s | Spacing between two perforations | 4 | 5.86 | m |
| Plate area | 7936 | 10,256 | m | |
| Release time | 100 | 30 | min | |
| Air gap | 2.5 | 2.23 | m | |
| C | Capacitance | 28 | 72 | fF |
| Symbol | Parameters | 250 nm [10] | Prototype A | Prototype B | Prototype C | Units |
|---|---|---|---|---|---|---|
| Thickness | 8 | 3.38 | 4.76 | 2 | m | |
| m | Effective mass | 4.12 × | 1.53 × | 2.52 × | 5.5 × | kg |
| Q | Quality factor | 61.87 | 87.65 | 67.63 | 37.90 | ratio |
| Resonance frequency | 100 | 135 | 109 | 166 | kHz | |
| b | Damping coefficient | 4.2 × | 1.48 × | 2.55 × | 1.51 × | Ns/m |
| Curvature capacitance | - | 1.226 × | 1.53 × | 3.6 × | fF | |
| Spring coefficient | 177.24 | 110.08 | 118.2 | 59.8 | N/m |
| Parameters | [19] | This Work | ||
|---|---|---|---|---|
| Resonator type | Capacitive | Capacitive/Thermal | Capacitive | Capacitive |
| Process | SOI | CMOS | CMOS | CMOS |
| Release process | DRIE front side and Backside wet SiO etching | DRIE and isotropic Si etching | backside DRIE and wet metal etching | Wet SiO etching |
| Technology | - | 0.35 m | 0.35 m | 0.18 m |
| Gap h | - | 0.6 m | 0.64 m | 2.23 m |
| Materials | Si | SiO, Al, W | SiO, Al, W | SiO, Al, W |
| Mode shape | Square diaphragm with “H” type beams | Double-ended tuning fork | Square plate | Square plate |
| Sensitivity | 89.86 Hz/kPa | - | 793 Hz/kPa | −0.33%Q/kPa −3% Q/kPa −303%Q/kPa |
| Resonant frequency | - | 1.2 MHz | 87.3 kHz | 135 kHz |
| Environment | Vacuum | Barometer, different air pressures | Barometer, different air pressures | Barometer, different air pressures |
| Quality factor | Beyond 22,000 | 3000 | ≈60/≈4 | 1200/89 |
| DC BIAS | - | 45V | 30 V | 15V |
| Area m | Diaphragm 5100 × 5100 Beams 1400 × 20 | 400 × 330 | 200 × 200 | 142.6 × 142.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata-Hernandez, D.; Fernández, D.; Banerji, S.; Madrenas, J. Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching. Sensors 2020, 20, 6037. https://doi.org/10.3390/s20216037
Mata-Hernandez D, Fernández D, Banerji S, Madrenas J. Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching. Sensors. 2020; 20(21):6037. https://doi.org/10.3390/s20216037
Chicago/Turabian StyleMata-Hernandez, Diana, Daniel Fernández, Saoni Banerji, and Jordi Madrenas. 2020. "Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching" Sensors 20, no. 21: 6037. https://doi.org/10.3390/s20216037
APA StyleMata-Hernandez, D., Fernández, D., Banerji, S., & Madrenas, J. (2020). Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching. Sensors, 20(21), 6037. https://doi.org/10.3390/s20216037

