Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review
Abstract
:1. Introduction
1.1. Phenolic Compounds
1.2. Phenolic Compounds and Their Potential Therapeutic Benefits in Chronic Kidney Diease
2. Results
3. Discussion
3.1. The Role of Oxidative Stress in Chronic Kidney Disease Pathogenesis
3.2. Diabetes and Dietary Sugar Consumption
3.3. Hypertension and Cardiovascular Disease
3.4. Nephrotoxicity
3.5. Other Related Conditions
3.6. Polyphenol-Rich Foods and Their Reported Activity
3.7. Notes on the Excluded Research
4. Materials and Methods
4.1. Formulatation of the Research Question (I)
4.2. Searched Databases and the Search Strategies (II)
4.3. Inclusion and Exclusion Criteria (III)
4.4. Critical Analysis of the Selected Studies (IV)
4.5. Summary of the Results (V)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative Stress, Anti-Oxidant Therapies and Chronic Kidney Disease. Nephrology 2012, 17, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease Study Highlights the Global, Regional, and National Trends of Chronic Kidney Disease Epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250 Causes of Death: Reference and Alternative Scenarios for 2016–40 for 195 Countries and Territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.A. Relationships of Race and Ethnicity to Progression of Kidney Dysfunction and Clinical Outcomes in Patients with Chronic Kidney Failure. Adv. Ren. Replace. Ther. 2004, 11, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Elliott, R.W. Social Determinants of Health: Understanding the Basics and Their Impact on Chronic Kidney Disease. Nephrol. Nurs. J. 2021, 48, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; Hecking, M.; Chesnaye, N.C.; Jager, K.J. Sex and Gender Disparities in the Epidemiology and Outcomes of Chronic Kidney Disease. Nat. Rev. Nephrol. 2018, 14, 151–164. [Google Scholar] [CrossRef]
- García, G.G.; Iyengar, A.; Kaze, F.; Kierans, C.; Padilla-Altamira, C.; Luyckx, V.A. Sex and Gender Differences in Chronic Kidney Disease and Access to Care around the Globe. Semin. Nephrol. 2022, 42, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Troncoso, N.; Sierra, H.; Carvajal, L.; Delpiano, P.; Günther, G. Fast High Performance Liquid Chromatography and Ultraviolet-Visible Quantification of Principal Phenolic Antioxidants in Fresh Rosemary. J. Chromatogr. A 2005, 1100, 20–25. [Google Scholar] [CrossRef]
- Liu, W.; Cui, X.; Zhong, Y.; Ma, R.; Liu, B.; Xia, Y. Phenolic Metabolites as Therapeutic in Inflammation and Neoplasms: Molecular Pathways Explaining Their Efficacy. Pharmacol. Res. 2023, 193, 106812. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R. Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules 2023, 28, 1731. [Google Scholar] [CrossRef]
- Kumar, L.; Bharti; Goutam, E.; Choudhary, D. Perspectives of Secondary Metabolites in Reference to Vegetable Crops: A Review. Int. J. Environ. Clim. Chang. 2023, 13, 873–882. [Google Scholar] [CrossRef]
- Gupta, M.; Mishra, A. Bioactive Flavonoids: A Comparative Overview of the Biogenetic and Chemical Synthesis Approach. Mini-Rev. Med. Chem. 2023, 23, 1818–1837. [Google Scholar] [CrossRef]
- Dave Mehta, S.; Upadhyay, S.; Rai, G. Importance of Flavonoid as Secondary Metabolites. In Flavonoid Metabolism—Recent Advances and Applications in Crop Breeding; Intechopen: London, UK, 2023. [Google Scholar] [CrossRef]
- Nabil-Adam, A.; Elnosary, M.E.; Ashour, M.L.; Abd El-Moneam, N.M.; Shreadah, M.A. Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties. In Flavonoid Metabolism—Recent Advances and Applications in Crop Breeding; Intechopen: London, UK, 2023. [Google Scholar] [CrossRef]
- Safe, S.; Jayaraman, A.; Chapkin, R.S.; Howard, M.; Mohankumar, K.; Shrestha, R. Flavonoids: Structure–Function and Mechanisms of Action and Opportunities for Drug Development. Toxicol. Res. 2021, 37, 147–162. [Google Scholar] [CrossRef]
- Ravindran, R.; Swamy, M.K.; Jaganathan, R. Therapeutic Potential of Plant Polyphenolics and Their Mechanistic Action against Various Diseases. Nat. Bio-Act. Compd. Chem. Pharmacol. Health Care Pract. 2019, 2, 313–351. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, S.; Ansari, M.A.; Al Fatease, A.; Safhi, A.Y.; Hani, U.; Jahan, R.; Alomary, M.N.; Ansari, M.N.; Ahmed, N.; Wahab, S.; et al. Plant-Derived Bioactive Compounds in the Management of Neurodegenerative Disorders: Challenges, Future Directions and Molecular Mechanisms Involved in Neuroprotection. Pharmaceutics 2023, 15, 749. [Google Scholar] [CrossRef]
- Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021, 26, 4021. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, P.; Baquero, L.P.; Larrota, H.R. Flavonoids. In Bioactive Compounds—Health Benefits and Potential Applications; Woodhead Publishing: Cambridge, UK, 2019; pp. 265–288. [Google Scholar] [CrossRef]
- Khan, A.K.; Kousar, S.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H.; Anjum, S. Nano-Elicitation as an Effective and Emerging Strategy for in Vitro Production of Industrially Important Flavonoids. Appl. Sci. 2021, 11, 1694. [Google Scholar] [CrossRef]
- Lo, A.H.; Liang, Y.C.; Lin-Shiau, S.Y.; Ho, C.T.; Lin, J.K. Carnosol, an Antioxidant in Rosemary, Suppresses Inducible Nitric Oxide Synthase through down-Regulating Nuclear Factor-ΚB in Mouse Macrophages. Carcinogenesis 2002, 23, 983–991. [Google Scholar] [CrossRef]
- Kang, H.; Kim, B. Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State. Foods 2023, 12, 925. [Google Scholar] [CrossRef] [PubMed]
- Koes, R.E.; Quattrocchio, F.; Mol, J.N.M. The Flavonoid Biosynthetic Pathway in Plants: Function and Evolution. BioEssays 1994, 16, 123–132. [Google Scholar] [CrossRef]
- Rashmi, H.B.; Negi, P.S. Phenolic Acids from Vegetables: A Review on Processing Stability and Health Benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Deng, H.; Xue, H.; Wang, J.; Hong, K.; Gao, Y.; Kang, X.; Fan, G.; Huang, W.; Zhan, J.; et al. Research Progress Regarding the Effect and Mechanism of Dietary Phenolic Acids for Improving Nonalcoholic Fatty Liver Disease via Gut Microbiota. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1128–1147. [Google Scholar] [CrossRef] [PubMed]
- Farha, A.K.; Yang, Q.Q.; Kim, G.; Li, H.B.; Zhu, F.; Liu, H.Y.; Gan, R.Y.; Corke, H. Tannins as an Alternative to Antibiotics. Food Biosci. 2020, 38, 100751. [Google Scholar] [CrossRef]
- Tong, Z.; He, W.; Fan, X.; Guo, A. Biological Function of Plant Tannin and Its Application in Animal Health. Front. Vet. Sci. 2022, 8, 803657. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.Y.; Kim, M.Y.; Cho, J.Y. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, S.; Habtemariam, S.; Rahimi, R.; Nabavi, S.M. The What and Who of Dietary Lignans in Human Health: Special Focus on Prooxidant and Antioxidant Effects. Trends Food Sci. Technol. 2020, 106, 382–390. [Google Scholar] [CrossRef]
- Navarro-Orcajada, S.; Conesa, I.; Vidal-Sánchez, F.J.; Matencio, A.; Albaladejo-Maricó, L.; García-Carmona, F.; López-Nicolás, J.M. Stilbenes: Characterization, Bioactivity, Encapsulation and Structural Modifications. A Review of Their Current Limitations and Promising Approaches. Crit. Rev. Food Sci. Nutr. 2023, 63, 7269–7287. [Google Scholar] [CrossRef]
- Vijayan, N.; Haridas, M.; Abdulhameed, S. Stilbenes and Their Derivatives in Traditional Medicine. Bioresour. Bioprocess Biotechnol. 2017, 2, 407–418. [Google Scholar] [CrossRef]
- Hefer, M.; Huskic, I.M.; Petrovic, A.; Raguz-Lucic, N.; Kizivat, T.; Gjoni, D.; Horvatic, E.; Udiljak, Z.; Smolic, R.; Vcev, A.; et al. A Mechanistic Insight into Beneficial Effects of Polyphenols in the Prevention and Treatment of Nephrolithiasis: Evidence from Recent In Vitro Studies. Crystals 2023, 13, 1070. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Vagkopoulou, A.; Haddad, N.; Kontogiorgos, I.; Papatolios, T.; Papadopoulou, E.; Makridis, D.; Tsimikas, S.; Kalaitzidis, R.; Karasavvidou, D. #3813 Effect of Oral Flavonoids on Arterial Stiffness in Ckd: A Pilot Prospective Study. Nephrol. Dial. Transplant. 2023, 38, gfad063d_3813. [Google Scholar] [CrossRef]
- Haddad, N.; Bagopoulou, N.; Kontogiorgos, I.; Papatolios, T.; Papadopoulou, E.; Makridis, D.; Tzimikas, S.; Fountoglou, A.; Kalaitzidis, R.; Karasavvidou, D. Effect of Oral Flavonoids on Arterial Stiffness in Ckd—A Pilot Prospective Study. J. Hypertens. 2023, 41, e262. [Google Scholar] [CrossRef]
- Supriyadi, R.; Koswara, M.I.A.; Soelaeman, M.A.; Huang, I. The Effect of Antioxidants Supplementation on Oxidative Stress and Proinflammatory Biomarkers in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1413–1426. [Google Scholar] [CrossRef] [PubMed]
- Avila-Carrasco, L.; García-Mayorga, E.A.; Díaz-Avila, D.L.; Garza-Veloz, I.; Martinez-Fierro, M.L.; González-Mateo, G.T. Potential Therapeutic Effects of Natural Plant Compounds in Kidney Disease. Molecules 2021, 26, 6096. [Google Scholar] [CrossRef]
- Nayak, S.S.; Bhaijamal, R.A.; Vaghasia, J.; Shivani, R. Role of Plant Based Natural Antioxidents on Chronic Kidney Disease. Natl. J. Pharm. Sci. 2023, 3, 101–106. [Google Scholar] [CrossRef]
- Casanova, A.G.; López-Hernández, F.J.; Vicente-Vicente, L.; Morales, A.I. Are Antioxidants Useful in Preventing the Progression of Chronic Kidney Disease? Antioxidants 2021, 10, 1669. [Google Scholar] [CrossRef]
- Chtourou, Y.; Morjen, M.; Ammar, R.; Mhiri, R.; Jemaà, M.; ELBini-Dhouib, I.; Fetoui, H.; Srairi-Abid, N.; Marrakchi, N.; Jebali, J. Investigation of the Renal Protective Effect of Combined Dietary Polyphenols in Streptozotocin-Induced Diabetic Aged Rats. Nutrients 2022, 14, 2867. [Google Scholar] [CrossRef] [PubMed]
- Alsawaf, S.; Alnuaimi, F.; Afzal, S.; Thomas, R.M.; Chelakkot, A.L.; Ramadan, W.S.; Hodeify, R.; Matar, R.; Merheb, M.; Siddiqui, S.S.; et al. Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation. Biology 2022, 11, 1717. [Google Scholar] [CrossRef] [PubMed]
- Elgadir, M.A.; Chigurupati, S.; Mariod, A.A. Selected Potential Pharmaceutical and Medical Benefits of Phenolic Compounds: Recent Advances. Funct. Food Sci. 2023, 3, 108–128. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.R.; Derry, P.J.; Kent, T.A.; Straub, K.D. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid. Redox Signal. 2023, 38, 68–94. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Steffen, L.M.; Chu, H.; Duprez, D.A.; Gallaher, D.D.; Shikany, J.M.; Schreiner, P.J.; Shroff, G.R.; Jacobs, D.R. A Plant-Centered Diet and Markers of Early Chronic Kidney Disease during Young to Middle Adulthood: Findings from the Coronary Artery Risk Development in Young Adults (CARDIA) Cohort. J. Nutr. 2021, 151, 2721–2730. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Bernini, R.; Noce, A.; Urciuoli, S.; Di Lauro, M.; Zaitseva, A.P.; Marrone, G.; Daniele, N. Di Potential Beneficial Effects of Extra Virgin Olive Oils Characterized by High Content in Minor Polar Compounds in Nephropathic Patients: A Pilot Study. Molecules 2020, 25, 4757. [Google Scholar] [CrossRef] [PubMed]
- Marrone, G.; Urciuoli, S.; Di Lauro, M.; Ruzzolini, J.; Ieri, F.; Vignolini, P.; Di Daniele, F.; Guerriero, C.; Nediani, C.; Di Daniele, N.; et al. Extra Virgin Olive Oil and Cardiovascular Protection in Chronic Kidney Disease. Nutrients 2022, 14, 4265. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Bronze, M.R.; Figueira, M.E.; Siwy, J.; Mischak, H.; Combet, E.; Mullen, W. Impact of a 6-Wk Olive Oil Supplementation in Healthy Adults on Urinary Proteomic Biomarkers of Coronary Artery Disease, Chronic Kidney Disease, and Diabetes (Types 1 and 2): A Randomized, Parallel, Controlled, Double-Blind Study. Am. J. Clin. Nutr. 2015, 101, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, T.; Kruse, N.; Mehta, T.; Kuwabara, M.; Noureddine, L.; Jalal, D. Light Wine Consumption Is Associated with a Lower Odd for Cardiovascular Disease in Chronic Kidney Disease. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1133–1139. [Google Scholar] [CrossRef]
- Monagas, M.; Bartolomé, B.; Gómez-Cordovés, C. Updated Knowledge about the Presence of Phenolic Compounds in Wine. Crit. Rev. Food Sci. Nutr. 2005, 45, 85–118. [Google Scholar] [CrossRef] [PubMed]
- Anvarifard, P.; Anbari, M.; Ostadrahimi, A.; Ardalan, M.; Ghoreishi, Z. Effects of Iranian Propolis on Renal Function, Prooxidant-Antioxidant Balance, Metabolic Status, and Quality of Life in Patients with Chronic Kidney Disease: A Study Protocol of an Ongoing Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Contemp. Clin. Trials Commun. 2023, 34, 101159. [Google Scholar] [CrossRef] [PubMed]
- Hammad, M.; Raftari, M.; Cesário, R.; Salma, R.; Godoy, P.; Emami, S.N.; Haghdoost, S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants 2023, 12, 1371. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, L.; Salarolli, R.; Cardozo, L.F.M.F.; Santos, R.S.; de Brito, J.S.; Kemp, J.A.; Reis, D.; de Paiva, B.R.; Stenvinkel, P.; Lindholm, B.; et al. Impact of Curcumin Supplementation on Expression of Inflammatory Transcription Factors in Hemodialysis Patients: A Pilot Randomized, Double-Blind, Controlled Study. Clin. Nutr. 2020, 39, 3594–3600. [Google Scholar] [CrossRef] [PubMed]
- Kanlaya, R.; Peerapen, P.; Nilnumkhum, A.; Plumworasawat, S.; Sueksakit, K.; Thongboonkerd, V. Epigallocatechin-3-Gallate Prevents TGF-Β1-Induced Epithelial-Mesenchymal Transition and Fibrotic Changes of Renal Cells via GSK-3β/β-Catenin/Snail1 and Nrf2 Pathways. J. Nutr. Biochem. 2020, 76, 108266. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, J.F.; Leal, V.O.; Rizzetto, F.; Grimmer, G.H.; Ribeiro-Alves, M.; Daleprane, J.B.; Carraro-Eduardo, J.C.; Mafra, D. Effects of Resveratrol Supplementation in Nrf2 and NF-ΚB Expressions in Nondialyzed Chronic Kidney Disease Patients: A Randomized, Double-Blind, Placebo-Controlled, Crossover Clinical Trial. J. Ren. Nutr. 2016, 26, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.T.; Kuo, Y.H.; Su, M.J. KS370G, a Caffeamide Derivative, Attenuates Unilateral Ureteral Obstruction-Induced Renal Fibrosis by the Reduction of Inflammation and Oxidative Stress in Mice. Eur. J. Pharmacol. 2015, 750, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Norikura, T.; Mukai, Y.; Yamaoka, S.; Mikame, K. Lignin-Derived Low-Molecular-Weight Oxidized Lignophenol Stimulates AMP-Activated Protein Kinase and Suppresses Renal Inflammation and Interstitial Fibrosis in High Fat Diet-Fed Mice. Chem. Biol. Interact. 2020, 318, 108977. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Fanton, S.; Paiva, B.R.; Baptista, B.G.; Alvarenga, L.; Ribeiro-Alves, M.; Cardozo, L.F.; Mafra, D. Dark Chocolate (70% Cocoa) Attenuates the Inflammatory Marker TNF-α in Patients on Hemodialysis. Clin. Nutr. ESPEN 2023, 53, 189–195. [Google Scholar] [CrossRef]
- Wollgast, J.; Anklam, E. Polyphenols in Chocolate: Is There a Contribution to Human Health? Food Res. Int. 2000, 33, 449–459. [Google Scholar] [CrossRef]
- Phrueksanan, W.; Yibchok-Anun, S.; Adisakwattana, S. Protection of Clitoria Ternatea Flower Petal Extract against Free Radicalinduced Hemolysis and Oxidative Damage in Canine Erythrocytes. Res. Vet. Sci. 2014, 97, 357–363. [Google Scholar] [CrossRef] [PubMed]
- López Prado, A.S.; Shen, Y.; Ardoin, R.; Osorio, L.F.; Cardona, J.; Xu, Z.; Prinyawiwatkul, W. Effects of Different Solvents on Total Phenolic and Total Anthocyanin Contents of Clitoria ternatea L. Petal and Their Anti-Cholesterol Oxidation Capabilities. Int. J. Food Sci. Technol. 2019, 54, 424–431. [Google Scholar] [CrossRef]
- Monteiro, E.B.; Soares, E.D.R.; Trindade, P.L.; de Bem, G.F.; Resende, A.D.C.; Passos, M.M.C.D.F.; Soulage, C.O.; Daleprane, J.B. Uraemic Toxin-Induced Inflammation and Oxidative Stress in Human Endothelial Cells: Protective Effect of Polyphenol-Rich Extract from Açaí. Exp. Physiol. 2020, 105, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Palencia, L.A.; Mertens-Talcott, S.; Talcott, S.T. Chemical Composition, Antioxidant Properties, and Thermal Stability of a Phytochemical Enriched Oil from Açai (Euterpe Oleracea Mart.). J. Agric. Food Chem. 2008, 56, 4631–4636. [Google Scholar] [CrossRef]
- Zhou, S.; He, Y.; Zhang, W.; Xiong, Y.; Jiang, L.; Wang, J.; Cui, X.; Qu, Y.; Ge, F. Ophiocordyceps Lanpingensis Polysaccharides Alleviate Chronic Kidney Disease through MAPK/NF-ΚB Pathway. J. Ethnopharmacol. 2021, 276, 114189. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, Y.; Zhang, L.; Li, C. Volatile components in mycelia and fruiting bodies of the artificial culture of Ophiocordyceps longissima. J. Anhui Agric. Univ. 2014, 41, 994–998. [Google Scholar]
- Vranješ, M.; Popović, B.M.; Štajner, D.; Ivetić, V.; Mandić, A.; Vranješ, D. Effects of Bearberry, Parsley and Corn Silk Extracts on Diuresis, Electrolytes Composition, Antioxidant Capacity and Histopathological Features in Mice Kidneys. J. Funct. Foods 2016, 21, 272–282. [Google Scholar] [CrossRef]
- Lopes, R.d.C.S.O.; de Lima, S.L.S.; da Silva, B.P.; Toledo, R.C.L.; Moreira, M.E.d.C.; Anunciação, P.C.; Walter, E.H.M.; Carvalho, C.W.P.; Queiroz, V.A.V.; Ribeiro, A.Q.; et al. Evaluation of the Health Benefits of Consumption of Extruded Tannin Sorghum with Unfermented Probiotic Milk in Individuals with Chronic Kidney Disease. Food Res. Int. 2018, 107, 629–638. [Google Scholar] [CrossRef]
- Conte, F.L.; Pereira, A.C.; Brites, G.; Ferreira, I.; Silva, A.C.; Sebastião, A.I.; Matos, P.; Pereira, C.; Batista, M.T.; Sforcin, J.M.; et al. Exploring the Antioxidant, Anti-Inflammatory and Antiallergic Potential of Brazilian Propolis in Monocytes. Phytomed. Plus 2022, 2, 100231. [Google Scholar] [CrossRef]
- Corredor, Z.; Rodríguez-Ribera, L.; Coll, E.; Montañés, R.; Diaz, J.M.; Ballarin, J.; Marcos, R.; Pastor, S. Unfermented Grape Juice Reduce Genomic Damage on Patients Undergoing Hemodialysis. Food Chem. Toxicol. 2016, 92, 1–7. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Pedraza-Chaverri, J.; Scholze, A. Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls. Antioxidants 2022, 11, 1112. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Bae, H.; Song, W.S.; Jang, C. Dietary Fructose and Fructose-Induced Pathologies. Annu. Rev. Nutr. 2022, 42, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Hu, F.B. Sugar-Sweetened Beverages, Obesity, Type 2 Diabetes Mellitus, and Cardiovascular Disease Risk. Circulation 2010, 121, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Zhang, L.; Hang, J.T.; Liu, W.; Xu, G.K. Viscoelastic Multiscale Mechanical Indexes for Assessing Liver Fibrosis and Treatment Outcomes. Nano Lett. 2023, 23, 9618–9625. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Kawi, S.H.; Hassanin, K.M.A.; Hashem, K.S. The Effect of High Dietary Fructose on the Kidney of Adult Albino Rats and the Role of Curcumin Supplementation: A Biochemical and Histological Study. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 52–60. [Google Scholar] [CrossRef]
- Chung, A.P.Y.S.; Ton, S.H.; Gurtu, S.; Palanisamy, U.D. Ellagitannin Geraniin Supplementation Ameliorates Metabolic Risks in High-Fat Diet-Induced Obese Sprague Dawley Rats. J. Funct. Foods 2014, 9, 173–182. [Google Scholar] [CrossRef]
- Nour, O.A.; Ghoniem, H.A.; Nader, M.A.; Suddek, G.M. Impact of Protocatechuic Acid on High Fat Diet-Induced Metabolic Syndrome Sequelae in Rats. Eur. J. Pharmacol. 2021, 907, 174257. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.R.; de Castro Moreira, M.E.; Grancieri, M.; Toledo, R.C.L.; de Oliveira Araújo, F.; Mantovani, H.C.; Queiroz, V.A.V.; Martino, H.S.D. Extruded Sorghum (Sorghum bicolor L.) Improves Gut Microbiota, Reduces Inflammation, and Oxidative Stress in Obese Rats Fed a High-Fat Diet. J. Funct. Foods 2019, 58, 282–291. [Google Scholar] [CrossRef]
- Noratto, G.D.; Murphy, K.; Chew, B.P. Quinoa Intake Reduces Plasma and Liver Cholesterol, Lessens Obesity-Associated Inflammation, and Helps to Prevent Hepatic Steatosis in Obese Db/Db Mouse. Food Chem. 2019, 287, 107–114. [Google Scholar] [CrossRef]
- Park, C.H.; Noh, J.S.; Yamabe, N.; Kang, K.S.; Tanaka, T.; Yokozawa, T. Beneficial Effect of 7-O-Galloyl-d-Sedoheptulose on Oxidative Stress and Hepatic and Renal Changes in Type 2 Diabetic Db/Db Mice. Eur. J. Pharmacol. 2010, 640, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Pari, L. Protective Effect of Thymol on High Fat Diet Induced Diabetic Nephropathy in C57BL/6J Mice. Chem. Biol. Interact. 2016, 245, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.S.; Huang, C.N.; Wang, C.J.; Lee, Y.J.; Chen, M.L.; Peng, C.H. Polyphenols of Hibiscus Sabdariffa Improved Diabetic Nephropathy via Regulating the Pathogenic Markers and Kidney Functions of Type 2 Diabetic Rats. J. Funct. Foods 2013, 5, 810–819. [Google Scholar] [CrossRef]
- Wu, C.C.; Hung, C.N.; Shin, Y.C.; Wang, C.J.; Huang, H.P. Myrciaria Cauliflora Extracts Attenuate Diabetic Nephropathy Involving the Ras Signaling Pathway in Streptozotocin/Nicotinamide Mice on a High Fat Diet. J. Food Drug Anal. 2016, 24, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.; Prasad, S.; Gaikwad, S.; Itankar, P. Antioxidant Phenolic Compounds from Seeds of Hordeum Vulgare Linn. Ameliorates Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats. J. Tradit. Chin. Med. Sci. 2023, 10, 353–361. [Google Scholar] [CrossRef]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.—A Phytochemical and Pharmacological Review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.L.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic Kidney Disease and Cardiovascular Risk: Epidemiology, Mechanisms, and Prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.E.; Sukhorukov, V.N.; Orekhov, A.N. Atherosclerosis Specific Features in Chronic Kidney Disease (CKD). Biomedicines 2022, 10, 2094. [Google Scholar] [CrossRef] [PubMed]
- Emamat, H.; Zahedmehr, A.; Asadian, S.; Nasrollahzadeh, J. The Effect of Purple-Black Barberry (Berberis Integerrima) on Blood Pressure in Subjects with Cardiovascular Risk Factors: A Randomized Controlled Trial. J. Ethnopharmacol. 2022, 289, 115097. [Google Scholar] [CrossRef]
- Gomes, A.; Godinho-Pereira, J.; Oudot, C.; Sequeira, C.O.; Macià, A.; Carvalho, F.; Motilva, M.J.; Pereira, S.A.; Matzapetakis, M.; Brenner, C.; et al. Berry Fruits Modulate Kidney Dysfunction and Urine Metabolome in Dahl Salt-Sensitive Rats. Free Radic. Biol. Med. 2020, 154, 119–131. [Google Scholar] [CrossRef]
- Memije-Lazaro, I.N.; Blas-Valdivia, V.; Franco-Colín, M.; Cano-Europa, E. Arthrospira Maxima (Spirulina) and C-Phycocyanin Prevent the Progression of Chronic Kidney Disease and Its Cardiovascular Complications. J. Funct. Foods 2018, 43, 37–43. [Google Scholar] [CrossRef]
- Sonfack, C.S.; Nguelefack-Mbuyo, E.P.; Kojom, J.J.; Lappa, E.L.; Peyembouo, F.P.; Fofié, C.K.; Nolé, T.; Nguelefack, T.B.; Dongmo, A.B. The Aqueous Extract from the Stem Bark of Garcinia Lucida Vesque (Clusiaceae) Exhibits Cardioprotective and Nephroprotective Effects in Adenine-Induced Chronic Kidney Disease in Rats. Evid.-Based Complement. Altern. Med. 2021, 2021, 5581041. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.F.; Casazza, A.A.; Ferrari, P.F.; Aliakbarian, B.; Converti, A.; Bezerra, R.P.; Porto, A.L.F.; Perego, P. Recovery of Phenolic Compounds of Food Concern from Arthrospira Platensis by Green Extraction Techniques. Algal Res. 2017, 25, 391–401. [Google Scholar] [CrossRef]
- Fotie, J.; Bohle, D.S.; Olivier, M.; Gomez, M.A.; Nzimiro, S. Trypanocidal and Antileishmanial Dihydrochelerythrine Derivatives from Garcinia Lucida. J. Nat. Prod. 2007, 70, 1650–1653. [Google Scholar] [CrossRef] [PubMed]
- Campidelli, M.L.L.; Carneiro, J.D.S.; Souza, E.C.; Magalhães, M.L.; Nunes, E.E.C.; Faria, P.B.; Franco, M.; Boas, E.V.B.V. Effects of the Drying Process on the Fatty Acid Content, Phenolic Profile, Tocopherols and Antioxidant Activity of Baru Almonds (Dipteryx Alata Vog.). Grasas Aceites 2020, 71, e343. [Google Scholar] [CrossRef]
- Kpemissi, M.; Veerapur, V.P.; Suhas, D.S.; Puneeth, T.A.; Nandeesh, R.; Vijayakumar, S.; Eklu-Gadegbeku, K. Combretum Micranthum G. Don Protects Hypertension Induced by L-NAME by Cardiovascular and Renal Remodelling through Reversing Inflammation and Oxidative Stress. J. Funct. Foods 2022, 94, 105132. [Google Scholar] [CrossRef]
- Mamun, F.; Rahman, M.M.; Zamila, M.; Subhan, N.; Hossain, H.; Raquibul Hasan, S.M.; Alam, M.A.; Haque, M.A. Polyphenolic Compounds of Litchi Leaf Augment Kidney and Heart Functions in 2K1C Rats. J. Funct. Foods 2020, 64, 103662. [Google Scholar] [CrossRef]
- Schincaglia, R.M.; Cuppari, L.; Neri, H.F.S.; Cintra, D.E.; Sant’Ana, M.R.; Mota, J.F. Effects of Baru Almond Oil (Dipteryx Alata Vog.) Supplementation on Body Composition, Inflammation, Oxidative Stress, Lipid Profile, and Plasma Fatty Acids of Hemodialysis Patients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Complement. Ther. Med. 2020, 52, 102479. [Google Scholar] [CrossRef] [PubMed]
- Vertolli, U.; Davis, P.A.; Maso, L.D.; Maiolino, G.; Naso, A.; Plebani, M.; Calò, L.A. Daily Green Tea Extract Supplementation Reduces Prothrombotic and Inflammatory States in Dialysis Patients. J. Funct. Foods 2013, 5, 1366–1371. [Google Scholar] [CrossRef]
- Calo, L.A.; Vertolli, U.; Davis, P.A.; Maso, L.D.; Pagnin, E.; Ravarotto, V.; Maiolino, G.; Lupia, M.; Seccia, T.M.; Rossi, G.P. Molecular Biology Based Assessment of Green Tea Effects on Oxidative Stress and Cardiac Remodelling in Dialysis Patients. Clin. Nutr. 2014, 33, 437–442. [Google Scholar] [CrossRef]
- Lew, Q.L.J.; Jafar, T.H.; Jin, A.; Yuan, J.M.; Koh, W.P. Consumption of Coffee but Not of Other Caffeine-Containing Beverages Reduces the Risk of End-Stage Renal Disease in the Singapore Chinese Health Study. J. Nutr. 2018, 148, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Pazhayattil, G.S.; Shirali, A.C. Drug-Induced Impairment of Renal Function. Int. J. Nephrol. Renovasc. Dis. 2014, 7, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Dobrek, L. A Synopsis of Current Theories on Drug-Induced Nephrotoxicity. Life 2023, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Ungur, R.; Buzatu, R.; Lacatus, R.; Purdoiu, R.C.; Petrut, G.; Codea, R.; Sarpataky, O.; Biris, A.; Popovici, C.; Mircean, M.; et al. Evaluation of the Nephroprotective Effect of Sambucus Nigra Total Extract in a Rat Experimental Model of Gentamicine Nephrotoxicity. Rev. Chim. 2019, 70, 1971–1974. [Google Scholar] [CrossRef]
- El-Ashmawy, N.E.; Khedr, N.F.; El-Bahrawy, H.A.; Helal, S.A. Upregulation of PPAR-γ Mediates the Renoprotective Effect of Omega-3 PUFA and Ferulic Acid in Gentamicin-Intoxicated Rats. Biomed. Pharmacother. 2018, 99, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Ali, N.; Nafees, S.; Ahmad, S.T.; Hasan, S.K.; Sultana, S. Abrogation of 5-Flourouracil Induced Renal Toxicity by Bee Propolis via Targeting Oxidative Stress and Inflammation in Wistar Rats. J. Pharm. Res. 2013, 7, 189–194. [Google Scholar] [CrossRef]
- Búfalo, M.C.; Ferreira, I.; Costa, G.; Francisco, V.; Liberal, J.; Cruz, M.T.; Lopes, M.C.; Batista, M.T.; Sforcin, J.M. Propolis and Its Constituent Caffeic Acid Suppress LPS-Stimulated pro-Inflammatory Response by Blocking NF-ΚB and MAPK Activation in Macrophages. J. Ethnopharmacol. 2013, 149, 84–92. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.M.; El-Naggar, M.E.; Hussein, J.; Medhat, D.; El-Banna, M. Effect of Ficus carica L. Leaves Extract Loaded Gold Nanoparticles against Cisplatin-Induced Acute Kidney Injury. Colloids Surfaces B Biointerfaces 2019, 184, 110465. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R.; Colaric, M.; Stampar, F. Phenolic Acids and Flavonoids of Fig Fruit (Ficus carica L.) in the Northern Mediterranean Region. Food Chem. 2008, 106, 153–157. [Google Scholar] [CrossRef]
- Al-Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.; Esmail, R.S.H.; Donya, S.M. Prevention of Renal Dysfunction by Nutraceuticals Prepared from Oil Rich Plant Foods. Asian Pac. J. Trop. Biomed. 2014, 4, 618–626. [Google Scholar] [CrossRef]
- Corbin, C.; Fidel, T.; Leclerc, E.A.; Barakzoy, E.; Sagot, N.; Falguiéres, A.; Renouard, S.; Blondeau, J.P.; Ferroud, C.; Doussot, J.; et al. Development and Validation of an Efficient Ultrasound Assisted Extraction of Phenolic Compounds from Flax (Linum usitatissimum L.) Seeds. Ultrason. Sonochem. 2015, 26, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rodríguez, Y.; Ramírez, V.; Robledo-Márquez, K.; García-Rojas, N.; Rojas-Morales, P.; Arango, N.; Pedraza-Chaverri, J.; Medina-Campos, O.N.; Pérez-Rojas, J.M.; Flores-Ramírez, R.; et al. Stenocereus Huastecorum-Fruit Juice Concentrate Protects against Cisplatin-Induced Nephrotoxicity by Nitric Oxide Pathway Activity and Antioxidant and Antiapoptotic Effects. Food Res. Int. 2022, 160, 111337. [Google Scholar] [CrossRef] [PubMed]
- Widowati, W.; Prahastuti, S.; Hidayat, M.; Hasianna, S.T.; Wahyudianingsih, R.; Eltania, T.F.; Azizah, A.M.; Aviani, J.K.; Subangkit, M.; Handayani, R.A.S.; et al. Detam 1 Black Soybean against Cisplatin-Induced Acute Ren Failure on Rat Model via Antioxidant, Antiinflammatory and Antiapoptosis Potential. J. Tradit. Complement. Med. 2022, 12, 426–435. [Google Scholar] [CrossRef]
- Amarasiri, S.S.; Attanayake, A.P.; Arawwawala, L.D.A.M.; Mudduwa, L.K.B.; Jayatilaka, K.A.P.W. Barleria prionitis L. Extracts Ameliorate Doxorubicin-Induced Acute Kidney Injury via Modulation of Oxidative Stress, Inflammation, and Apoptosis. J. Tradit. Complement. Med. 2023, 13, 500–510. [Google Scholar] [CrossRef]
- Amarasiri, S.S.; Attanayake, A.P.; Mudduwa, L.K.B.; Jayatilaka, K.A.P.W. Nephroprotective Mechanisms of Ambrette (Abelmoschus Moschatus Medik.) Leaf Extracts in Adriamycin Mediated Acute Kidney Injury Model of Wistar Rats. J. Ethnopharmacol. 2022, 292, 115221. [Google Scholar] [CrossRef] [PubMed]
- Amarasiri, S.S.; Attanayake, A.P.; Arawwawala, L.D.A.M.; Jayatilaka, K.A.P.W.; Mudduwa, L.K.B. Protective Effects of Three Selected Standardized Medicinal Plant Extracts Used in Sri Lankan Traditional Medicine in Adriamycin Induced Nephrotoxic Wistar Rats. J. Ethnopharmacol. 2020, 259, 112933. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zaman, S.; Mamun, F.; Gias, Z.T.; Alam, M.N.; Ulla, A.; Hossain, M.H.; Reza, H.M.; Alam, M.A. Phenolic Content Analysis in Psidium Guajava Leaves Powder by HPLC-DAD System and in Vivo Renoprotective and Antioxidant Activities in Fludrocortisone Acetate-Induced Rats. J. Food Biochem. 2018, 42, 1–14. [Google Scholar] [CrossRef]
- Mehmood, A.; Zhao, L.; Ishaq, M.; Zad, O.D.; Zhao, L.; Wang, C.; Usman, M.; Lian, Y.; Xu, M. Renoprotective Effect of Stevia Residue Extract on Adenine-Induced Chronic Kidney Disease in Mice. J. Funct. Foods 2020, 72, 103983. [Google Scholar] [CrossRef]
- Covarrubias-Cárdenas, A.G.; Martínez-Castillo, J.I.; Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; García-Cruz, N.U.; Pacheco, N. Antioxidant Capacity and Uplc-Pda Esi-Ms Phenolic Profile of Stevia Rebaudiana Dry Powder Extracts Obtained by Ultrasound Assisted Extraction. Agronomy 2018, 8, 170. [Google Scholar] [CrossRef]
- Adekunle, I.A.; Imafidon, C.E.; Oladele, A.A.; Ayoka, A.O. Ginger Polyphenols Attenuate Cyclosporine-Induced Disturbances in Kidney Function: Potential Application in Adjuvant Transplant Therapy. Pathophysiology 2018, 25, 101–115. [Google Scholar] [CrossRef]
- Selim, S.; Akter, N.; Nayan, S.I.; Chowdhury, F.I.; Saffoon, N.; Khan, F.; Ahmed, K.S.; Ahmed, M.I.; Hossain, M.M.; Alam, M.A. Flacourtia Indica Fruit Extract Modulated Antioxidant Gene Expression, Prevented Oxidative Stress and Ameliorated Kidney Dysfunction in Isoprenaline Administered Rats. Biochem. Biophys. Rep. 2021, 26, 101012. [Google Scholar] [CrossRef] [PubMed]
- Bojan, M.S.; Rajappa, R.; Vijayakumar, D.R.K.; Gopalan, J. Protective Effect of Raphanus Sativus on D-Galactosamine Induced Nephrotoxicity in Rats. Nutr. Clin. Metab. 2016, 30, 22–28. [Google Scholar] [CrossRef]
- Sgherri, C.; Cosi, E.; Navari-Izzo, F. Phenols and Antioxidative Status of Raphanus Sativus Grown in Copper Excess. Physiol. Plant. 2003, 118, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman Mohamed, A.; El-Kholy, S.S.; Dahran, N.; El Bohy, K.M.; Moustafa, G.G.; Saber, T.M.; Metwally, M.M.M.; Gaber, R.A.; Alqahtani, L.S.; Mostafa-Hedeab, G.; et al. Scrutinizing Pathways of Nicotine Effect on Renal Alpha-7 Nicotinic Acetylcholine Receptor and Mitogen-Activated Protein Kinase (MAPK) Expression in Ehrlich Ascites Carcinoma-Bearing Mice: Role of Chlorella Vulgaris. Gene 2022, 837, 146697. [Google Scholar] [CrossRef] [PubMed]
- Shanab, O.; El-Rayes, S.M.; Khalil, W.F.; Ahmed, N.; Abdelkader, A.; Aborayah, N.H.; Atwa, A.M.; Mohammed, F.I.; Nasr, H.E.; Ibrahim, S.F.; et al. Nephroprotective Effects of Acacia Senegal against Aflatoxicosis via Targeting Inflammatory and Apoptotic Signaling Pathways. Ecotoxicol. Environ. Saf. 2023, 262, 115194. [Google Scholar] [CrossRef] [PubMed]
- Alomar, M.Y. Physiological and Histopathological Study on the Influence of Ocimum Basilicum Leaves Extract on Thioacetamide-Induced Nephrotoxicity in Male Rats. Saudi J. Biol. Sci. 2020, 27, 1843–1849. [Google Scholar] [CrossRef] [PubMed]
- Javanmardi, J.; Khalighi, A.; Kashi, A.; Bais, H.P.; Vivanco, J.M. Chemical Characterization of Basil (Ocimum basilicum L.) Found in Local Accessions and Used in Traditional Medicines in Iran. J. Agric. Food Chem. 2002, 50, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Fathy, M.; Abdel-latif, R.; Abdelgwad, Y.M.; Othman, O.A.; Abdel-Razik, A.R.H.; Dandekar, T.; Othman, E.M. Nephroprotective Potential of Eugenol in a Rat Experimental Model of Chronic Kidney Injury; Targeting NOX, TGF-β, and Akt Signaling. Life Sci. 2022, 308, 120957. [Google Scholar] [CrossRef]
- Al-Asmari, K.M.; Altayb, H.N.; Al-Attar, A.M.; Qahl, S.H.; Al-Thobaiti, S.A.; Abu Zeid, I.M. Arabica Coffee and Olive Oils Mitigate Malathion-Induced Nephrotoxicity in Rat: In Silico, Immunohistochemical and Biochemical Evaluation. Saudi J. Biol. Sci. 2022, 29, 103307. [Google Scholar] [CrossRef]
- Emmanuel, O.; Okezie, U.M.; Iweala, E.J.; Ugbogu, E.A. Pretreatment of Red Palm Oil Extracted from Palm Fruit (Elaeis Guineensis) Attenuates Carbon Tetrachloride Induced Toxicity in Wistar Rats. Phytomed. Plus 2021, 1, 100079. [Google Scholar] [CrossRef]
- Tsouko, E.; Alexandri, M.; Fernandes, K.V.; Freire, D.M.G.; Mallouchos, A.; Koutinas, A.A. Extraction of Phenolic Compounds from Palm Oil Processing Residues and Their Application as Antioxidants. Food Technol. Biotechnol. 2019, 57, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, T.; Gurumallu, S.C.; Bhaskar, A.; Hashimi, S.M.; Javaraiah, R. Secoisolariciresinol Diglucoside Protects against Cadmium-Induced Oxidative Stress-Mediated Renal Toxicity in Rats. J. Trace Elem. Med. Biol. 2020, 61, 126552. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Chu, D.; He, X.; Zhang, W.; Feng, C. Protective Effects of Grape Seed Proanthocyanidins against Iron Overload-Induced Renal Oxidative Damage in Rats. J. Trace Elem. Med. Biol. 2020, 57, 126407. [Google Scholar] [CrossRef] [PubMed]
- Fernando, T.D.; Jayawardena, B.M.; Mathota Arachchige, Y.L.N. Variation of Different Metabolites and Heavy Metals in Oryza sativa L., Related to Chronic Kidney Disease of Unknown Etiology in Sri Lanka. Chemosphere 2020, 247, 125836. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lin, L.; Zhao, M.; Peng, A.; Zhao, K. Xanthine Oxidase Inhibitory Activity and Antihyperuricemic Effect of Moringa Oleifera Lam. Leaf Hydrolysate Rich in Phenolics and Peptides. J. Ethnopharmacol. 2021, 270, 113808. [Google Scholar] [CrossRef]
- Kang, L.; Miao, J.X.; Cao, L.H.; Miao, Y.Y.; Miao, M.S.; Liu, H.J.; Xiang, L.L.; Song, Y.G. Total Glucosides of Herbaceous Peony (Paeonia lactiflora Pall.) Flower Attenuate Adenine- and Ethambutol-Induced Hyperuricaemia in Rats. J. Ethnopharmacol. 2020, 261, 113054. [Google Scholar] [CrossRef] [PubMed]
- Chonghui, L.; Hui, D.; Wang, L.; Qingyan, S.; Zheng, Y.; Yanjun, X.; Zhang, J.; Zhang, J.; Yang, R.; Yuxuan, G. Flavonoid Composition and Antioxidant Activity of Tree Peony (Paeonia Section Moutan) Yellow Flowers. J. Agric. Food Chem. 2009, 57, 8496–8503. [Google Scholar] [CrossRef] [PubMed]
- Novaes, A.D.S.; Da Silva Mota, J.; Barison, A.; Veber, C.L.; Negrão, F.J.; Kassuya, C.A.L.; De Barros, M.E. Diuretic and Antilithiasic Activities of Ethanolic Extract from Piper Amalago (Piperaceae). Phytomedicine 2014, 21, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Bawari, S.; Sah, A.N.; Tewari, D. Anticalcifying Effect of Daucus Carota in Experimental Urolithiasis in Wistar Rats. J. Ayurveda Integr. Med. 2020, 11, 308–315. [Google Scholar] [CrossRef]
- Bawari, S.; Sah, A.N.; Gupta, P.; Zengin, G.; Tewari, D. Himalayan Citrus Jambhiri Juice Reduced Renal Crystallization in Nephrolithiasis by Possible Inhibition of Glycolate Oxidase and Matrix Metalloproteinases. J. Ethnopharmacol. 2023, 306, 116157. [Google Scholar] [CrossRef]
- Moreno, K.G.T.; Gasparotto Junior, A.; dos Santos, A.C.; Palozi, R.A.C.; Guarnier, L.P.; Marques, A.A.M.; Romão, P.V.M.; Lorençone, B.R.; Cassemiro, N.S.; Silva, D.B.; et al. Nephroprotective and Antilithiatic Activities of Costus Spicatus (Jacq.) Sw.: Ethnopharmacological Investigation of a Species from the Dourados Region, Mato Grosso Do Sul State, Brazil. J. Ethnopharmacol. 2021, 266, 113409. [Google Scholar] [CrossRef] [PubMed]
- Younis, W.; Alamgeer; Schini-Kerth, V.B.; Brentan da Silva, D.; Junior, A.G.; Bukhari, I.A.; Assiri, A.M. Role of the NO/CGMP Pathway and Renin-Angiotensin System in the Hypotensive and Diuretic Effects of Aqueous Soluble Fraction from Crataegus Songarica K. Koch. J. Ethnopharmacol. 2020, 249, 112400. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.L.; Lin, J.H.; Hammes, H.P.; Zhang, C. Flavonoids in Treatment of Chronic Kidney Disease. Molecules 2022, 27, 2365. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Zbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.M.M.; Silva, A.M.S.; Filipe, P.; Santus, R.; Patterson, L.K.; Mazière, J.C.; Cavaleiro, J.A.S.; Morlière, P. Structure-Activity Relationships in Hydroxy-2,3-Diarylxanthone Antioxidants. Fast Kinetics Spectroscopy as a Tool to Evaluate the Potential for Antioxidant Activity in Biological Systems. Org. Biomol. Chem. 2011, 9, 3965–3974. [Google Scholar] [CrossRef] [PubMed]
- Pavlatou, M.G.; Papastamataki, M.; Apostolakou, F.; Papassotiriou, I.; Tentolouris, N. FORT and FORD: Two Simple and Rapid Assays in the Evaluation of Oxidative Stress in Patients with Type 2 Diabetes Mellitus. Metabolism 2009, 58, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.P.; Hernández-Ruiz, J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Ceron, J.J. Spectrophotometric Assays for Total Antioxidant Capacity (TAC) in Dog Serum: An Update. BMC Vet. Res. 2016, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Luo, L.J.; Lue, S.J.; Lai, J.Y. The Role of Aromatic Ring Number in Phenolic Compound-Conjugated Chitosan Injectables for Sustained Therapeutic Antiglaucoma Efficacy. Carbohydr. Polym. 2020, 231, 115770. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, B.; Michałowicz, J.; Krokosz, A.; Sicińska, P. Comparison of the Effect of Phenol and Its Derivatives on Protein and Free Radical Formation in Human Erythrocytes (in Vitro). Blood Cells Mol. Dis. 2007, 39, 238–244. [Google Scholar] [CrossRef]
- Beckman, J.S.; Ischiropoulos, H.; Zhu, L.; van der Woerd, M.; Smith, C.; Chen, J.; Harrison, J.; Martin, J.C.; Tsai, M. Kinetics of Superoxide Dismutase- and Iron-Catalyzed Nitration of Phenolics by Peroxynitrite. Arch. Biochem. Biophys. 1992, 298, 438–445. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, H.; Zheng, J.; Liang, G. Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and Derivatives: An Experimental and Theoretical Evaluation. PLoS ONE 2015, 10, e0121276. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Román, J.; Soliz-Rueda, J.R.; Bravo, F.I.; Aragonès, G.; Suárez, M.; Arola-Arnal, A.; Mulero, M.; Salvadó, M.J.; Arola, L.; Torres-Fuentes, C.; et al. Phenolic Compounds and Biological Rhythms: Who Takes the Lead? Trends Food Sci. Technol. 2021, 113, 77–85. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Rai, S.; Kumar, R.; Bashir, M.; Malik, J.A. Phenolic Compounds from Medicinal Herbs: Their Role in Animal Health and Diseases—A New Approach for Sustainable Welfare and Development. Plant Phenolics Sustain. Agric. 2020, 1, 221–239. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
Compound | Reported Bioactivity | ||
---|---|---|---|
Hydroxytyrosol | [50] | ↑ e-GFR after 9 weeks ↓ oxidative stress ↓ uric acid levels | [50] |
Oleacin (10-hydroxy-oleocanthal) Hydroxytyrosol Tyrosol Elenolic acid (and derivatives) | [51] | ↓ serum levels of creatinine, azotemia, albuminuria, uric acid ↓ FORT level, ESR, and CRP, TNF-α, and IL-6 serum levels | [51] |
Hydroxytyrosol (and derivatives) | [52] | Improvement in the urinary proteomic biomarker of disease over a relatively short period in a healthy population | [52] |
Hydroxybenzoic and hydroxycinnamic acids Stilbenes | [54] | ↓ hypertension, HDLs | [53] |
Curcumin | [57] | ↓ NF-kB mRNA expression and hsCRP plasma levels | [57] |
Epigallocatechin-3-gallate | [58] | Prevention of EMT in renal tubular cells induced by the crosstalk between TGF-β1 and β-catenin signaling | [58] |
Resveratrol | [59] | There was no effect of resveratrol supplementation on Nfr2 and NF-kB expression at the dosage tested | [59] |
Caffeamide (derivative) | [60] | ↓ oxidative stress ↓ AngII and TGF-β1 production and Smad3 phosphorylation | [60] |
Lignophenol | [61] | ↓ plasma BUN levels ↓ TNF-α, Ccl2, and TGF-β | [61] |
Flavan-3-ols | [63] | ↓ plasma levels of TNF-a | [62] |
Kaempferol Caffeoylmalic acid | [65] | Prevented a decrease in GSH concentration in erythrocytes Inhibited the formation of the echinocytic form | [64] |
Vanillic acid, syringic acid, p-hydroxybenzoic acid, protocatechuic acid, ferulic acid, and (+)-catechin | [67] | Prevented higher expression of MCP-1 and ICAM-1 ↓ TNF-α concentration in cells ↓ protein carbonylation | [66] |
1-octene-3-alcohl and butylated hydroxytoluene | [69] | ↓ BUN and Scr ↓ content of ROS in renal tissues ↓ oxidative stress ↑ SOD and GSH-PX | [68] |
Gallic acid, catechin and derivatives, and rutin and derivatives | [70] | ↓ blood urea nitrogen and serum creatinine | [70] |
Luteolinidin and 5- methoxyluteolinidine | [71] | ↓ oxidative stress ↑ serum SOD and TAC ↓ serum MDA decreased | [71] |
Hydroxycinnamic acids and flavonoids and caffeic acid derivatives | [110] | ↑ SOD 1 activity ↓ IL-1β, TNF-α, and IL-6 production | [72] |
Hydroxybenzoic and hydroxycinnamic acids, stilbenes | [54] | ↓ LDLs and cholesterol ↓ oxidative DNA damage | [73] |
Curcumin | [79] | ↓ serum urea and creatinine ↓ HO1 and INOS mRNA expression ↑ GSH concentration, GR, CAT, and SOD activities ↓ LPO and DNA fragmentation | [79] |
Ellagitannin geraniin | [80] | ↓ relative weights of pancreas, liver, heart, and aorta ↓ plasma glucose ↓ TG, non-HDLs and total cholesterols, ALT, AST, CK, and Cr | [80] |
Protocatechuic acid | [81] | ↓ BMI ↓ SOD activity in liver and muscle homogenates ↑ GSH activity in muscle ↓ MCP-1, IL-1b, CRP | [81] |
3,4-dihydroxybenzoic acid | [82] | ↓ TNF-α expression by 0.12 times | [82] |
Ferulic and benzoic acid derivatives, quercetin derivatives, flavonone glycosides | [83] | ↓ cholesterol, LDLs, and plasma TGCs | [83] |
7-O-Galloyl-d-Sedoheptulose | [84] | ↓ serum levels of triglycerides, total cholesterol, LDL/VLDL-cholesterol, NEFAs, and TBA-reactive substances ↓ serum levels of ALT, AST, creatinine, and urea nitrogen | [84] |
Thymol | [85] | ↓ urinary glucose, urinary urea, and urinary protein ↓ TBARS and LOOH ↑ SOD, catalase, GPx, GST, and GR ↓ SREBP-1c, TGF-b, and VEGF proteins | [85] |
Protocatechuic acid | [89] | ↓ insulin Improved AGE expression and histological changes in both glomerular hypertrophy and interstitial crushing | [86] |
Protocatechuic acid, gallic acid, catechin, gallocatechin, and rutin | [87] | ↓ triacylglycerol and total cholesterol levels ↓ BUN, blood creatinine, and blood pressure ↓ ratio of urine albumin/urine creatinine Ameliorated mesangial fibrosis in part via the Ras/PI3K/Akt signaling pathway. | [87] |
Epicatechin | [88] | ↓ BUN, total cholesterol, and triglycerides ↓ MDA ↑ SOD, GSH, and catalyze Regeneration of tubular epithelium, inhibition of necrosis and hemorrhages, and recovery of atrophic glomeruli | [88] |
Gallic acid, catechin and derivatives, and rutin and derivatives | [70] | ↓ systolic and mean arterial BP ↑ plasma and urinary nitrite and nitrate | [92] |
Gallic acid, catechin and derivatives, and rutin and derivatives | [70] | Recovery in the kidney morphology | [93] |
Catechin | [96] | ↑ GSH and the GSH2/GSSG ratio | [94] |
Stigmasterol, betulinic acid | [97] | ↓ lipid peroxidation Antihemolytic effect ↓ blood pressure ↓ kidney hypertrophy ↑ CAT and SOD in the kidney | [95] |
Hyperoside, quercitrin, caftaric acid, gentisic acid, caffeic acid and chlorogenic acid | [99] | ↓ blood pressure ↓ blood levels of uric acid, urea, creatinine, and urine levels of NAG ↓ TNF-α | [99] |
Gallic acid, catechin, epicatechin, rutin, quercetin, and kaempferol | [100] | ↓ plasma concentrations of ALT, AST, and ALP ↑ SOD ↓ MDA, NO, and APOP ↑ catalase and SOD | [100] |
Caffeic acid, chlorogenic acid, anthocyanins, p-coumaric acid, ferulic acid, o-coumaric acid, quercetin, gallic acid, rutin, catechin | [98] | ↓ CRP The activity of SOD and catalase enzymes, as well as the concentration of MDA, did not differ from the placebo group | [101] |
Epigallocatechin, catechin, and epicatechin gallate | [102] | ↓ fibrinogen levels, protein expression of p22phox, and hsCPR | [102] |
Epigallocatechin, catechin, and epicatechin gallate | [102] | ↓ pERK1/2 phosphorylation ↓ oxLDL plasma levels | [103] |
Catechin, epicatechin, quercetin, caffeic acid, and ferulic acid | [107] | ↓ urinary NAG activity ↓ renal histopathological lesion ↓ urea and serum creatinine | [107] |
Ferulic acid | ↓ serum BUN and creatinine levels ↓ urinary albumin concentration and urinary NAG activity ↑ CAT activity ↑ RvE1 concentration ↑ PPAR-γ gene expression | [108] | |
Ferulic acid | [110] | Prevented disruption of the normal renal architecture ↓ creatinine, BUN, LDH, TNFa, and KIM-1 levels | [109] |
Gallic acid, chlorogenic acid, syringic acid, (+)-catechin, (β)-epicatechin, and rutin | [112] | ↓ MDA, Hyp, and Hcy | [111] |
P-couramic, caffeic, and ferulic acids | [114] | ↓ serum MDA, lipid peroxidation ↑ plasma catalase and total antioxidant capacity ↑ Cr ↓ chromosomal aberrations in bone marrow cells and sperm shape abnormalities | [113] |
Betacyanins | [115] | ↓ plasma creatinine, BUN, and NGAL ↓ tubular damage ↑ MDA levels ↓ Nrf2 levels ↑ NO2−/NO3− levels | [115] |
Isoflavones (daidzein, daidzin, genistin, biochanin A, and glycitein) | [116] | ↓ cytoplasmic IFN- γ expression ↓ Casp-3 expression ↓ IL-6, IL-1b, TGF-b1, TLR-4, F4/80 and TNF-a in kidneys ↓ BUN and UA ↑ CAT | [116] |
Flavonoids and terpenoids | [117] | ↓ blood urea and creatinine ↑ glutathione peroxidase activity | [117] |
Myricetin | [118] | ↓ BUN, β2-MG, and Cys C ↑ GR activity, TAS and GPx, MDA ↓ TNF-α and IL-1β | [118] |
Tannins, phenolics, flavonoids, steroid glycosides, terpenoids, and saponins | [119] | ↓ serum concentrations of BUN and creatinine ↓ renal tubular and glomerular alterations | [119] |
Gallic acid, (+)-catechin, (–)-epicatechin, and ellagic acid | [120] | ↓ ALT and AST activities ↓ MDA, APOP and NO in plasma, heart, and kidney ↓ uric acid level, and plasma creatinine level | [120] |
Chlorogenic acid, diosmin, and caffeic acid | [122] | ↓ urinary NGAL, endothelin-1, and clusterin levels ↓ BUN, creatinine, 8-OHda, isoprostane, adiponectin, and cystatin ↓ serum XOD, liver XOD, serum ADA, liver ADA, and serum UA levels | [121] |
6–Shogaol, 6–Paradol, and 6–Gingerol | [123] | ↓ plasma and blood creatinine and urea ↓ GSH level ↑ SOD level | [123] |
Ferulic acid, caffeic acid and vanillic acid | [124] | ↓ MDA, APOP, uric acid and creatinine levels in the blood, IL-1, IL-6, TNF-α, TGF-β1, and NF-κB ↑ catalase and SOD activities in the kidneys | [124] |
Chlorogenic, vanillic, caffeic, syringic, p-coumaric, and ferulic acids | [126] | ↓ serum urea, uric acid and creatinine levels ↑ kidney SOD, CAT, GPx, GST, and GR activities | [125] |
Lutein and chlorophyll | [127] | ↑ CAT and SOD ↓ urea, creatinine, uric acid, GGT, CK, BUN, and β2-microglobulin ↓ levels of TNFα, IL-6, IL-β, and TGF-α | [127] |
Benzoic acids | [128] | ↓ levels of Nrf2 and SOD1 in renal tissue Normal architecture of renal tissue (renal corpuscle, proximal and distal convoluted tubules, and collecting ducts) | [128] |
Rosmarinic acid | [130] | ↓ serum creatinine, BUN, and uric acid | [129] |
Eugenol | [131] | ↓ oxidative stress, inflammation, and apoptosis ↓ proinflammatory markers (IL6 and TNF-α) | [131] |
Chlorogenic acid, hydroxytyrosol, and tyrosol | [132] | ↓ creatinine, uric acids, and BUN | [132] |
Pyrogallol, 4-hydroxybenzoic acid, gallic acid, and ferulic acid | [134] | ↑ GSH, SOD, CAT ↓ MDA | [133] |
Secoisolariciresinol diglucoside | [135] | ↓ levels of NO and MPO ↑ superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase | [135] |
Proanthocyanidins | ↑ SOD activity ↓ MDA content, CR and BUN levels | [136] | |
Kaempferol and quercetin derivatives | ↓ serum UA level, liver MDA, serum Cr, and serum TG | [138] | |
Kaempferol, luteolin, and apigenin | [140] | ↓ serum UA, XOD, MCP-1, TNF-α, Cr, and BUN | [139] |
Pyrrolidide amides, chalcones, and flavonols | [141] | ↑ urine output ↓ calcium oxalate crystallization | [141] |
Retinol and caffeoylquinic acid | [142] | Ameliorated abnormal urinary levels of calcium, oxalate, phosphate, magnesium, citrate, protein, and uric acid ↓ serum BUN, creatinine, and uric acid levels | [142] |
Narirutin, neohesperidin, hesperidin, rutin and citric acid | [143] | ↓ nucleation and growth and aggregation of calcium oxalate crystals ↓ renal tubular dilation and renal tissue deterioration | [143] |
Flavonoids, steroidal saponin, and organic acids | [144] | Urinary excretion of total protein, urea, creatinine, sodium, potassium, calcium, and chloride | [144] |
Gallic acid | [145] | ↑ ACE inhibitory activity | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, F.; Paié-Ribeiro, J.; Almeida, M.; Barros, A.N. Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules 2024, 29, 2576. https://doi.org/10.3390/molecules29112576
Baptista F, Paié-Ribeiro J, Almeida M, Barros AN. Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules. 2024; 29(11):2576. https://doi.org/10.3390/molecules29112576
Chicago/Turabian StyleBaptista, Filipa, Jessica Paié-Ribeiro, Mariana Almeida, and Ana Novo Barros. 2024. "Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review" Molecules 29, no. 11: 2576. https://doi.org/10.3390/molecules29112576
APA StyleBaptista, F., Paié-Ribeiro, J., Almeida, M., & Barros, A. N. (2024). Exploring the Role of Phenolic Compounds in Chronic Kidney Disease: A Systematic Review. Molecules, 29(11), 2576. https://doi.org/10.3390/molecules29112576