Fermented, Freeze-Dried Snacks from Lactarius deliciosus as a Source of Functional Compounds and Lactic Acid Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lactic Acid Bacteria Content in Fermented and Freeze-Dried Mushrooms After 6 Months Storage
2.2. Water Activity
2.3. Organic Compounds
2.4. Mineral Substances
2.5. Antioxidant Activity and Phenols Profile
2.6. Dietary Fibre and Polysaccharides
3. Materials and Methods
3.1. Mushroom Preparation
3.2. Preparation of Probiotic Bacteria
3.3. Fermentation Process, Freeze-Drying, and Storage
3.4. Water Activity Analysis
3.5. Microbiological Analysis
3.6. Determination of Organic Compounds and Antioxidant Activity
3.6.1. Preparation of Methanolic Extracts
3.6.2. Analysis of L-Phenylalanine and p–Hydroxybenzoic Acid
3.6.3. Analysis of Lovastatin, Ergothioneine, and Indole Compounds
3.6.4. Determination of Antioxidant Activity (DPPH, ABTS, FRAP)
3.7. Determination of Phenols Profile
3.8. Determination of Carotenoids
3.9. Determination of Mineral Components
3.10. Determination of Polysaccharides
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandes, Â.; Oliveira, B.; Martins, A.; Ferreira, I.C. Add–value of Lactarius deliciosus and Macrolepiota procera wild mushrooms due to their nutritional and nutraceutical potential. In Proceedings of the International Congress on Promotion of Traditional Food Products, Ponte de Lima, Spain, 28 November 2012. [Google Scholar]
- Kosanić, M.; Ranković, B.; Rančić, A.; Stanojković, T. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J. Food Drug Anal. 2016, 24, 477–484. [Google Scholar] [CrossRef] [PubMed]
- López, A.R.; Barea–Sepúlveda, M.; Barbero, G.F.; Ferreiro–González, M.; López–Castillo, J.G.; Palma, M.; Espada–Bellido, E. Essential mineral content (Fe, Mg, P, Mn, K, Ca, and Na) in five wild edible species of Lactarius mushrooms from southern Spain and northern Morocco: Reference to daily intake. J. Fungi 2022, 8, 1292. [Google Scholar] [CrossRef] [PubMed]
- Tel, G.; Çavdar, H.; Deveci, E.; Öztürk, M.; Duru, M.E.; Turkoğlu, A. Minerals and metals in mushroom species in Anatolia. Food Add. Contam. Part B Surveill. 2014, 7, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Waktola, G.; Temesgen, T. Application of mushroom as food and medicine. Adv. Biotech. Microbiol. 2018, 11, 97–100. [Google Scholar]
- Woldegiorgis, A.Z.; Abate, D.; Haki, G.D.; Ziegler, G.R. Major, minor and toxic minerals and anti–nutrients composition in edible mushrooms collected from Ethiopia. J. Food Proc. Technol. 2015, 6, 430. [Google Scholar]
- Xu, Z.; Fu, L.; Feng, S.; Yuan, M.; Huang, Y.; Liao, J.; Zhou, L.; Yang, H.; Ding, C. Chemical composition, antioxidant and antihyperglycemic activities of the wild Lactarius deliciosus from China. Molecules 2019, 24, 1357. [Google Scholar] [CrossRef]
- Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol. 2011, 89, 1323–1332. [Google Scholar]
- Avci, E.; Avci, G.A. Antimicrobial and antioxidant activities of medicinally important Lactarius deliciosus. Int. J. Med. Sci. Dental Res. 2019, 2, 49–55. [Google Scholar]
- Barros, L.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. J. Agric. Food Chem. 2007, 55, 8766–8771. [Google Scholar]
- Ding, X.; Hou, Y.; Hou, W. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus Gray. Carbohyd. Polym. 2012, 89, 397–402. [Google Scholar] [CrossRef]
- Pogoń, K.; Jaworska, G.; Duda–Chodak, A.; Maciejaszek, I. Influence of the culinary treatment on the quality of Lactarius deliciosus. Foods 2013, 2, 238–253. [Google Scholar] [CrossRef] [PubMed]
- Volcão, L.M.; Halicki, P.C.B.; Christ–Ribeiro, A.; Ramos, D.F.; Badiale–Furlong, E.; Andreazza, R.; Bernardi, E.; da Silva Júnior, F.M.R. Mushroom extract of Lactarius deliciosus (L.) Sf. Gray as biopesticide: Antifungal activity and toxicological analysis. J. Toxicol. Environ. Health Part A 2022, 85, 43–55. [Google Scholar]
- Jonathan, G.S.; Omotayo, O.O.; Baysah, G.I.; Asemoloye, M.D.; Aina, D.A. Effects of some preservation methods on the nutrient and mineral compositions of three selected edible mushrooms. J. Microb. Biochem. Techn. 2018, 10, 106–111. [Google Scholar]
- Kibar, B. Influence of different drying methods and cold storage treatments on the postharvest quality and nutritional properties of P. ostreatus mushroom. Turkish J. Agric. Forest. 2021, 45, 565–579. [Google Scholar]
- Jabłońska-Ryś, E.; Skrzypczak, K.; Sławińska, A.; Radzki, W.; Gustaw, W. Lactic acid fermentation of edible mushrooms: Tradition, technology, current state of research: A review. Compreh. Rev. Food Sci. Food Saf. 2019, 18, 655–669. [Google Scholar]
- Venugopal, K.; Satora, P.; Bernaś, E. Evaluation of sensory and functional compounds in fermented Lactarius deliciosus mushrooms. J. Food Proc. Preserv. 2024, 1, 2577580. [Google Scholar]
- Bartkiene, E.; Zarovaite, P.; Starkute, V.; Mockus, E.; Zokaityte, E.; Zokaityte, G.; Rocha, J.M.; Ruibys, R.; Klupsaite, D. Changes in lacto–fermented Agaricus bisporus (white and brown varieties) mushroom characteristics, including biogenic amine and volatile compound formation. Foods 2023, 12, 2441. [Google Scholar] [CrossRef]
- Xue, Z.; Hao, J.; Yu, W.; Kou, X. Effects of processing and storage preservation technologies on nutritional quality and biological activities of edible fungi: A review. J. Food Proc. Eng. 2017, 40, 12437. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, N.K.; Paik, H.D. A narrative review on the advance of probiotics to metabiotics. J. Microb. Biotech. 2024, 34, 487. [Google Scholar] [CrossRef]
- Casertano, M.; Fogliano, V.; Ercolini, D. Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Re. Int. 2022, 152, 110892. [Google Scholar]
- Rocks, T.; West, M.; Hockey, M.; Aslam, H.; Lane, M.; Loughman, A.; Jacka, F.N.; Ruusunen, A. Possible use of fermented foods in rehabilitation of anorexia nervosa: The gut microbiota as a modulator. Progr. Neuro-Psychopharm. Biol. Psych. 2021, 107, 110201. [Google Scholar] [CrossRef] [PubMed]
- Roselli, M.; Natella, F.; Zinno, P.; Guantario, B.; Canali, R.; Schifano, E.; De Angelis, M.; Nikoloudaki, O.; Gobbetti, M.; Perozzi, G.; et al. Colonization ability and impact on human gut microbiota of foodborne microbes from traditional or probiotic–added fermented foods: A systematic review. Front. Nutri. 2021, 8, 689084. [Google Scholar] [CrossRef] [PubMed]
- Stiemsma, L.T.; Nakamura, R.E.; Nguyen, J.G.; Michels, K.B. Does consumption of fermented foods modify the human gut microbiota? J. Nutr. 2020, 150, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.C.; Lejzerowicz, F.; Poirel, M.; Shaffer, J.P.; Jiang, L.; Aksenov, A.; Litwin, N.; Humphrey, G.; Martino, C.; Miller–Montgomery, S.; et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. Msystems 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- Bernaś, E.; Jaworska, G. Effect of microwave blanching on the quality of frozen Agaricus bisporus. Food Sci. Technol. Int. 2015, 21, 245–255. [Google Scholar] [CrossRef]
- Zimmer, C.; Dorea, C. Enumeration of Escherichia coli in probiotic products. Microorganisms 2019, 7, 437. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Gao, T.; Wu, Y.; Sun, H.; Zhu, Q.; Liu, C.; Zhou, C.; Han, Y.; Tao, Y. Fermentation and storage characteristics of “Fuji” apple juice using Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum: Microbial growth, metabolism of bioactives and in vitro bioactivities. Front. Nutri. 2022, 9, 833906. [Google Scholar] [CrossRef]
- Bodzen, A.; Jossier, A.; Dupont, S.; Mousset, P.Y.; Beney, L.; Lafay, S.; Gervais, P. Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage. BMC Biotechn. 2021, 21, 1–10. [Google Scholar] [CrossRef]
- Basaran, D.; Fadime, Y.; Fahrettin, G. Antimicrobial activity of some Lactarius species. Pharmac. Biol. 2002, 40, 304–306. [Google Scholar]
- Khalloufi, S.; Giasson, J.; Ratti, C. Water activity of freeze dried mushrooms and berries. Can. Agric. Eng. 2000, 42, 51–56. [Google Scholar]
- Li, J.; Chinachoti, P.; Wang, D.; Hallberg, L.M.; Sun, X.S. Thermal properties of ration components as affected by moisture content and water activity during freezing. J. Food Sci. 2008, 73, 425–430. [Google Scholar]
- Bernaś, E.; Jaworska, G. Wpływ zabiegów technologicznych na jakość mrożonek z grzybów jadalnych [The impact of technological treatments on the quality of frozen edible mushrooms]. Przem. Ferm. Owoc. Warz. 2007, 3, 31–33. (In Polish) [Google Scholar]
- Chen, S.Y.; Ho, K.J.; Hsieh, Y.J.; Wang, L.T.; Mau, J.L. Contents of lovastatin, γ–aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT 2012, 47, 274–278. [Google Scholar]
- Fijałkowska, A.; Jędrejko, K.; Sułkowska–Ziaja, K.; Ziaja, M.; Kała, K.; Muszyńska, B. Edible mushrooms as a potential component of dietary interventions for major depressive disorder. Foods 2022, 11, 1489. [Google Scholar] [CrossRef]
- Muszyńska, B.; Sułkowska–Ziaja, K. Analysis of indole compounds in edible Basidiomycota species after thermal processing. Food Chem. 2012, 132, 455–459. [Google Scholar]
- Muszyńska, B.; Sułkowska–Ziaja, K.; Ekiert, H. Indole compounds in fruiting bodies of some edible Basidiomycota species. Food Chem. 2011, 125, 1306–1308. [Google Scholar]
- Muszyńska, B.; Sułkowska–Ziaja, K.; Wojcik, A. Levels of physiologically active indole derivatives in the fruiting bodies of some edible mushrooms (Basidiomycota) before and after thermal processing. Mycoscience 2013, 54, 321–326. [Google Scholar]
- Ramakrishnan, M.; Bey, C.; Tulasi, V.; Kislai, P.; Manohar, N. Investigation of lovastatin, the anti–hypercholesterolemia drug molecule from three oyster mushroom species. Int. J. Biomed. Clinic. Sci. 2017, 2, 26–31. [Google Scholar]
- Paramithiotis, S.; Das, G.; Shin, H.S.; Patra, J.K. Fate of bioactive compounds during lactic acid fermentation of fruits and vegetables. Foods 2022, 11, 733. [Google Scholar] [CrossRef]
- Lee, K.; Lee, H.; Choi, Y.; Kim, Y.; Jeong, H.S.; Lee, J. Effect of different cooking methods on the true retention of vitamins, minerals, and bioactive compounds in shiitake mushrooms (Lentinula edodes). Food Sci. Technol. Res. 2019, 25, 115–122. [Google Scholar]
- Bamidele, O.; Fasogbon, M.; Adebowale, O.; Adeyanju, A. Effect of blanching time on total phenolic, antioxidant activities and mineral content of selected green leafy vegetables. Curr. J. Appl. Sci. Technol. 2017, 24, 1–8. [Google Scholar]
- De Corcuera, J.I.R.; Cavalieri, R.P.; Powers, J.R. Blanching of foods. In Encyclopedia of Agricultural, Food and Biological Engineering; Dekker, M., Ed.; CRC Press: New York, NY, USA, 2004; pp. 1–5. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing micronutrients bioavailability through fermentation of plant–based foods: A concise review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Ng, Z.X.; Tan, W.C. Impact of optimized cooking on the antioxidant activity in edible mushrooms. J. Food Sci. Technol. 2017, 54, 4100–4111. [Google Scholar] [PubMed]
- Sudha, G.; Vadivukkarasi, S.; Shree, R.B.I.; Lakshmanan, P. Antioxidant activity of various extracts from an edible mushroom Pleurotus ostratus. Food Sci. Biotechnol. 2012, 21, 661–668. [Google Scholar]
- Alves, M.J.; CFR Ferreira, I.; Dias, J.; Teixeira, V.; Martins, A.; Pintado, M. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Curr. Top. Med. Chem. 2013, 13, 2648–2659. [Google Scholar] [CrossRef]
- Cayan, F.; Deveci, E.; Tel-Cayan, G.; Duru, M.E. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. J. Food Measur. Character. 2020, 14, 1690–1698. [Google Scholar]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar]
- Rickman, J.C.; Barrett, D.M.; Bruhn, C.M. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007, 87, 930–944. [Google Scholar]
- Su, Z.; Xu, B. Chemical compositions and health promoting effects of wild edible mushroom milk-cap (Lactarius deliciosus): A review. Food Biosc. 2024, 62, 105118. [Google Scholar]
- Sharma, S.; Atri, N.S.; Kaur, M.; Verma, B. Nutritional and neutraceutical potential of some wild edible Russulaceous mushrooms from North West Himalayas, India. Kavaka 2017, 48, 41–46. [Google Scholar]
- Asamoa, A.A.; Essel, E.A.; Agbenorhevi, J.K.; Oduro, I.N. Effect of processing methods on the proximate composition, total phenols and antioxidant properties of two mushroom varieties. Amer. J. Food Nutr. 2018, 6, 55–59. [Google Scholar] [CrossRef]
- Roncero–Ramos, I.; Delgado–Andrade, C. The beneficial role of edible mushrooms in human health. Curr. Opinion Food Sci. 2017, 14, 122–128. [Google Scholar] [CrossRef]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Hadinejad, M.; Emam–Djomeh, Z.; Mirzapour, M. Effect of fermentation of pomegranate juice by Lactobacillus plantarum and Lactobacillus acidophilus on the antioxidant activity and metabolism of sugars, organic acids and phenolic compounds. Food Biotechn. 2013, 27, 1–13. [Google Scholar] [CrossRef]
- Mirończuk–Chodakowska, I.; Witkowska, A.M. Evaluation of Polish wild mushrooms as beta–glucan sources. Int. J. Environm. Res. Public Health 2020, 17, 7299. [Google Scholar] [CrossRef]
- Synytsya, A.; Mickova, K.; Jablonsky, I.; SlUKoVá, M.; Copikova, J. Mushrooms of genus Pleurotus as a source of dietary fibres and glucans for food supplements. Czech J. Food Sci. 2008, 26, 441–446. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Zou, Y.; Ye, Z.; Guo, L.; Zheng, Q. InsolNBle dietary fiber from five commercially cultivated edible mushrooms: Structural, physiochemical and functional properties. Food Biosci. 2024, 57, 103514. [Google Scholar] [CrossRef]
- Akter, M.S.; Ahmed, M.; Eun, J.B. Effect of blanching and drying temperatures on the physicochemical characteristics, dietary fiber composition and antioxidant–related parameters of dried persimmons peel powder. Int. J. Food Sci. Nutr. 2016, 61, 702–712. [Google Scholar] [CrossRef]
- Margareta, E.; Nyman, G.L. Importance of processing for physico–chemical and physiological properties of dietary fibre. Proc. Nutr. Soc. 2023, 62, 187–192. [Google Scholar] [CrossRef]
- Knez, E.; Kadac–Czapska, K.; Grembecka, M. Effect of fermentation on the nutritional quality of the selected vegetables and legumes and their health effects. Life 2023, 13, 655. [Google Scholar] [CrossRef]
- Lambo, A.M.; Öste, R.; Nyman, M.E.L. Dietary fibre in fermented oat and barley β–glucan rich concentrates. Food Chem. 2005, 89, 283–293. [Google Scholar] [CrossRef]
- Martín–Cabrejas, M.A.; Sanfiz, B.; Vidal, A.; Mollá, E.; Esteban, R.; López–Andréu, F.J. Effect of fermentation and autoclaving on dietary fiber fractions and antinutritional factors of beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2004, 52, 261–266. [Google Scholar]
- Mythili, S.; Rajeswari, N.; John Don Bosco, S.; Kamatchi alias Rajalechumi, A. Impact of blanching treatments on the chemical composition, total dietary fiber, physicochemical, functional, and structural properties of underutilized cauliflower leaves (Brassica oleracea var. botrytis). J. Food Proc. Preserv. 2021, 45, 15910. [Google Scholar] [CrossRef]
- Zhao, H.M.; Guo, X.N.; Zhu, K.X. Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem. 2017, 217, 28–36. [Google Scholar] [CrossRef]
- Bibi, A.; Xiong, Y.; Rajoka, M.S.R.; Mehwish, H.M.; Radicetti, E.; Umair, M.; Shoukat, M.; Khan, M.K.I.; Aadil, R.M. Recent advances in the production of exopolysaccharide (EPS) from Lactobacillus spp. and its application in the food industry: A review. Sustainability 2021, 13, 12429. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; Limitone, A.; Minervini, F.; Carnevali, P.; Corsetti, A.; Gaenzle, M.; Ciati, R.; Gobbetti, M. Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J. Agric. Food Chem. 2006, 54, 9873–9881. [Google Scholar]
- Alimi, B.A.; Pathania, S.; Wilson, J.; Duffy, B.; Frias, J.M.C. Extraction, quantification, characterization, and application in food packaging of chitin and chitosan from mushrooms: A review. Int. J. Biolog. Macromol. 2023, 237, 124195. [Google Scholar]
- Nitschke, J.; Altenbach, H.J.; Malolepszy, T.; Mölleken, H. A new method for the quantification of chitin and chitosan in edible mushrooms. Carbohyd. Res. 2011, 346, 1307–1310. [Google Scholar]
- Zargar, V.; Asghari, M.; Dashti, A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2015, 2, 204–226. [Google Scholar]
- Satora, P.; Skotniczny, M.; Strnad, S.; Piechowicz, W. Chemical composition and sensory quality of sauerkraut produced from different cabbage varieties. LWT 2021, 136, 110325. [Google Scholar]
- Rząsa-Duran, E.; Muszyńska, B.; Szewczyk, A.; Kała, K.; Sułkowska-Ziaja, K.; Piotrowska, J.; Opoka, W.; Kryczyk-Poprawa, A. Ilex paraguariensis Extracts: A Source of Bioelements and Biologically Active Compounds for Food Supplements. Appl. Sci. 2024, 14, 7238. [Google Scholar] [CrossRef]
- Kała, K.; Pająk, W.; Sułkowska–Ziaja, K.; Krakowska, A.; Lazur, J.; Fidurski, M.; Marzec, K.; Zięba, P.; Fijałkowska, A.; Szewczyk, A.; et al. Hypsizygus marmoreus as a source of indole compounds and other bioactive sNBstances with health–promoting activities. Molecules 2022, 27, 8917. [Google Scholar]
- Pansuriya, R.C.; Singhal, R.S. Supercritical fluid extraction of lovastatin from the wheat bran obtained after solid–state fermentation. Food Techn. Biotechnol. 2009, 47, 159–165. [Google Scholar]
- Zhou, T.; Liu, Q.; Jiang, W.; Chen, N. A new strategy for quantitative analysis of ergothioneine in fermentation broth by RP–HPLC. In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012); Springer: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 313–321. [Google Scholar]
- Lazur, J.; Kała, K.; Krakowska, A.; Sułkowska-Ziaja, K.; Szewczyk, A.; Piotrowska, J.; Rospond, B.; Fidurski, M.; Marzec, K.; Muszyńska, B. Analysis of bioactive sNBstances and essential elements of mycelia and fruiting bodies of Hericium spp. J. Food Comp. Anal. 2024, 127, 105981. [Google Scholar]
- Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros–Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal. 2006, 19, 669–675. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analit. Biochem. 1996, 239, 70–76. [Google Scholar]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Japan. Soc. Food Sci. Technol. 1992, 39, 925–928. [Google Scholar]
- Synowiecki, J.; Al–Khateeb, N.A.A.Q. Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chem. 1997, 60, 605–610. [Google Scholar]
WB | WB + LbA | MB | MB + LbP | ||
---|---|---|---|---|---|
After fermentation | Lactococci | 7.2 ± 0.1 a | 7.2 ± 0.1 a | 8.0 ± 0.1 b | 8.0 ± 0.1 b |
Lactobacilli | 0.0 a | 8.2 ± 0.4 c | 7.6 ± 0.1 b | 8.2 ± 0.2 c | |
Lyophilised (6 months storage) | Lactococci | 6.2 ± 0.3 b | 5.5 ± 0.0 a | 6.3 ± 0.3 b | 6.3 ± 0.1 b |
Lactobacilli | 0.0 a | 0.0 a | 0.0 a | 7.3 ± 0.1 b |
NB | WB | WB + LbA | MB | MB + LbP | |
---|---|---|---|---|---|
Water activity | 0.24 ± 0.00 b | 0.22 ± 0.01 a | 0.24 ± 0.01 b | 0.27 ± 0.0 c | 0.26 ± 0.01 c |
Ergothioneine (mg/100 g dm) | 35.92 ± 2.30 b | 14.86 ± 1.15 a | 13.33 ± 1.56 a | 36.81 ± 2.30 b | 11.81 ± 0.67 a |
5-methyltryptamine (mg/100 g dm) | 18.89 ± 0.75 a | 40.82 ± 2.39 c | 27.63 ± 1.41 b | 53.39 ± 3.78 d | 45.67 ± 4.11 c |
Lovastatin (mg/100 g dm) | 10.04 ± 0.14 a | 23.60 ± 0.63 e | 22.47 ± 0.11 d | 12.81 ± 0.10 c | 10.69 ± 0.18 b |
p-hydroxybenzoic acid (mg/100 g dm) | 1.66 ± 0.15 c | 1.31 ± 0.09 b | 1.33 ± 0.10 b | 0.81 ± 0.04 a | 0.73 ± 0.13 a |
L-phenylalanine (mg/100 g dm) | * | * | * | * | * |
Indole compounds | |||||
L-tryptophan (mg/100 g dw) | 7.77 ± 0.32 d | 3.15 ± 0.08 b | 2.27 ± 0.08 a | 4.51 ± 0.19 c | 3.10 ± 0.20 b |
6-methyl-D,L-tryptophan (mg/100 g dm) | 3.89 ± 0.19 ab | 4.81 ± 0.18 ab | 6.76 ± 0.24 b | 4.20 ± 0.16 ab | 2.70 ± 0.24 a |
5-hydroxy-L-tryptophan (mg/100 g dm) | 0.65 ± 0.05 a | 0.45 ± 0.05 a | 0.45 ± 0.05 a | 10.85 ± 0.15 c | 7.70 ± 0.20 b |
Serotonin (mg/100 g dm) | nd | nd | nd | nd | nd |
NB | WB | WB + LbA | MB | MB + LbP | |
---|---|---|---|---|---|
K | 11,829 ± 1529 b | 8893 ± 1010 a | 9004 ± 4475 a | 15,774 ± 843 c | 17,305 ± 1243 c |
Ca | 1295 ± 23 b | 1243 ± 64 d b | 965 ± 522 a | 820 ± 54 a | 1004 ± 250 a |
S | 1042 ± 102 b c | 935 ± 85 ab | 856 ± 440 a | 1166 ± 108 c | 1008 ± 69 ab |
Cl | 492 ± 66 bc | 428 ± 64 b | 285 ± 132 a | 548 ± 45 c | 413 ± 15 b |
Ga | 138 ± 0 c | 140 ± 0 c | 111 ± 0 a | 139 ± 0 c | 134 ± 0 b |
Zn | 93.1 ± 1.9 c | 89.3 ± 1.8 b | 73.6 ± 0.6 a | 88.8 ± 0.8 b | 102.7 ± 1.0 d |
Rb | 69.9 ± 5.1 b | 64.6 ± 3.7 ab | 59.4 ± 1.9 a | 100.2 ± 2.5 c | 100.3 ± 5.9 c |
Fe | 50.1 ± 2.8 a | 48.2 ± 1.4 a | 86.2 ± 0.5 c | 66.1 ± 2.8 b | 83.8 ± 1.3 c |
Cu | 33.6 ± 0.6e | 10.9 ± 0.3 a | 15.5 ± 0.1 c | 14.9 ± 0.0 b | 21.7 ± 0.2 d |
Ni | 7.56 ± 0.68 b | 4.31 ± 0.53 a | 16.84 ± 0.27 c | 4.74 ± 0.47 a | 16.33 ± 0.69 c |
Sr | 5.41 ± 0.35 b | 4.89 ± 0.14 b | 3.75 ± 0.38 a | 3.69 ± 0.32 a | 4.27 ± 0.40 a |
Se | 2.22 ± 0.04 a | 2.29 ± 0.10 a | 2.47 ± 0.06 b | 2.59 ± 0.06 b | 2.95 ± 0.16 c |
Mn | 2.18 ± 0.11 a | 5.20 ± 0.11 c | 4.42 ± 0.11 b | 6.15 ± 0.24 d | 9.00 ± 0.19 e |
Br | 2.09 ± 0.15 c | 1.39 ± 0.14 b | 0.75 ± 0.03 a | 2.94 ± 0.13 d | 2.10 ± 0.26 c |
Cr | 1.47 ± 0.30 a | 1.25 ± 0.12 a | 1.55 ± 0.63 a | 1.82 ± 0.68 a | 1.64 ± 0.70 a |
NB | WB | WB + LbA | MB | MB + LbP | |
---|---|---|---|---|---|
Total phenolics [mg chlorogenic acid/g dm] | 2154 ± 26 b | 1815 ± 44 a | 2414 ± 63 c | 2529 ± 20 d | 2663 ± 49 e |
Total tartaric esters [mg caffeic acid/g dm] | 440 ± 16 b | 391 ± 8 a | 559 ± 21 c | 614 ± 19 d | 642 ± 8 e |
Total flavonols [mg quercetin/g dm] | 589 ± 11 b | 483 ± 9 a | 772 ± 13 c | 787 ± 19c | 862 ± 15 d |
Total anthocyanins [mg cyanidin/100 g dm] | 242 ± 6 b | 191 ± 14 a | 281 ± 13 c | 269 ± 14 c | 339 ± 11 d |
Lycopene [mg/100 g dm] | 4.11 ± 0.03 e | 3.48 ± 0.08 d | 2.00 ± 0.01 a | 2.86 ± 0.12 c | 2.66 ± 0.16 b |
β-carotene [mg/100 g dm] | 8.65 ± 0.13 d | 3.92 ± 0.22 c | 2.58 ± 0.07 a | 2.82 ± 0.18 ab | 3.10 ± 0.25 b |
DPPH [mg TE/1 g dm] | 99.6 ± 9.5 b | 68.8 ± 0.9 a | 119.2 ± 3.6 c | 149.5 ± 3.3 d | 142.5 ± 9.5 d |
ABTS [mg TE/1 g dm] | 494 ± 1 b | 350 ± 3 a | 510 ± 7 c | 705 ± 3 e | 572 ± 11 d |
FRAP [mM Fe2+ /1 g dm] | 3893 ± 260 a | 4058 ± 146 a | 4707 ± 210 b | 5876 ± 99 c | 4926 ± 285 b |
NB | WB | WB + LbA | MB | MB + LbP | |
---|---|---|---|---|---|
TDF | 46.80 ± 1.39 c | 50.38 ± 1.54 ab | 51.83 ± 1.59 b | 48.67 ± 0.99 ac | 50.66 ± 1.50 ab |
SDF | 4.65 ± 0.22 a | 4.82 ± 0.19 a | 5.12 ± 0.30 ab | 5.43 ± 0.50 b | 5.21 ± 0.11 ab |
IDF | 42.15 ± 1.17 c | 45.56 ± 1.63 ab | 46.71 ± 1.62 b | 43.24 ± 1.49 ac | 45.45 ± 1.57 ab |
Total glucans | 26.11 ± 1.11 a | 23.12 ± 0.61 b | 25.85 ± 0.64 a | 19.44 ± 0.43 c | 24.53 ± 1.56 ab |
α-glucans | 0.85 ± 0.03 ab | 0.83 ± 0.09 a | 0.66 ± 0.03 c | 0.81 ± 0.07 a | 0.94 ± 0.04 b |
β-glucans | 25.27 ± 1.09 a | 22.30 ± 0.52 b | 25.19 ± 0.65 a | 18.63 ± 0.37 c | 23.59 ± 1.52 ab |
Chitin | 20.0 ± 1.1 c | 21.4 ± 0.6 ac | 23.0 ± 0.7 ab | 23.1 ± 0.4 b | 23.0 ± 0.5 ab |
Chitosan | 0.64 ± 0.02 e | 0.20 ± 0.04 ab | 0.15 ± 0.03 a | 0.41 ± 0.06 d | 0.25 ± 0.05 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venugopal, K.; Satora, P.; Kała, K.; Sułkowska-Ziaja, K.; Szewczyk, A.; Ostachowicz, B.; Muszyńska, B.; Bernaś, E. Fermented, Freeze-Dried Snacks from Lactarius deliciosus as a Source of Functional Compounds and Lactic Acid Bacteria. Molecules 2025, 30, 1566. https://doi.org/10.3390/molecules30071566
Venugopal K, Satora P, Kała K, Sułkowska-Ziaja K, Szewczyk A, Ostachowicz B, Muszyńska B, Bernaś E. Fermented, Freeze-Dried Snacks from Lactarius deliciosus as a Source of Functional Compounds and Lactic Acid Bacteria. Molecules. 2025; 30(7):1566. https://doi.org/10.3390/molecules30071566
Chicago/Turabian StyleVenugopal, Kavya, Paweł Satora, Katarzyna Kała, Katarzyna Sułkowska-Ziaja, Agnieszka Szewczyk, Beata Ostachowicz, Bożena Muszyńska, and Emilia Bernaś. 2025. "Fermented, Freeze-Dried Snacks from Lactarius deliciosus as a Source of Functional Compounds and Lactic Acid Bacteria" Molecules 30, no. 7: 1566. https://doi.org/10.3390/molecules30071566
APA StyleVenugopal, K., Satora, P., Kała, K., Sułkowska-Ziaja, K., Szewczyk, A., Ostachowicz, B., Muszyńska, B., & Bernaś, E. (2025). Fermented, Freeze-Dried Snacks from Lactarius deliciosus as a Source of Functional Compounds and Lactic Acid Bacteria. Molecules, 30(7), 1566. https://doi.org/10.3390/molecules30071566