Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries
Abstract
:1. Introduction
2. Results
2.1. Preparation of Extracts from A. melanocarpa Berries and Extraction Yields
2.2. Essential Oil Composition
2.3. Fatty Acid Profile of Oil Extracts (SFEEX and UAMH)
2.4. Quali-Quantitative Determination of Carotenoids and Tocopherols in SFEEX
2.5. Analysis of Polyphenols in UAMM
2.6. Protective Effect of UAMM against Cholesterol Degradation
2.7. Cytotoxic Effect of UAMM in Cancer A375 Cells and HaCaT Keratinocytes
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material
4.3. Apparatus for Supercritical CO2 Extraction
4.4. Ultrasound Assisted Maceration
4.5. Hydrodistillation
4.6. Essential Oil Analysis
4.7. Polyphenols Analysis Using LC-ESI-MS
4.8. Saponification of SFEEX and UAMM for Fatty Acid Preparation
4.9. Fatty Acid Analysis
4.10. Carotenoid and Tocopherols Analysis of SFEEX Using HPLC-DAD and HPLC-FLU
4.11. Cholesterol Oxidation Assay
4.12. Cell Culture
4.13. Evaluation of Cytotoxic Effect Using MTT Viability Assay
4.14. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R. Phenolic compounds from new natural sources—Plant genotype and ontogenetic variation. Molecules 2023, 28, 1731. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Rescigno, A.; Piras, A.; Atzeri, A.; Scano, P.; Porcedda, S.; Zucca, P.; Dessì, M.A. Chemical composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil from Cynomorium coccineum L. Food Chem. Toxicol. 2012, 50, 3799–3807. [Google Scholar] [CrossRef] [PubMed]
- Berwal, M.K.; Ram, C.; Gurjar, P.S.; Gora, J.S.; Kumar, R.; Verma, A.K.; Singh, D.; Basile, B.; Rouphael, Y.; Kumar, P. The Bioactive compounds and fatty acid profile of bitter apple seed oil obtained in hot, arid environments. Horticulturae 2022, 8, 259. [Google Scholar] [CrossRef]
- Borowska, S.; Brzóska, M.M. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr. Rev. Food Sci. Food Saf. 2016, 15, 982–1017. [Google Scholar] [CrossRef] [PubMed]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef]
- Buda, V.; Brezoiu, A.-M.; Berger, D.; Pavel, I.Z.; Muntean, D.; Minda, D.; Dehelean, C.A.; Soica, C.; Diaconeasa, Z.; Folescu, R.; et al. Biological evaluation of black chokeberry extract free and embedded in two mesoporous silica-type matrices. Pharmaceutics 2020, 12, 838. [Google Scholar] [CrossRef] [PubMed]
- Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; Orsavova, J. Fruits of black chokeberry Aronia melanocarpa in the prevention of chronic diseases. Molecules 2017, 22, 944. [Google Scholar] [CrossRef] [PubMed]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Combrzyński, M.; Biernacka, B.; Różyło, R.; Bąkowski, M.; Wojtunik-Kulesza, K.; Mołdoch, J.; Kowalska, I. Fresh chokeberry (Aronia melanocarpa) fruits as valuable additive in extruded snack pellets: Selected nutritional and physiochemical properties. Plants 2023, 12, 3276. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry Aronia melanocarpa L.—A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Suh, K.S.; Kim, Y.I.; Jang, B.-K.; Kim, B.-H.; Yim, S.-V. Bioactive Fraction of Aronia melanocarpa fruit inhibits adipogenic differentiation of cultured 3T3-L1 cells. Appl. Sci. 2021, 11, 9224. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef]
- Ren, Y.; Frank, T.; Meyer, G.; Lei, J.; Grebenc, J.R.; Slaughter, R.; Gao, Y.G.; Kinghorn, A.D. Potential benefits of black chokeberry (Aronia melanocarpa) fruits and their constituents in improving human health. Molecules 2022, 27, 7823. [Google Scholar] [CrossRef]
- Martin, D.A.; Taheri, R.; Brand, M.H.; Draghi, A.; Sylvester, F.A.; Bolling, B.W. Anti-inflammatory activity of aronia berry extracts in murine splenocytes. J. Funct. Foods 2014, 8, 68–75. [Google Scholar] [CrossRef]
- Mikami, N.; Hosotani, Y.; Saso, T.; Ohta, T.; Miyashita, K.; Hosokawa, M. Black chokeberry (Aronia melanocarpa) juice residue and its ethanol extract decrease serum lipid levels in high-fat diet-fed C57BL/6J mice. Int. J. Funct. Nutr. 2020, 1, 10. [Google Scholar] [CrossRef]
- Ćujić, N.; Šavikin, K.; Jankovic’, T.; Pljevljakušic´, D.; Zdunic´, G.; Ibric´, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Šavikin, K.; Zduni´c, G.; Jankovi´c, T.; Goevac, D.; Stanojkovi´c, T.; Pljevljakuši´c, D. Berry fruit teas: Phenolic composition and cytotoxic activity. Food Res. Int. 2014, 62, 677–683. [Google Scholar] [CrossRef]
- Zlatanov, M.D. Lipid composition of Bulgarian chokeberry, black currant and rose hip seed oils. J. Sci. Food Agric. 1999, 79, 1620–1624. [Google Scholar] [CrossRef]
- Hirvi, T.; Honkanen, E. Analysis of the volatile constituents of black chokeberry (Aronia melanocarpa Ell.). J. Sci. Food Agric. 1985, 36, 808–810. [Google Scholar] [CrossRef]
- Kraujalyte, V.; Leitner, E.; Venskutonis, P.R. Characterization of Aronia melanocarpa volatiles by head-space-solid-phase microextraction (HS-SPME) simultaneous distillation/extraction (SDE) and gas-chromatography-olfactometry (GC-O). J. Agric. Food Chem. 2013, 61, 4728–4736. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Piras, C.; Porcedda, S.; Rosa, A. Comparative evaluation of the composition of vegetable essential and fixed oils obtained by supercritical extraction and conventional techniques: A chemometric approach. Int. J. Food Sci. Technol. 2021, 56, 4496–4505. [Google Scholar] [CrossRef]
- Braga, M.E.M.; Gaspar, M.C.; de Sousa, H.C. Supercritical fluid technology for agrifood materials processing. Curr. Opin. Food Sci. 2023, 50, 100983. [Google Scholar] [CrossRef]
- Satriana, S.; Supardan, M.D.; Arpi, N.; Mustapha, A.W. Development of methods used in the extraction of avocado oil. Eur. J. Lipid Sci. Technol. 2019, 121, 1800210. [Google Scholar] [CrossRef]
- Ramić, M.; Vidović, S.; Zeković, Z.; Vladić, J.; Cvejin, A.; Pavlić, B. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason. Sonochem. 2015, 23, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhu, M.; Li, S.; Ma, X.; Hu, F. Ultrasound-assisted extraction of polyphenols from Chinese propolis. Front. Sustain. Food Syst. 2023, 7, 1131959. [Google Scholar] [CrossRef]
- Kyriakou, S.; Tragkola, V.; Plioukas, M.; Anestopoulos, I.; Chatzopoulou, P.S.; Sarrou, E.; Trafalis, D.T.; Deligiorgi, M.V.; Franco, R.; Pappa, A.; et al. Chemical and biological characterization of the anticancer potency of Salvia fruticosa in a model of human malignant melanoma. Plants 2021, 10, 2472. [Google Scholar] [CrossRef]
- Chen, J.; Huang, C.; Liu, F.; Xu, Z.; Li, L.; Huang, Z.; Zhang, H. Methylwogonin exerts anticancer effects in A375 human malignant melanoma cells through apoptosis induction, DNA damage, cell invasion inhibition and downregulation of the mTOR/PI3K/Akt signalling pathway. Arch. Med. Sci. 2019, 15, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.; Tuberoso, C.I.G.; Atzeri, A.; Melis, M.P.; Bifulco, E.; Dessì, M.A. Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress. Food Chem. 2011, 129, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST/EPA/NIH. Mass Spectral Library; National Institute of Standard and Technology, Gaithersburg: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Pino, J.A.; Quijano, C.E. Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Food Sci. Technol. 2012, 32, 76–83. [Google Scholar] [CrossRef]
- Rosa, A.; Maxia, A.; Putzu, D.; Atzeri, A.; Era, B.; Fais, A.; Sanna, C.; Piras, A. Chemical composition of Lycium europaeum fruit oil obtained by supercritical CO2 extraction and evaluation of its antioxidant activity, cytotoxicity and cell absorption. Food Chem. 2017, 230, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ekbbal, R.; Salar, S.; Yasheshwar; Ali, S.A.; Jaiswal, A.K.; Singh, M.; Yadav, D.K.; Kumar, S. Gaurav Quality standards and pharmacological interventions of natural oils: Current scenario and future perspectives. ACS Omega 2023, 8, 39945–39963. [Google Scholar] [CrossRef] [PubMed]
- Butorova, L.; Vitova, E.; Polovka, M. Comparison of volatiles identified in Aronia melanocarpa and Amelanchier alnifolia using solid-phase microextraction coupled to gas chromatography-mass spectrometry. J. Food Nutr. Res. 2016, 55, 57–68. [Google Scholar]
- Romani, A.; Vignolini, P.; Ieri, F.; Heimler, D. Polyphenols and volatile compounds in commercial chokeberry (Aronia melanocarpa) products. Nat. Prod. Commun. 2016, 11, 99–102. [Google Scholar] [CrossRef]
- Mastelić, J.; Politeo, O.; Jerković, I. Contribution to the analysis of the essential oil of Helichrysum italicum (Roth) G. Don. Determination of ester bonded acids and phenols. Molecules 2008, 13, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Pieszka, M.; Gogol, P.; Pietras, M.; Pieszka, M. Valuable Components of Dried Pomaces of Chokeberry, Black Currant, Strawberry, Apple and Carrot as a Source of Natural Antioxidants and Nutraceuticals in the Animal Diet. Ann. Anim. Sci. 2015, 15, 475–491. Available online: https://sciendo.com/article/10.2478/aoas-2014-0072 (accessed on 3 January 2024). [CrossRef]
- Milala, J.; Grzelak-Błaszczyk, K.; Sójka, M.; Kosmala, M.; Dobrzyńska-Inger, A.; Rój, E. Changes of bioactive components in berry seed oils during supercritical CO2 extraction. J. Food Process Pres. 2018, 42, e13368. [Google Scholar] [CrossRef]
- Kim, O.Y.; Song, J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci. 2024, 337, 122356. [Google Scholar] [CrossRef] [PubMed]
- Razungles, A.; Oszmianski, J.; Sapis, J.C. Determination of carotenoids in fruits of Rosa sp. (Rosa canina and Rosa rugosa) and of chokeberry (Aronia melanocarpa). J. Food Sci. 1989, 54, 774–775. [Google Scholar] [CrossRef]
- Olsson, M.E.; Gustavsson, K.E.; Andersson, S.; Nilsson, Å.; Duan, R.D. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem. 2004, 52, 7264–7271. [Google Scholar] [CrossRef]
- Rodríguez-Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic composition, radical scavenging activity and an approach for authentication of Aronia melanocarpa berries, juice, and pomace. J. Food Sci. 2019, 84, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Tasinov, O.; Dincheva, I.; Badjakov, I.; Grupcheva, C.; Galunska, B. Comparative phytochemical analysis of Aronia melanocarpa L. fruit juices on Bulgarian market. Plants 2022, 11, 1655. [Google Scholar] [CrossRef] [PubMed]
- Gerasimov, M.A.; Perova, I.B.; Eller, K.I.; Akimov, M.Y.; Sukhanova, A.M.; Rodionova, G.M.; Ramenskaya, G.V. Investigation of polyphenolic compounds in different varieties of black chokeberry Aronia melanocarpa. Molecules 2023, 28, 4101. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, G.S.; Park, S.; Kim, Y.H.; Kim, M.B.; Lee, W.S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography-tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014, 146, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bataraga, A.; Valkovska, V. Phytochemical profile of Chokeberry (Aronia melanocarpa). In Key Engineering Materials; Trans Tech Publications, Ltd.: Stafa-Zurich, Switzerland, 2020; Volume 850, pp. 184–189. [Google Scholar] [CrossRef]
- Edreva, A.M.; Velikova, V.B.; Tsonev, T.D. Phenylamides in plants. Russ. J. Plant Physiol. 2007, 54, 287–301. [Google Scholar] [CrossRef]
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia melanocarpa: Identification and exploitation of its phenolic components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- Rosa, A.; Atzeri, A.; Deiana, M.; Melis, M.P.; Incani, A.; Minassi, A.; Cabboi, B.; Appendino, G. Prenylation preserves antioxidant properties and effect on cell viability of the natural dietary phenol curcumin. Food Res. Int. 2014, 57, 225–233. [Google Scholar] [CrossRef]
- Canzoneri, F.; Leoni, V.; Rosso, G.; Risso, D.; Menta, R.; Poli, G. Oxysterols as reliable markers of quality and safety in cholesterol containing food ingredients and products. Front. Nutr. 2022, 9, 853460. [Google Scholar] [CrossRef]
- Anderson, A.; Campo, A.; Fulton, E.; Corwin, A.; Jerome, W.G., 3rd; O’Connor, M.S. 7-Ketocholesterol in disease and aging. Redox Biol. 2020, 29, 101380. [Google Scholar] [CrossRef]
- Rosa, A.; Atzeri, A.; Nieddu, M.; Appendino, G. New insights into the antioxidant activity and cytotoxicity of arzanol and effect of methylation on its biological properties. Chem. Phys. Lipids 2017, 205, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Petreska Stanoeva, J.; Balshikevska, E.; Stefova, M.; Tusevski, O.; Simic, S.G. Comparison of the effect of acids in solvent mixtures for extraction of phenolic compounds from Aronia melanocarpa. Nat. Prod. Commun. 2020, 15, 1934578X20934675. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 3rd ed.; Council of Europe Press: Strasbourg, France, 1997; pp. 121–122.
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Ingegneri, M.; Germanò, M.P.; Miori, L.; Battistini, G.; Betuzzi, F.; Malaspina, P.; Trombetta, D.; Cornara, L. Pharmacognostic evaluation of Monarda didyma L. growing in Trentino (Northern Italy) for cosmeceutical applications. Plants 2024, 13, 112. [Google Scholar] [CrossRef]
- Smeriglio, A.; Toscano, G.; Denaro, M.; De Francesco, C.; Agozzino, S.; Trombetta, D. Nitrogen headspace improves the extra virgin olive oil shelf-life, preserving its functional properties. Antioxidants 2019, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.L.; Vacca, G.; Addis, R.; Pintore, G.; Nieddu, M.; Piras, F.; Sogos, V.; Fancello, F.; Zara, S.; Rosa, A. Waste Citrus limon leaves as source of essential oil rich in limonene and citral: Chemical characterization, antimicrobial and antioxidant properties, and effects on cancer cell viability. Antioxidants 2023, 12, 1238. [Google Scholar] [CrossRef]
Number | tR (min) | RIEXP 1 | RILIT | Compound | % Area | Formula | Class |
---|---|---|---|---|---|---|---|
1 | 6.1647 | 960 | 952 | Benzaldehyde | 1.6 | C7H6O | Other |
2 | 6.9502 | 989 | 988 | Myrcene | 0.2 | C10H16 | HM |
3 | 8.2888 | 1028 | 1024 | Limonene | 9.7 | C10H16 | HM |
4 | 9.1624 | 1052 | n.i. | 0.2 | |||
5 | 14.0117 | 1174 | 1167 | Menthol | 0.5 | C10H20O | OM |
6 | 14.2201 | 1179 | 1178 | Naphthalene | 0.7 | C10H8 | Other |
7 | 16.7609 | 1238 | 1239 | Carvone | 0.7 | C10H14O | OM |
8 | 18.3079 | 1274 | 1270 * | Vitispirane * | 0.8 | C13H20O | Other |
9 | 18.5964 | 1281 | 1282 | (E)-Anethole | 6.1 | C10H12O | OM |
10 | 19.1495 | 1294 | 1298 | Carvacrol | 0.5 | C10H14O | OM |
11 | 24.1991 | 1413 | n.i. | 0.4 | |||
12 | 24.2873 | 1415 | 1421 | Linalool butanoate | 0.3 | C14H24O2 | OM |
13 | 25.4014 | 1442 | 1434 | Neryl acetone | 1.4 | C13H22O | OM |
14 | 26.3392 | 1465 | 1475 | trans-Cadina-1(6),4-diene | 0.3 | C15H24 | HS |
15 | 26.5957 | 1471 | n.i. | 2.0 | |||
16 | 26.74 | 1475 | 1479 | Ar-curcumene | 0.7 | C15H22 | HS |
17 | 27.1247 | 1484 | n.i. | 0.3 | |||
18 | 28.2068 | 1511 | 1511 | δ-Amorphene | 2.9 | C15H24 | HS |
19 | 28.3671 | 1515 | 1513 | γ-Cadinene | 1.3 | C15H24 | HS |
20 | 28.7358 | 1524 | 1533 | trans-Cadina-1,4-diene | 0.3 | C15H24 | HS |
21 | 29.2488 | 1538 | 1547 | Italicene epoxide | 17.2 | C15H24O | OS |
22 | 30.403 | 1567 | 1565 | Dodecanoic acid | 9.7 | C12H24O2 | Other |
23 | 32.3908 | 1619 | 1618 | 1,10-di-epi-Cubenol | 1.3 | C15H26O | OS |
24 | 32.9519 | 1634 | n.i. | 1.2 | |||
25 | 33.1041 | 1638 | 1644 | α-Muurolol | 0.6 | C15H26O | OS |
26 | 33.7373 | 1655 | n.i. | 0.9 | |||
27 | 33.8896 | 1659 | n.i. | 1.1 | |||
28 | 34.7633 | 1682 | 1679 | Khusinol | 10.5 | C15H24O | OS |
29 | 36.1339 | 1720 | 1724 | (Z)-Nuciferol | 0.7 | C15H22O | OS |
30 | 37.4725 | 1757 | n.i. | 1.5 | |||
31 | 40.1897 | 1835 | n.i. | 0.4 | |||
32 | 40.2778 | 1838 | n.i. | 0.4 | |||
33 | 40.6305 | 1849 | n.i. | 2.4 | |||
34 | 40.871 | 1856 | n.i. | 0.9 | |||
35 | 42.4099 | 1901 | 1889 | (5Z,9E)-Farnesyl acetone | 0.6 | C18H30O | OS |
36 | 43.011 | 1920 | 1921 | methyl Hexadecanoate | 0.5 | C17H34O2 | Other |
37 | 43.7485 | 1942 | n.i. | 0.4 | |||
38 | 44.3336 | 1960 | 1959 | Hexadecanoic acid | 12.4 | C16H32O2 | Other |
39 | 49.4153 | 2124 | 2132 | Linoleic acid | 3.1 | C18H32O2 | Other |
40 | 49.5435 | 2128 | 2141 | Oleic acid | 1.0 | C18H34O2 | Other |
41 | 66.6001 | 2750 | n.i. | 1.0 | |||
42 | 71.7619 | 2891 | 2900 | Nonacosane | 1.1 | C29H60 | Other |
Total identified | 86.7 | ||||||
Hydrocarbon monoterpenes (HM) | 9.9 | ||||||
Oxygenated monoterpenes (OM) | 9.5 | ||||||
Hydrocarbon sesquiterpenes (HS) | 5.5 | ||||||
Oxygenated sesquiterpenes (OS) | 30.9 | ||||||
Other compounds (Other) | 30.9 |
Compound | RT * (min) | [M − H]−/[M + H]+ m/z | Area (%) |
---|---|---|---|
Dihydrocaffeic acid a | 0.9 | 181/ | 0.89 ± 0.04 |
(−)-Epigallocatechin-glucuronide | 2.5 | /483 | 3.32 ± 0.15 |
Methyl-epigallocatechin | 2.9 | /321 | 5.68 ± 0.22 |
Galloyl glucose | 3.6 | /333 | 2.28 ± 0.12 |
Quercetin-sulfate | 4.2 | /383 | 15.58 ± 0.56 |
Myricetin 3-arabinoside | 9.4 | /451 | 1.11 ± 0.03 |
Eriodictyol-7-O-glucoside a | 10.2 | /451 | 1.95 ± 0.04 |
Chlorogenic acid a | 14.1 | 353/ | 0.16 ± 0.01 |
Quercetin-O-arabinoside | 18.0 | /435 | 1.83 ± 0.04 |
Feruloyl glucose | 20.8 | 355/ | 0.31 ± 0.01 |
Cyanidin-3-O-glucoside a | 22.7 | /449 | 1.39 ± 0.03 |
Hexahydroxydiphenoyl-glucose | 24.1 | 481/ | 0.04 ± 0.00 |
Pelargonodin-rutinoside-glicoside | 25.8 | /742 | 0.91 ± 0.02 |
Myricetin-3-O-galactoside a | 27.4 | /481 | 1.80 ± 0.08 |
Ligstroside | 29.1 | /525 | 2.19 ± 0.14 |
Phloretin-xylosyl-glucoside | 30.4 | /569 | 2.16 ± 0.05 |
Delphinidin-3-O-glucoside a | 30.8 | 464/ | 0.08 ± 0.00 |
Quercetin-3-sambubioside | 31.7 | 595/ | 0.05 ± 0.00 |
Luteolin 7-O-apiosyl-gucoside | 32.2 | /581 | 1.68 ± 0.05 |
Rutin a | 32.7 | 609/ | 0.15 ± 0.01 |
Delphinidin-3-O-galactoside a | 33.0 | 464/ | 0.16 ± 0.01 |
Isorhamnetin-3-O-glucoside 7-O-rhamnoside | 33.8 | /625 | 1.61 ± 0.06 |
Quercetin-pentoside-deoxydihexoside | 34.6 | /743 | 1.22 ± 0.08 |
Quercetin-O-rhamnose-O-glucose | 34.8 | 609/ | 0.04 ± 0.00 |
Quercetin 3-sophoroside | 35.6 | /625 | 1.55 ± 0.02 |
(-)-Epigallocatechin-gallate a | 36.2 | 457/ | 0.03 ± 0.00 |
1-Sinapoyl-2-feruloylgentiobiose | 36.6 | 723/ | 0.04 ± 0.00 |
Phloridzin | 37.3 | /437 | 1.69 ± 0.07 |
Pectolinarin | 37.8 | /623 | 0.00 ± 0.00 |
Resveratrol-3-O-beta-D-glucopyranoside (Piceid) a | 38.2 | /391 | 1.31 ± 0.02 |
Pelargonidin 3-(6″-acetyl) glucoside | 38.6 | 353/ | 0.03 ± 0.00 |
Pelargonidin-O-malonyl-glucoside | 39.9 | 518/ | 0.05 ± 0.00 |
Myricetin a | 40.9 | /319 | 1.89 ± 0.04 |
Methoxybenzoic acid rhamnoside | 41.6 | 297/ | 1.69 ± 0.05 |
Procyanidin dimer | 42.0 | 577/ | 0.04 ± 0.00 |
Resveratrol trimer | 42.8 | /679 | 1.90 ± 0.02 |
Cichoric acid a | 43.5 | 474/ | 2.86 ± 0.12 |
Procyanidin dimer | 44.4 | 577/ | 0.04 ± 0.00 |
Phloretin a | 45.6 | /275 | 4.09 ± 0.18 |
Procyanidin dimer | 46.8 | 577/ | 0.04 ± 0.00 |
6-Geranylnaringenin | 47.1 | 407/ | 0.13 ± 0.01 |
5-Pentacosenylresorcinol | 47.9 | 457/ | 0.03 ± 0.00 |
5-Pentacosylresorcinol | 51.8 | 459/ | 0.06 ± 0.00 |
Caffeoyl di-coumaroyl spermidine | 70.7 | /600 | 3.95 ± 0.12 |
Coumaroyl di-feruoyl spermidine | 73.1 | /644 | 3.70 ± 0.17 |
di-Caffeoyl coumaroyl spermidine | 74.4 | /616 | 7.60 ± 0.14 |
Peonidin-O-acetyl-glicoside | 56.3 | /506 | 2.09 ± 0.07 |
Caffeoyl glucose | 57.0 | /343 | 0.00 ± 0.00 |
Kaempferol-3-O-rhamnosyl-galactoside | 58.1 | 593/ | 0.00 ± 0.00 |
Apigenin 6-C-α-L-arabinosyl-8-C-β-L-arabinoside | 60.7 | 533/ | 1.23 ± 0.02 |
Luteolin 7-O-(2-apiosyl-6-acetyl) glucoside | 62.0 | /623 | 1.63 ± 0.05 |
Digalloyl quinic acid | 62.8 | 495/ | 0.35 ± 0.01 |
5-Carboxypyranocyanidin-3-pentoside | 64.1 | /488 | 2.94 ± 0.08 |
Quercetin hexose glucuronide | 64.4 | 639/ | 0.06 ± 0.00 |
Galloyl-hexahydroxydiphenoylglucose | 65.4 | 633/ | 0.06 ± 0.00 |
Peonidin 3-O-sophoroside | 65.8 | /626 | 3.05 ± 0.08 |
Malvidin 3-O-(6-O-p-coumaroyl) glucoside-4-vinylphenol adduct (pigment B) | 79.0 | /756 | 9.28 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piras, A.; Porcedda, S.; Smeriglio, A.; Trombetta, D.; Nieddu, M.; Piras, F.; Sogos, V.; Rosa, A. Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries. Molecules 2024, 29, 2577. https://doi.org/10.3390/molecules29112577
Piras A, Porcedda S, Smeriglio A, Trombetta D, Nieddu M, Piras F, Sogos V, Rosa A. Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries. Molecules. 2024; 29(11):2577. https://doi.org/10.3390/molecules29112577
Chicago/Turabian StylePiras, Alessandra, Silvia Porcedda, Antonella Smeriglio, Domenico Trombetta, Mariella Nieddu, Franca Piras, Valeria Sogos, and Antonella Rosa. 2024. "Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries" Molecules 29, no. 11: 2577. https://doi.org/10.3390/molecules29112577
APA StylePiras, A., Porcedda, S., Smeriglio, A., Trombetta, D., Nieddu, M., Piras, F., Sogos, V., & Rosa, A. (2024). Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries. Molecules, 29(11), 2577. https://doi.org/10.3390/molecules29112577