Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review
Abstract
1. Introduction
2. Adsorption of a Single Lander Molecule on Metal Surfaces
3. Self-Assembly Formed by Lander Molecules Guided by vdW and HB Interactions
4. Self-Assembly Formed by Lander Molecules Guided by vdW, HB, and Electrostatic Interactions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
STM | scanning tunneling microscopy |
UHV | ultra-high vacuum |
HB | hydrogen bonding |
vdW | van der Waals |
0D | zero-dimensional |
1D | one-dimensional |
2D | two-dimensional. |
3D | three-dimensional |
MM | molecular mechanics, with the force field |
EHMO-ESQC | extended Hückel molecular orbital elastic scattering quantum chemistry |
SCF-PM6 | self-consistent field parameterization method 6 |
DAT | diaminotriazine |
DCI | di-carboxylic imide |
DTP | 3,5-di-tert-butylphenyl |
PTCDI | perylene-3,4,9,10-tetracarboxylic diimide |
HOMO | highest occupied molecular orbital |
LUMO | lowest unoccupied molecular orbital |
References
- Verstraete, L.; de Feyter, S. 2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement. Chem. Soc. Rev. 2021, 50, 5884–5897. [Google Scholar] [CrossRef]
- Kûhnle, A. Self-assembly of organic molecules at metal surfaces. Curr. Opin. Colloid Interface Sci. 2009, 14, 157–168. [Google Scholar] [CrossRef]
- Gao, H.J.; Gao, L. Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications. Prog. Surf. Sci. 2010, 85, 28–91. [Google Scholar] [CrossRef]
- Xu, X.; Lou, Z.; Cheng, S.; Chow, P.C.; Koch, N.; Cheng, H.M. Van der Waals organic/inorganic heterostructures in the two-dimensional limit. Chem 2021, 11, 2989–3026. [Google Scholar] [CrossRef]
- Bouju, X.; Mattioli, C.; Franc, G.; Pujol, A.; Gourdon, A. Bicomponent supramolecular architectures at the vacuum–solid interface. Chem. Rev. 2017, 117, 1407–1444. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, R. STM studies for surface-mounted molecular rotors: A minireview. AAPPS Bull. 2024, 34, 2–9. [Google Scholar] [CrossRef]
- Schunack, M.; Rosei, F.; Naitoh, Y.; Liang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Adsorption behavior of Lander molecules on Cu(110) studied by scanning tunneling microscopy. J. Chem. Phys. 2002, 117, 6259–6265. [Google Scholar] [CrossRef]
- Gross, L.; Rieder, K.-H.; Moresco, F.; Stojkovic, S.M.; Gourdon, A.; Joachim, C. Trapping and moving metal atoms with a six-leg molecule. Nat. Mater. 2005, 4, 892–895. [Google Scholar] [CrossRef]
- Yu, M.; Xu, W.; Benjalal, Y.; Barattin, R.; Lægsgaard, E.; Stensgaard, I.; Hliwa, M.; Bouju, X.; Gourdon, A.; Joachim, C.; et al. STM manipulation of molecular moulds on metal surfaces. Nano Res. 2009, 2, 254–259. [Google Scholar] [CrossRef]
- Staniec, P.A.; Perdigão, L.M.A.; Rogers, B.L.; Champness, N.R.; Beton, P.H. Honeycomb Networks and Chiral Superstructures Formed by Cyanuric Acid and Melamine on Au(111). J. Phys. Chem. C 2007, 111, 886–893. [Google Scholar] [CrossRef]
- Xu, W.; Dong, M.D.; Gersen, H.; Rauls, E.; Vazquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D.N.; Stensgaard, I.; Laegsgaard, E.; Linderoth, T.R.; et al. Cyanuric Acid and Melamine on Au(111): Structure and Energetics of HydrogenBonded Networks. Small 2007, 3, 854–858. [Google Scholar] [CrossRef]
- Theobald, J.A.; Oxtoby, N.S.; Phillips, M.A.; Champness, N.R.; Beton, P.H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031. [Google Scholar] [CrossRef]
- Madueno, R.; Räisänen, M.T.; Silien, C.; Buck, M. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature 2008, 454, 618–621. [Google Scholar] [CrossRef]
- Silly, F.; Shaw, A.Q.; Castell, M.R.; Briggs, G.A.D. Chiral pinwheel supramolecular network driven by the assembly of PTCDI and melamine. Chem. Commun. 2008, 16, 1907–1909. [Google Scholar] [CrossRef]
- Ruiz-Osés, M.; González-Lakunza, N.; Silanes, I.; Gourdon, A.; Arnau, A.; Ortega, J.E. Self-Assembly of Heterogeneous Supramolecular Structures with Uniaxial Anisotropy. Phys. Chem. B 2006, 110, 25573–25577. [Google Scholar] [CrossRef]
- Ruiz-Osés, M.; Kampen, T.; González-Lakunza, N.; Silanes, I.; Schmidt-Weber, P.M.; Gourdon, A.; Arnau, A.; Horn, K.; Ortega, J.E. Spectroscopic Fingerprints of Amine and Imide Functional Groups in Self-Assembled Monolayers. ChemPhysChem 2007, 8, 1722–1726. [Google Scholar] [CrossRef]
- Silly, F.; Shaw, A.Q.; Porfyrakis, K.; Warner, J.H.; Watt, A.A.R.; Castell, M.R.; Umemoto, H.; Akachi, T.; Shinohara, H.G.A.; Briggs, D. Grating of single Lu@C82 molecules using supramolecular network. Chem. Commun. 2008, 38, 4616–4618. [Google Scholar] [CrossRef]
- Cai, L.; Sun, Q.; Bao, M.L.; Ma, H.H.; Yuan, C.X.; Xu, W. Competition between hydrogen bonds and coordination bonds steered by the surface molecular coverage. ACS Nano 2017, 11, 3727–3732. [Google Scholar] [CrossRef]
- Cojal González, J.D.; Iyoda, M.; Rabe, J.P. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Ghosh, S.C.; Zhu, X.; Secchi, A.; Sadhukhan, S.K.; Girdhar, N.K.; Gourdona, A. Molecular Landers as Probes for Molecular Device—Metal Surface Interactions. Ann. N. Y. Acad. Sci. 2003, 1006, 82–93. [Google Scholar] [CrossRef]
- Francesca, M.; André, G. Scanning tunneling microscopy experiments on single molecular landers. Proc. Natl. Acad. Sci. USA 2005, 102, 8809–8814. [Google Scholar] [CrossRef]
- Otero, R.; Naitoh, Y.; Rosei, F.; Jiang, P.; Thostrup, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. One-Dimensional Assembly and Selective Orientation of Lander Molecules on an O–Cu Template. Angew. Chem. Int. Ed. 2004, 43, 2092–2095. [Google Scholar] [CrossRef]
- Gross, L.; Moresco, F.; Ruffieux, P.; Gourdon, A.; Joachim, C.; Rieder, K.-H. Tailoring molecular Self-Organization by Chemical Synthesis: Hexaphenylbenzene, Hexa-per hexabenzocoronene, and Derivatives on Cu(111). Phys. Rev. B 2005, 71, 165428–165435. [Google Scholar] [CrossRef]
- Rosei, F.; Schunack, M.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Organic molecules acting as templates on metal surfaces. Science 2002, 296, 328–331. [Google Scholar] [CrossRef]
- Naitoh, Y.; Rosei, F.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Scanning Tunneling Microscopy and Spectroscopy Studies of Individual Lander Molecules Anchored on a Copper Oxide Nanotemplate. J. Phys. Chem. 2008, 112, 16118–16122. [Google Scholar] [CrossRef]
- Grill, L.; Rieder, K.H.; Moresco, F.; Stojkovic, S.; Gourdon, A.; Joachim, C. Exploring the interatomic forces between tip and single molecules during STM manipulation. Nano Lett. 2006, 6, 2685–2689. [Google Scholar] [CrossRef]
- Yu, M.; Kalashnyk, N.; Xu, W.; Barattin, R.; Benjalal, Y.; Laegsgaard, E.; Stensgaard, I.; Hliwa, M.; Bouju, X.; Gourdon, A.; et al. Supramolecular architectures on surfaces formed through hydrogen bonding optimized in three dimensions. ACS Nano 2010, 7, 4097–4109. [Google Scholar] [CrossRef] [PubMed]
- Régis, B.; Gourdon, A. Synthesis of Molecular Moulds. EJOC 2009, 7, 1022–1026. [Google Scholar] [CrossRef]
- Yu, M.; Kalashnyk, N.; Barattin, R.; Benjalal, Y.; Hliwa, M.; Bouju, X.; Gourdon, A.; Joachim, C.; Lægsgaard, E.; Besenbacher, F.; et al. Self-assembly of hydrogen-bonded chains of molecular landers. Chem. Commun. 2010, 46, 5545–5547. [Google Scholar] [CrossRef]
- Kalashnyk, N.; Yu, M.; Barattin, R.; Benjalal, Y.; Hliwa, M.; Joachim, C.; Lægsgaard, E.; Besenbacher, F.; Gourdon, A.; Bouju, X.; et al. Bicomponent hydrogen-bonded nanostructures formed by two complementary molecular Landers on Au(111). Chem. Commun. 2014, 50, 10619–10621. [Google Scholar] [CrossRef]
- Grill, L.; Moresco, F.; Jiang, P.; Joachim, C.; Gourdon, A.; Rieder, K.H. Controlled manipulation of a single molecular wire along a copper atomic nanostructure. Phys. Rev. B 2004, 69, 035416–035423. [Google Scholar] [CrossRef]
- Alemani, M.; Gross, L.; Moresco, F.; Rieder, K.H.; Wang, C.; Bouju, X.; Gourdon, A.; Joachim, C. Recording the intramolecular deformation of a 4-legs molecule during its STM manipulation on a Cu(211) surface. Chem. Phys. Lett. 2005, 402, 180–185. [Google Scholar] [CrossRef]
- Grill, L.; Moresco, F. Contacting single molecules to metallic electrodes by scanning tunnelling microscope manipulation. J. Phys. Condens. Matter 2006, 18, 1887–1908. [Google Scholar] [CrossRef]
- Grill, L.; Rieder, K.H.; Moresco, F.; Stojkovic, S.; Gourdon, A.; Joachim, C. Controlling the electronic interaction between a molecular wire and its atomic scale contacting pad. Nano Lett. 2005, 5, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Otero, R.; Hümmelink, F.; Sato, F.; Legoas, S.B.; Thostrup, P.; Lægsgaard, E.; Stensgaard, I.; Galvão, D.S.; Besenbacher, F. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nat. Mater. 2004, 3, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Allinger, N.L.; Chen, K.; Lii, J.H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 1996, 17, 642–668. [Google Scholar] [CrossRef]
- Aviram, A.; Ratner, M.A. Molecular rectifiers. Chem. Phys. Let. 1974, 29, 277–283. [Google Scholar] [CrossRef]
- Sautet, P.; Joachim, C. Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem. Phys. Lett. 1988, 153, 511–516. [Google Scholar] [CrossRef]
- Sautet, P.; Joachim, C. The switching ability of a three-level tight-binding system: The isolated and embedded case. J. Chem. Phys. 1988, 21, 3939–3957. [Google Scholar] [CrossRef]
- Sautet, P.; Joachim, C. Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys. Rev. B 1988, 38, 12238–12247. [Google Scholar] [CrossRef]
- Sautet, P.; Joachim, C. Calculation of the benzene on rhodium STM images. Chem. Phys. Lett. 1991, 185, 23–30. [Google Scholar] [CrossRef]
- Patrick, A.; Herbert, L.; Jochen, A.; Eva, Z. Extended Hückel Calculations on Solids Using the Avogadro Molecular Editor and Visualizer. J. Chem. Educ. 2018, 95, 331–337. [Google Scholar] [CrossRef]
- Ruiz, E.; Alvarez, S.; Hoffmann, R.; Bernstein, J. Crystal Orbital Displacement Analysis of Interactions in the Solid State. Application to the Study of Host-Guest Interactions in the Hofmann Clathrates. J. Am. Chem. Soc. 1994, 116, 8207–8221. [Google Scholar] [CrossRef]
- Hughbanks, T.; Hoffmann, R. Chains of trans-edge-sharing molybdenum octahedra: Metal-metal bonding in extended systems. J. Am. Chem. Soc. 1983, 105, 3528–3537. [Google Scholar] [CrossRef]
- Landrum, G.A.; Glassey, W.V. YAeHMOP: Yet Another Extended Hückel Molecular Orbital Package, Version 3.0. YAeHMOP Is Freely. 2001. Available online: https://sourceforge.net/projects/yaehmop (accessed on 4 June 2024).
- Coratger, R.; Calmettes, B.; Benjalal, Y.; Bouju, X.; Coudret, C. Structural and electronic properties of hexa-adamantyl-hexa-phenylbenzene molecules studied by low temperature scanning tunneling microscopy. Surf. Sci. 2012, 606, 444–449. [Google Scholar] [CrossRef]
- Ge, X.; Kuntze, J.; Berndt, R.; Tang, H.; Gourdon, A. Tunneling spectroscopy of lander molecules on coinage metal surfaces. Chem. Phys. Lett. 2008, 458, 161–165. [Google Scholar] [CrossRef]
- De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Wurthner, F.; Jonkheijm, P.; Schenning, A.P.H.J.; Meijer, E.W.; de Schryver, F.C. Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures. Nano Lett. 2005, 5, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Lin, C.; Minot, C.; Tseng, T.C.; Tait, S.L.; Lin, N.; Hang, R.Q.; Kern, K.; Cerd, J.I.; van Hove, M.A. Structural Analysis and Electronic Properties of Negatively Charged TCNQ: 2D Networks of (TCNQ) 2Mn Assembled on Cu(100). J. Phys. Chem. C 2010, 114, 17197–17204. [Google Scholar] [CrossRef]
- Bonzel, H.P. Alkali-metal-affected adsorption of molecules on metal surfaces. Surf. Sci. Rep. 1998, 8, 43–125. [Google Scholar] [CrossRef]
- Stepanow, S.; Ohmann, R.; Leroy, F.; Lin, N.; Strunskus, T.; Woll, C.; Kern, K. Rational design of two-dimensional nanoscale networks by electrostatic interactions at surfaces. ACS Nano 2010, 4, 1813–1820. [Google Scholar] [CrossRef]
- Yu, M.; Xu, W.; Kalashnyk, N.; Benjalal, Y.; Nagarajan, S.; Masini, F.; Lægsgaard, E.; Hliwa, M.; Bouju, X.; Gourdon, A.; et al. From zero to two dimensions: Supramolecular nanostructures formed from perylene-3,4,9,10-tetracarboxylic diimide (PTCDI) and Ni on the Au (111) surface through the interplay between hydrogen-bonding and electrostatic metal-organic interactions. Nano Res. 2012, 5, 903–916. [Google Scholar] [CrossRef]
- Jensen, S.; Baddeley, C.J. Formation of PTCDI-based metal-organic structures on a Au (111) surface modified by 2-D Ni clusters. J. Phys. Chem. C 2008, 112, 15439–15448. [Google Scholar]
- Yu, M.; Benjalal, Y.; Chen, C.; Kalashnyk, N.; Xu, W.; Barattin, R.; Nagarajan, S.; Lægsgaard, E.; Stensgaard, I.; Hliwa, M.; et al. Three-dimensional hydrogen bonding between Landers and planar molecules facilitated by electrostatic interactions with Ni adatoms. Chem. Commun. 2018, 54, 8845–8848. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided. Mol. Des. 1990, 4, 1–103. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lin, N. On-Surface-Assembled Single-Layer Metal-Organic Frameworks with Extended Conjugation. Chem. Plus. Chem. 2023, 88, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, L.; Peláez, S.; Caillard, R.; Serena, P.A.; Martín-Gago, J.A.; Méndez, J. Metal-organic extended 2D structures: Fe-PTCDA on Au (111). Nanotechnology 2010, 21, 305703. [Google Scholar] [CrossRef]
- Shi, Z.; Lin, N. Structural and chemical control in assembly of multicomponent metal–organic coordination networks on a surface. J. Am. Chem. Soc. 2010, 31, 10756–10761. [Google Scholar] [CrossRef]
- Dmitriev, A.; Spillmann, H.; Lin, N.; Barth, J.V.; Kern, K. Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew. Chem. Int. Ed. 2003, 42, 2670–2673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hasnaoui, N.; Fatimi, A.; Benjalal, Y. Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review. Int. J. Mol. Sci. 2024, 25, 6277. https://doi.org/10.3390/ijms25116277
El Hasnaoui N, Fatimi A, Benjalal Y. Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review. International Journal of Molecular Sciences. 2024; 25(11):6277. https://doi.org/10.3390/ijms25116277
Chicago/Turabian StyleEl Hasnaoui, Nadia, Ahmed Fatimi, and Youness Benjalal. 2024. "Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review" International Journal of Molecular Sciences 25, no. 11: 6277. https://doi.org/10.3390/ijms25116277
APA StyleEl Hasnaoui, N., Fatimi, A., & Benjalal, Y. (2024). Self-Assembly of Molecular Landers Equipped with Functional Moieties on the Surface: A Mini Review. International Journal of Molecular Sciences, 25(11), 6277. https://doi.org/10.3390/ijms25116277