Next Issue
Volume 27, July-2
Previous Issue
Volume 27, June-2
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 27, Issue 13 (July-1 2022) – 361 articles

Cover Story (view full-size image): This work investigates, from a theoretical point of view, the photophysical properties of two classes of porphyrins and metalloporphyrins combined with N-heterocyclic carbenes (NHC) Au(I) complexes for their use in PDT, evaluating the effect of the presence of both Au(I) and central Zn(II) as well as Pd(II) ions. The outcomes show that the investigated compounds are able to act as photosensitizers in Type II PDT processes as they possess the required photophysical properties. A detailed analysis of the computed spin–orbit coupling constants reveals that the heavy-atom effect, which might increase the probability of the intersystem crossing, is significant only when a Pd(II) ion is present. Moreover, no synergistic effect is detected when a Au(I) ion is contemporaneously present with Zn(II) and Pd(II) ions. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 5021 KiB  
Review
Potent Antibiotic Lemonomycin: A Glimpse of Its Discovery, Origin, and Chemical Synthesis
by Shunan Tao, Yang Wang, Ran Hong and Sha-Hua Huang
Molecules 2022, 27(13), 4324; https://doi.org/10.3390/molecules27134324 - 05 Jul 2022
Cited by 3 | Viewed by 2148
Abstract
Lemonomycin (1) was first isolated from the fermentation broth of Streptomyces candidus in 1964. The complete chemical structure was not elucidated until 2000 with extensive spectroscopic analysis. Lemonomycin is currently known as the only glycosylated tetrahydroisoquinoline antibiotic. Its potent antibacterial activity [...] Read more.
Lemonomycin (1) was first isolated from the fermentation broth of Streptomyces candidus in 1964. The complete chemical structure was not elucidated until 2000 with extensive spectroscopic analysis. Lemonomycin is currently known as the only glycosylated tetrahydroisoquinoline antibiotic. Its potent antibacterial activity against Staphylococcus aureus and Bacillus subtilis and complex architecture make it an ideal target for total synthesis. In this short review, we summarize the research status of lemonomycin for biological activity, biosynthesis, and chemical synthesis. The unique deoxy aminosugar-lemonose was proposed to play a crucial role in biological activity, as shown in other antibiotics, such as arimetamycin A, nocathiacin I, glycothiohexide α, and thiazamycins. Given the self-resistance of the original bacterial host, the integration of biosynthesis and chemical synthesis to pursue efficient synthesis and further derivatization is in high demand for the development of novel antibiotics to combat antibiotic-resistant infections. Full article
(This article belongs to the Special Issue Chemical Synthesis of Natural Products)
Show Figures

Figure 1

23 pages, 3337 KiB  
Review
Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review
by Miguel Ángel González-Curbelo, Diana Angélica Varela-Martínez and Diego Alejandro Riaño-Herrera
Molecules 2022, 27(13), 4323; https://doi.org/10.3390/molecules27134323 - 05 Jul 2022
Cited by 24 | Viewed by 4191
Abstract
Pesticides are among the most important contaminants worldwide due to their wide use, persistence, and toxicity. Their presence in soils is not only important from an environmental point of view, but also for food safety issues, since such residues can migrate from soils [...] Read more.
Pesticides are among the most important contaminants worldwide due to their wide use, persistence, and toxicity. Their presence in soils is not only important from an environmental point of view, but also for food safety issues, since such residues can migrate from soils to food. However, soils are extremely complex matrices, which present a challenge to any analytical chemist, since the extraction of a wide range of compounds with diverse physicochemical properties, such as pesticides, at trace levels is not an easy task. In this context, the QuEChERS method (standing for quick, easy, cheap, effective, rugged, and safe) has become one of the most green and sustainable alternatives in this field due to its inherent advantages, such as fast sample preparation, the minimal use of hazardous reagents and solvents, simplicity, and low cost. This review is aimed at providing a critical revision of the most relevant modifications of the QuEChERS method (including the extraction and clean-up steps of the method) for pesticide-residue analysis in soils. Full article
(This article belongs to the Special Issue Chromatographic Analysis of Pesticide in Environmental and Food)
Show Figures

Figure 1

14 pages, 1763 KiB  
Article
Total Polyphenols Content, Antioxidant and Antimicrobial Activities of Leaves of Solanum elaeagnifolium Cav. from Morocco
by Mohammed Bouslamti, Azeddine El Barnossi, Mohammed Kara, Badriyah S. Alotaibi, Omkulthom Al Kamaly, Amine Assouguem, Badiaa Lyoussi and Ahmed Samir Benjelloun
Molecules 2022, 27(13), 4322; https://doi.org/10.3390/molecules27134322 - 05 Jul 2022
Cited by 18 | Viewed by 2769
Abstract
Solanum elaeagnifolium is among the invasive plants of Morocco; studies on its chemical composition and biological activities are few in number in Morocco. S. elaeagnifolium has shown molluscicidal and nematicidal and cancer-inhibitory effects, anti-inflammatory, analgesic activity, and antibacterial activity. The objective of this [...] Read more.
Solanum elaeagnifolium is among the invasive plants of Morocco; studies on its chemical composition and biological activities are few in number in Morocco. S. elaeagnifolium has shown molluscicidal and nematicidal and cancer-inhibitory effects, anti-inflammatory, analgesic activity, and antibacterial activity. The objective of this research is to improve this plant and assess its antibacterial and antioxidant properties as well as its total polyphenolic content (TPC) and total flavonoid content (TFC). The Folin-Ciocalteu method and the aluminium-trichloride method were used to determine TPC and TFC in hydro-ethanolic (HEE) and hydro-acetonic (HAE) leaf extract. Three assays were performed to determine the antioxidant activity: the DPPH test (radical 2,2’-diphenyl-1-picrylhydrazyl), the FRAP test (Ferric Reducing Antioxidant Power), and the TAC test. Disk diffusion and microdilution were used to test antibacterial activity against four pathogenic bacteria and Candida albicans. The hydro-ethanolic extract 2.54 ± 0.4 mg EAG/g has a greater polyphenol concentration than the hydro-acetonic extract 1.58 ± 0.03 mg EAG/g. Although the flavonoid content of the hydro-acetonic extract (0.067 ± 0.001 mg EQ/g) is larger than that of the hydro-ethanolic extract (0.012 ± 0.001 mg EQ/g), the flavonoid content of the hydro-ethanolic extract (0.012 ± 0.001 mg EQ/g). The DPPH values were IC-50 = 0.081 ± 0.004 mg/mL for hydro-ethanoic extract and 0.198 ± 0.019 mg/mL for hydro-acetonic extract, both extracts superior to BHT (0.122 ± 0.021 g/mL). While the FRAP assay showed a low iron-reducing power values for both extracts compared to BHT), the overall antioxidant activity of the two extracts was found to be considerable. The overall antioxidant activity of the hydro-ethanolic extract was 8.95 ± 0.42 mg EAA/g, whereas the total antioxidant activity of the hydro-acetonic extract was 6.44 ± 0.61 mg EAA/g. In comparison with the antibiotic Erythromycin, HAE and HEE from S. elaeagnifolium leaves demonstrated significant antibacterial action. HAE had the best inhibitory efficacy against Bacillus subtilis DSM 6333, with an inhibition diameter of 10.5 ± 0.50 mm and a MIC of 7.5 ± 0.00 mg/mL, as well as against Proteus mirabilis ATCC 29906, with an inhibitory diameter of 8.25 ± 0.75 mm and a MIC of 15 ± 0.00 mg/mL. Full article
(This article belongs to the Special Issue Food Chemistry: Food Quality and New Analytical Approaches)
Show Figures

Figure 1

17 pages, 1393 KiB  
Article
Extraction and Fractionation of Prokinetic Phytochemicals from Chrozophora tinctoria and Their Bioactivities
by Arshad Iqbal, Ayaz Ali Sher, Naveed Muhammad, Syed Lal Badshah, Abdul-Hamid Emwas and Mariusz Jaremko
Molecules 2022, 27(13), 4321; https://doi.org/10.3390/molecules27134321 - 05 Jul 2022
Cited by 1 | Viewed by 1860
Abstract
Chrozophora tinctoria is an annual plant of the family Euphorbiaceae, traditionally used as a laxative, a cathartic and an emetic. A methanolic extract of Chrozophora tinctoria (MEC) whole plant and an n-butanol fraction of Chrozophora tinctoria (NBFC) were analyzed by gas chromatography–mass [...] Read more.
Chrozophora tinctoria is an annual plant of the family Euphorbiaceae, traditionally used as a laxative, a cathartic and an emetic. A methanolic extract of Chrozophora tinctoria (MEC) whole plant and an n-butanol fraction of Chrozophora tinctoria (NBFC) were analyzed by gas chromatography–mass spectrometry (GC-MS) to detect the phytochemicals. MEC and NBFC were tested for in vitro anti acetylcholinesterase (AChE) potential. The effect of both samples on intestinal propulsive movement and spasmolytic activity in the gastrointestinal tract (GIT) was also studied. About twelve compounds in MEC and three compounds in NBFC were tentatively identified through GC-MS. Some of them are compounds with known therapeutic activity, such as toluene; imipramine; undecane; 14-methyl-pentadecanoic acid methyl ester; and hexadecanoic acid. Both NBFC and MEC samples were checked for acute toxicity and were found to be highly toxic in a dose-dependent manner, causing diarrhea and emesis at 1 g/kg concentration in pigeons, with the highest lethargy and mortality above 3 g/kg. Both the samples of Chrozophora tinctoria revealed significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg)-induced constipation. NBFC (81.18 ± 2.5%) and MEC (68.28 ± 2.4%) significantly increased charcoal meal intestinal transit compared to distal water (41.15 ± 4.3%). NBFC exhibited a significant relaxant effect (EC50 = 3.40 ± 0.20 mg/mL) in spontaneous rabbit jejunum as compared to MEC (EC50 = 4.34 ± 0.68 mg/kg). Similarly, the impact of NBFC on KCl-induced contraction was more significant than that of MEC (EC50 values of 7.22 ± 0.06 mg/mL and 7.47 ± 0.57 mg/mL, respectively). The present study scientifically validates the folk use of Chrozophora tinctoria in the management of gastrointestinal diseases such as constipation. Further work is needed to isolate the phytochemicals that act as diarrheal agents in Chrozophora tinctoria. Full article
Show Figures

Figure 1

11 pages, 2348 KiB  
Communication
Spider Silk-Improved Quartz-Enhanced Conductance Spectroscopy for Medical Mask Humidity Sensing
by Leqing Lin, Yu Zhong, Haoyang Lin, Chenglong Wang, Zhifei Yang, Qian Wu, Di Zhang, Wenguo Zhu, Yongchun Zhong, Yuwei Pan, Jianhui Yu and Huadan Zheng
Molecules 2022, 27(13), 4320; https://doi.org/10.3390/molecules27134320 - 05 Jul 2022
Cited by 2 | Viewed by 1734
Abstract
Spider silk is one of the hottest biomaterials researched currently, due to its excellent mechanical properties. This work reports a novel humidity sensing platform based on a spider silk-modified quartz tuning fork (SSM-QTF). Since spider silk is a kind of natural moisture-sensitive material, [...] Read more.
Spider silk is one of the hottest biomaterials researched currently, due to its excellent mechanical properties. This work reports a novel humidity sensing platform based on a spider silk-modified quartz tuning fork (SSM-QTF). Since spider silk is a kind of natural moisture-sensitive material, it does not demand additional sensitization. Quartz-enhanced conductance spectroscopy (QECS) was combined with the SSM-QTF to access humidity sensing sensitively. The results indicate that the resonance frequency of the SSM-QTF decreased monotonously with the ambient humidity. The detection sensitivity of the proposed SSM-QTF sensor was 12.7 ppm at 1 min. The SSM-QTF sensor showed good linearity of ~0.99. Using this sensor, we successfully measured the humidity of disposable medical masks for different periods of wearing time. The results showed that even a 20 min wearing time can lead to a >70% humidity in the mask enclosed space. It is suggested that a disposable medical mask should be changed <2 h. Full article
(This article belongs to the Special Issue Recent Advances in Photoacoustic and Photothermal Gas Spectroscopy)
Show Figures

Figure 1

23 pages, 9290 KiB  
Article
Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches
by Ashrafullah Khan, Shafi Ullah Khan, Adnan Khan, Bushra Shal, Sabih Ur Rehman, Shaheed Ur Rehman, Thet Thet Htar, Salman Khan, Sirajudheen Anwar, Ahmed Alafnan and Kannan RR Rengasamy
Molecules 2022, 27(13), 4319; https://doi.org/10.3390/molecules27134319 - 05 Jul 2022
Cited by 11 | Viewed by 2838
Abstract
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds [...] Read more.
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties. Full article
(This article belongs to the Special Issue Bioactive Compounds in Food Bioscience and Pharmacology)
Show Figures

Figure 1

18 pages, 1100 KiB  
Article
Effect of Soil Type and Application of Ecological Fertilizer Composed of Ash from Biomass Combustion on Selected Physicochemical, Thermal, and Rheological Properties of Potato Starch
by Karolina Pycia, Ewa Szupnar-Krok, Małgorzata Szostek, Renata Pawlak and Lesław Juszczak
Molecules 2022, 27(13), 4318; https://doi.org/10.3390/molecules27134318 - 05 Jul 2022
Cited by 3 | Viewed by 1305
Abstract
The aim of the study was to assess the effect of soil type and the application of fertilizer composed of ashes from biomass combustion to potatoes on selected physicochemical, rheological, and thermal properties of potato starches isolated by using the laboratory method. Potatoes [...] Read more.
The aim of the study was to assess the effect of soil type and the application of fertilizer composed of ashes from biomass combustion to potatoes on selected physicochemical, rheological, and thermal properties of potato starches isolated by using the laboratory method. Potatoes were grown in Haplic Luvisol (HL) and Gleyic Chernozem (GC) soil and fertilized with different doses of biomass combustion ash (D1–D6) with different mineral contents. The thermodynamic characteristics of gelatinization and retrogradation were identified by DSC. The analyses of rheological properties included the determination of the gelatinization characteristics by using the RVA method, flow curves, and assessment of the viscoelastic properties of starch gels. It was found that the starches tested contained from 24.7 to 29.7 g/100 g d.m. amylose, and the clarity of 1% starch pastes ranged from 59% to 68%. The gelatinization characteristics that were determined showed statistically significant differences between the starches analyzed in terms of the tested factors. The value of maximum viscosity and final viscosity varied, respectively, in the range of 2017–2404 mPa·s and 2811–3112 mPa·s, respectively. The samples of the potato starches studied showed a non-Newtonian flow, shear thinning, and the phenomenon of thixotropy. After cooling, the starch gels showed different viscoelastic properties, all of which were weak gels (tan δ = G″/G′ > 0.1). Full article
(This article belongs to the Special Issue Food Polysaccharides: Structure, Properties and Application)
Show Figures

Figure 1

9 pages, 2539 KiB  
Article
Dinuclear gold(I) Complexes with Bidentate NHC Ligands as Precursors for Alkynyl Complexes via Mechanochemistry
by Valentina Stoppa, Edoardo Battistel, Marco Baron, Paolo Sgarbossa, Andrea Biffis, Gregorio Bottaro, Lidia Armelao and Cristina Tubaro
Molecules 2022, 27(13), 4317; https://doi.org/10.3390/molecules27134317 - 05 Jul 2022
Cited by 3 | Viewed by 1463
Abstract
The use of alkynyl gold(I) complexes covers different research fields, such as bioinorganic chemistry, catalysis, and material science, considering the luminescent properties of the complexes. Regarding this last application, we report here the synthesis of three novel dinuclear gold(I) complexes of the general [...] Read more.
The use of alkynyl gold(I) complexes covers different research fields, such as bioinorganic chemistry, catalysis, and material science, considering the luminescent properties of the complexes. Regarding this last application, we report here the synthesis of three novel dinuclear gold(I) complexes of the general formula [(diNHC)(Au-C≡CPh)2]: two Au-C≡CPh units are connected by a bridging di(N-heterocyclic carbene) ligand, which should favor the establishment of semi-supported aurophilic interactions. The complexes can be easily synthesized through mechanochemistry upon reacting the pristine dibromido complexes [(diNHC)(AuBr)2] with phenylacetylene and KOH. Interestingly, we were also able to isolate the monosubstituted complex [(diNHC)(Au-C≡CPh)(AuBr)]. The gold(I) species were fully characterized by multinuclear NMR spectroscopy and mass spectrometry. The emission properties were also evaluated, and the salient data are comparable to those of analogous compounds reported in the literature. Full article
(This article belongs to the Special Issue Gold Coordination Chemistry and Applications)
Show Figures

Figure 1

16 pages, 2895 KiB  
Article
Noble Metal Complexes of a Bis-Caffeine Containing NHC Ligand
by Oliver Bysewski, Andreas Winter, Phil Liebing and Ulrich S. Schubert
Molecules 2022, 27(13), 4316; https://doi.org/10.3390/molecules27134316 - 05 Jul 2022
Cited by 4 | Viewed by 1960
Abstract
N-Heterocyclic carbenes (NHCs) have seen more and more use over the years. The go-to systems that are usually considered are derivatives of benzimidazole or imidazole. Caffeine possesses an imidazole unit and was already utilized as a carbene-type ligand; however, its use within [...] Read more.
N-Heterocyclic carbenes (NHCs) have seen more and more use over the years. The go-to systems that are usually considered are derivatives of benzimidazole or imidazole. Caffeine possesses an imidazole unit and was already utilized as a carbene-type ligand; however, its use within a tridentate bis-NHC system has—to the best of our knowledge—not been reported so far. The synthesis of the ligand is straightforward and metal complexes are readily available via silver-salt metathesis. A platinum(II) and a palladium(II) complex were isolated and a crystal structure of the former was examined. For the Pt(II) complex, luminescence is observed in solid state as well as in solution. Full article
(This article belongs to the Special Issue Photochemistry and Photophysics of Metal Complexes)
Show Figures

Graphical abstract

10 pages, 1270 KiB  
Review
Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review
by Vivek P. Chavda, Jinal Ajabiya, Divya Teli, Joanna Bojarska and Vasso Apostolopoulos
Molecules 2022, 27(13), 4315; https://doi.org/10.3390/molecules27134315 - 05 Jul 2022
Cited by 53 | Viewed by 25044
Abstract
The prevalence of obesity and diabetes is an increasing global problem, especially in developed countries, and is referred to as the twin epidemics. As such, advanced treatment approaches are needed. Tirzepatide, known as a ‘twincretin’, is a ‘first-in-class’ and the only dual glucagon-like [...] Read more.
The prevalence of obesity and diabetes is an increasing global problem, especially in developed countries, and is referred to as the twin epidemics. As such, advanced treatment approaches are needed. Tirzepatide, known as a ‘twincretin’, is a ‘first-in-class’ and the only dual glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) receptor agonist, that can significantly reduce glycemic levels and improve insulin sensitivity, as well as reducing body weight by more than 20% and improving lipid metabolism. This novel anti-diabetic drug is a synthetic peptide analog of the human GIP hormone with a C20 fatty-diacid portion attached which, via acylation technology, can bind to albumin in order to provide a dose of the drug, by means of subcutaneous injection, once a week, which is appropriate to its a half-life of about five days. Tirzepatide, developed by Eli Lilly, was approved, under the brand name Mounjaro, by the United States Food and Drug Administration in May 2022. This started the ‘twincretin’ era of enormously important and appealing dual therapeutic options for diabetes and obesity, as well as advanced management of closely related cardiometabolic settings, which constitute the leading cause of morbidity, disability, and mortality worldwide. Herein, we present the key characteristics of tirzepatide in terms of synthesis, structure, and activity, bearing in mind its advantages and shortcomings. Furthermore, we briefly trace the evolution of this kind of medical agent and discuss the development of clinical studies. Full article
(This article belongs to the Special Issue Advances in Research of Short Peptides II)
Show Figures

Figure 1

14 pages, 3143 KiB  
Article
The Impact of a 1,2,3-Triazole Motif on the Photophysical Behavior of Non-K Tetrasubstituted Pyrene with a Substitution Pattern Providing the Long Axial Symmetry
by Dawid Zych and Aneta Slodek
Molecules 2022, 27(13), 4314; https://doi.org/10.3390/molecules27134314 - 05 Jul 2022
Cited by 4 | Viewed by 1367
Abstract
1,3,6,8-Tetrasubstituted pyrene derivatives with two types of substituents (4-(2,2-dimethylpropyloxy)pyridine, 1-decyl-1,2,3-triazole, 1-benzyl-1,2,3-triazole, and pyrazole), substituted in such a way that provides the long axial symmetry, are prepared and characterized in the present study. To the best of our knowledge, the pyrene derivative containing the [...] Read more.
1,3,6,8-Tetrasubstituted pyrene derivatives with two types of substituents (4-(2,2-dimethylpropyloxy)pyridine, 1-decyl-1,2,3-triazole, 1-benzyl-1,2,3-triazole, and pyrazole), substituted in such a way that provides the long axial symmetry, are prepared and characterized in the present study. To the best of our knowledge, the pyrene derivative containing the same heteroaryl motif (triazole) but substituted by two various alkyls, straight decyl and benzyl-based side chains (C), is reported for the first time. For comparison, compounds with one kind of triazole motif and substituted pyridine or pyrazole groups were prepared (A and B). The photophysical properties of all molecules were evaluated by thermogravimetric analysis (TGA) and UV-Vis spectroscopy (absorption and emission spectra, quantum yields, and fluorescence lifetimes). The obtained results were compared to analogues substituted at the 1,3,6,8 positions by one kind of substituent and also with all the 1,3,6,8-tetrasubstituted pyrenes reported in the literature substituted by two kinds of substituents with a substitution pattern that provides long axial symmetry. In addition, theoretical studies based on DFT and TD-DFT were performed that supported the interpretation of the experimental results. The photophysical properties of tetrasubstituted pyrene derivatives having triazole units at the 1,8-positions, respectively, and other identical substituents at the 3,6 positions show the dominance of triazole units in the pyrene framework; the dominance is even higher in the case of the substitution of 1,3,6,8 positions by triazoles, but containing two various alkyls. Full article
Show Figures

Figure 1

13 pages, 289 KiB  
Article
Nutritional Values of Minikiwi Fruit (Actinidia arguta) after Storage: Comparison between DCA New Technology and ULO and CA
by Tomasz Krupa, Kamila Klimek and Ewa Zaraś-Januszkiewicz
Molecules 2022, 27(13), 4313; https://doi.org/10.3390/molecules27134313 - 05 Jul 2022
Cited by 5 | Viewed by 1354
Abstract
The dietary properties of minikiwi make them, along with other fruits and vegetables, suitable as the basis for many slimming and pro-health diets. Prolonging the availability of minikiwi can be provided by different storage technologies. This experiment focused on evaluating the effect of [...] Read more.
The dietary properties of minikiwi make them, along with other fruits and vegetables, suitable as the basis for many slimming and pro-health diets. Prolonging the availability of minikiwi can be provided by different storage technologies. This experiment focused on evaluating the effect of various O2 and CO2 concentrations, i.e., low-oxygen atmosphere (DCA, 0.4% CO2:0.4% O2; ULO, 1.5% CO2:1.5% O2) or high-CO2 (CA, 5% CO2:1.5% O2) storage, in order to provide the consumer with fruits with comparable high nutritional values. Evaluation gave the basic characteristics of the fruits that characterize their health-promoting properties, i.e., total polyphenols (TPC), phenolic acids and flavonols, antioxidant activity (AA), monosaccharides, and acid content. The atmosphere with a higher CO2 content of 5% (CA) effectively influenced the high value of ascorbic acid even after 12 weeks of storage. DCA technology contributed to a significant inhibition of phenol loss but not as effectively as CA technology. In contrast, glucose and fructose contents were found to be significantly higher after storage in ULO or DCA, while sucrose content was more stable in fruit stored in CA or DCA. CA technology conditions stabilized the citric acid content of minikiwi, while DCA technology was less effective in inhibiting acid loss. The nutritional value of the fruit after storage in CA or DCA was not significantly reduced, which will allow the supply of fresh minikiwi fruit to be extended and provide a valuable component of the human diet. Full article
(This article belongs to the Special Issue Bioactive Compounds of Fruits, Vegetables and Mushrooms II)
13 pages, 3547 KiB  
Article
Highly Effective Removal of Ofloxacin from Water with Copper-Doped ZIF-8
by Xiaowei Wang, Yingjie Zhao, Yiqi Sun and Dahuan Liu
Molecules 2022, 27(13), 4312; https://doi.org/10.3390/molecules27134312 - 05 Jul 2022
Cited by 6 | Viewed by 1997
Abstract
Residual antibiotics in wastewater have gained widespread attention because of their toxicity to humans and the environment. In this work, Cu-doped ZIF-8s (Cu-ZIF-8s) were successfully synthesized by the impregnation of Cu2+ in ZIF-8 and applied in the removal of ofloxacin (OFX) from [...] Read more.
Residual antibiotics in wastewater have gained widespread attention because of their toxicity to humans and the environment. In this work, Cu-doped ZIF-8s (Cu-ZIF-8s) were successfully synthesized by the impregnation of Cu2+ in ZIF-8 and applied in the removal of ofloxacin (OFX) from water. Remarkably, excellent adsorption performance was obtained in Cu-ZIF-8s, especially for Cu-ZIF-8-1, in which the adsorption capacity (599.96 mg·g−1) was 4.2 times higher than that of ZIF-8 and superior to various adsorbents reported previously. The adsorption kinetics and adsorption isotherm follow the pseudo-second-order model and the Langmuir model, respectively. Furthermore, the removal efficiencies of OFX in Cu-ZIF-8-1 reached over 90% at low concentrations. It was revealed that electrostatic interaction and complexation play important roles in the adsorption process. In addition, the material can be regenerated by simple methods. Therefore, the obtained Cu-doped MOFs may have a promising application in the treatment of antibiotic-containing wastewater. Full article
Show Figures

Figure 1

19 pages, 9751 KiB  
Article
Spectroscopic and Molecular Docking Studies of Cu(II), Ni(II), Co(II), and Mn(II) Complexes with Anticonvulsant Therapeutic Agent Gabapentin
by Moamen S. Refat, Ahmed Gaber, Yusuf S. Althobaiti, Hussain Alyami, Walaa F. Alsanie, Sonam Shakya, Abdel Majid A. Adam, Mohamed I. Kobeasy and Kareem A. Asla
Molecules 2022, 27(13), 4311; https://doi.org/10.3390/molecules27134311 - 05 Jul 2022
Cited by 5 | Viewed by 1697
Abstract
New Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin (Gpn) bidentate drug ligand were synthesized and studied using elemental analyses, melting temperatures, molar conductivity, UV–Vis, magnetic measurements, FTIR, and surface morphology (scanning (SEM) and transmission (TEM) electron microscopes).The gabapentin ligand was shown [...] Read more.
New Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin (Gpn) bidentate drug ligand were synthesized and studied using elemental analyses, melting temperatures, molar conductivity, UV–Vis, magnetic measurements, FTIR, and surface morphology (scanning (SEM) and transmission (TEM) electron microscopes).The gabapentin ligand was shown to form monobasic metal:ligand (1:1) stoichiometry complexes with the metal ions Cu(II), Ni(II), Co(II), and Mn(II). Molar conductance measurements in dimethyl-sulfoxide solvent with a concentration of 10−3 M correlated to a non-electrolytic character for all of the produced complexes. A deformed octahedral environment was proposed for all metal complexes. Through the nitrogen atom of the –NH2 group and the oxygen atom of the carboxylate group, the Gpn drug chelated as a bidentate ligand toward the Mn2+, Co2+, Ni2+, and Cu2+ metal ions. This coordination behavior was validated by spectroscopic, magnetic, and electronic spectra using the formulas of the [M(Gpn)(H2O)3(Cl)]·nH2O complexes (where n = 2–6).Transmission electron microscopy was used to examine the nanostructure of the produced gabapentin complexes. Molecular docking was utilized to investigate the comparative interaction between the Gpn drug and its four metal [Cu(II), Ni(II), Co(II), and Mn(II)] complexes as ligands using serotonin (6BQH) and dopamine (6CM4) receptors. AutoDock Vina results were further refined through molecular dynamics simulation, and molecular processes for receptor–ligand interactions were also studied. The B3LYP level of theory and LanL2DZ basis set was used for DFT (density functional theory) studies. The optimized geometries, along with the MEP map and HOMO → LUMO of the metal complexes, were studied. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future)
Show Figures

Figure 1

19 pages, 2917 KiB  
Article
Effect of Yakae-Prajamduen-Jamod Traditional Thai Remedy on Cognitive Impairment in an Ovariectomized Mouse Model and Its Mechanism of Action
by Supawadee Daodee, Orawan Monthakantirat, Ariyawan Tantipongpiradet, Juthamart Maneenet, Yutthana Chotritthirong, Chantana Boonyarat, Charinya Khamphukdee, Pakakrong Kwankhao, Supaporn Pitiporn, Suresh Awale, Kinzo Matsumoto and Yaowared Chulikhit
Molecules 2022, 27(13), 4310; https://doi.org/10.3390/molecules27134310 - 05 Jul 2022
Cited by 2 | Viewed by 2246
Abstract
Cognitive impairment is a neurological symptom caused by reduced estrogen levels in menopausal women. The Thai traditional medicine, Yakae-Prajamduen-Jamod (YPJ), is a formula consisting of 23 medicinal herbs and has long been used to treat menopausal symptoms in Thailand. In the present study, [...] Read more.
Cognitive impairment is a neurological symptom caused by reduced estrogen levels in menopausal women. The Thai traditional medicine, Yakae-Prajamduen-Jamod (YPJ), is a formula consisting of 23 medicinal herbs and has long been used to treat menopausal symptoms in Thailand. In the present study, we investigated the effects of YPJ on cognitive deficits and its underlying mechanisms of action in ovariectomized (OVX) mice, an animal model of menopause. OVX mice showed cognitive deficits in the Y-maze, the novel object recognition test, and the Morris water maze. The serum corticosterone (CORT) level was significantly increased in OVX mice. Superoxide dismutase and catalase activities were reduced, while the mRNA expression of IL-1β, IL-6, and TNF-α inflammatory cytokines were up-regulated in the frontal cortex and hippocampus of OVX mice. These alterations were attenuated by daily treatment with either YPJ or 17β-estradiol. HPLC analysis revealed that YPJ contained antioxidant and phytoestrogen constituents including gallic acid, myricetin, quercetin, luteolin, genistein, and coumestrol. These results suggest that YPJ exerts its ameliorative effects on OVX-induced cognitive deficits in part by mitigating HPA axis overactivation, neuroinflammation, and oxidative brain damage. Therefore, YPJ may be a novel alternative therapeutic medicine suitable for the treatment of cognitive deficits during the menopausal transition. Full article
Show Figures

Figure 1

22 pages, 3383 KiB  
Article
Conversion of the Native N-Terminal Domain of TDP-43 into a Monomeric Alternative Fold with Lower Aggregation Propensity
by Matteo Moretti, Isabella Marzi, Cristina Cantarutti, Mirella Vivoli Vega, Walter Mandaliti, Maria Chiara Mimmi, Francesco Bemporad, Alessandra Corazza and Fabrizio Chiti
Molecules 2022, 27(13), 4309; https://doi.org/10.3390/molecules27134309 - 05 Jul 2022
Cited by 2 | Viewed by 2142
Abstract
TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation [...] Read more.
TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and β-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications. Full article
Show Figures

Figure 1

20 pages, 4203 KiB  
Article
Antibacterial Activity and Components of the Methanol-Phase Extract from Rhizomes of Pharmacophagous Plant Alpinia officinarum Hance
by Junfeng Fu, Yaping Wang, Meng Sun, Yingwei Xu and Lanming Chen
Molecules 2022, 27(13), 4308; https://doi.org/10.3390/molecules27134308 - 05 Jul 2022
Cited by 6 | Viewed by 1963
Abstract
The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first [...] Read more.
The rhizomes of Alpinia officinarum Hance (known as the smaller galangal) have been used as a traditional medicine for over 1000 years. Nevertheless, little research is available on the bacteriostatic activity of the herb rhizomes. In this study, we employed, for the first time, a chloroform and methanol extraction method to investigate the antibacterial activity and components of the rhizomes of A. officinarum Hance. The results showed that the growth of five species of pathogenic bacteria was significantly inhibited by the galangal methanol-phase extract (GMPE) (p < 0.05). The GMPE treatment changed the bacterial cell surface hydrophobicity, membrane fluidity and/or permeability. Comparative transcriptomic analyses revealed approximately eleven and ten significantly altered metabolic pathways in representative Gram-positive Staphylococcus aureus and Gram-negative Enterobacter sakazakii pathogens, respectively (p < 0.05), demonstrating different antibacterial action modes. The GMPE was separated further using a preparative high-performance liquid chromatography (Prep-HPLC) technique, and approximately 46 and 45 different compounds in two major component fractions (Fractions 1 and 4, respectively) were identified using ultra-HPLC combined with mass spectrometry (UHPLC-MS) techniques. o-Methoxy cinnamaldehyde (40.12%) and p-octopamine (62.64%) were the most abundant compounds in Fractions 1 and 4, respectively. The results of this study provide data for developing natural products from galangal rhizomes against common pathogenic bacteria. Full article
Show Figures

Figure 1

19 pages, 5530 KiB  
Article
Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast
by Marek Kovár, Alica Navrátilová, Renata Kolláthová, Anna Trakovická and Miroslava Požgajová
Molecules 2022, 27(13), 4307; https://doi.org/10.3390/molecules27134307 - 05 Jul 2022
Cited by 3 | Viewed by 1736
Abstract
Acrylamide (AA), is a chemical with multiple industrial applications, however, it can be found in foods that are rich in carbohydrates. Due to its genotoxic and cytotoxic effects, AA has been classified as a potential carcinogen. With the use of spectrophotometry, ICP-OES, fluorescence [...] Read more.
Acrylamide (AA), is a chemical with multiple industrial applications, however, it can be found in foods that are rich in carbohydrates. Due to its genotoxic and cytotoxic effects, AA has been classified as a potential carcinogen. With the use of spectrophotometry, ICP-OES, fluorescence spectroscopy, and microscopy cell growth, metabolic activity, apoptosis, ROS production, MDA formation, CAT and SOD activity, ionome balance, and chromosome segregation were determined in Schizosaccharomyces pombe. AA caused growth and metabolic activity retardation, enhanced ROS and MDA production, and modulated antioxidant enzyme activity. This led to damage to the cell homeostasis due to ionome balance disruption. Moreover, AA-induced oxidative stress caused alterations in the cell cycle regulation resulting in chromosome segregation errors, as 4.07% of cells displayed sister chromatid non-disjunction during mitosis. Ascorbic acid (AsA, Vitamin C), a strong natural antioxidant, was used to alleviate the negative impact of AA. Cell pre-treatment with AsA significantly improved AA impaired growth, and antioxidant capacity, and supported ionome balance maintenance mainly due to the promotion of calcium uptake. Chromosome missegregation was reduced to 1.79% (44% improvement) by AsA pre-incubation. Results of our multiapproach analyses suggest that AA-induced oxidative stress is the major cause of alteration to cell homeostasis and cell cycle regulation. Full article
(This article belongs to the Special Issue Food Bioactive Compounds: Chemical Challenges and Opportunities)
Show Figures

Figure 1

1 pages, 579 KiB  
Correction
Correction: Saadeh et al. Recent Advances in the Synthesis and Biological Activity of 8-Hydroxyquinolines. Molecules 2020, 25, 4321
by Haythem A. Saadeh, Kamal A. Sweidan and Mohammad S. Mubarak
Molecules 2022, 27(13), 4306; https://doi.org/10.3390/molecules27134306 - 05 Jul 2022
Cited by 1 | Viewed by 836
Abstract
The author wishes to make the following correction to this paper [...] Full article
Show Figures

Scheme 1

27 pages, 910 KiB  
Review
Microbial Natural Products with Antiviral Activities, Including Anti-SARS-CoV-2: A Review
by Andri Frediansyah, Fajar Sofyantoro, Saad Alhumaid, Abbas Al Mutair, Hawra Albayat, Hayyan I. Altaweil, Hani M. Al-Afghani, Abdullah A. AlRamadhan, Mariam R. AlGhazal, Safaa A. Turkistani, Abdulmonem A. Abuzaid and Ali A. Rabaan
Molecules 2022, 27(13), 4305; https://doi.org/10.3390/molecules27134305 - 05 Jul 2022
Cited by 10 | Viewed by 3636
Abstract
The SARS-CoV-2 virus, which caused the COVID-19 infection, was discovered two and a half years ago. It caused a global pandemic, resulting in millions of deaths and substantial damage to the worldwide economy. Currently, only a few vaccines and antiviral drugs are available [...] Read more.
The SARS-CoV-2 virus, which caused the COVID-19 infection, was discovered two and a half years ago. It caused a global pandemic, resulting in millions of deaths and substantial damage to the worldwide economy. Currently, only a few vaccines and antiviral drugs are available to combat SARS-CoV-2. However, there has been an increase in virus-related research, including exploring new drugs and their repurposing. Since discovering penicillin, natural products, particularly those derived from microbes, have been viewed as an abundant source of lead compounds for drug discovery. These compounds treat bacterial, fungal, parasitic, and viral infections. This review incorporates evidence from the available research publications on isolated and identified natural products derived from microbes with anti-hepatitis, anti-herpes simplex, anti-HIV, anti-influenza, anti-respiratory syncytial virus, and anti-SARS-CoV-2 properties. About 131 compounds with in vitro antiviral activity and 1 compound with both in vitro and in vivo activity have been isolated from microorganisms, and the mechanism of action for some of these compounds has been described. Recent reports have shown that natural products produced by the microbes, such as aurasperone A, neochinulin A and B, and aspulvinone D, M, and R, have potent in vitro anti-SARS-CoV-2 activity, targeting the main protease (Mpro). In the near and distant future, these molecules could be used to develop antiviral drugs for treating infections and preventing the spread of disease. Full article
(This article belongs to the Special Issue Antivirals and Antiviral Strategies)
Show Figures

Figure 1

20 pages, 2893 KiB  
Review
Pharmacological Properties of 4′, 5, 7-Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways
by Rameesha Abid, Shakira Ghazanfar, Arshad Farid, Samra Muhammad Sulaman, Maryam Idrees, Radwa Abdallnasser Amen, Muhammad Muzammal, Muhammad Khurram Shahzad, Mohamed Omar Mohamed, Alaa Ashraf Khaled, Waqas Safir, Ifra Ghori, Abdelbaset Mohamed Elasbali and Bandar Alharbi
Molecules 2022, 27(13), 4304; https://doi.org/10.3390/molecules27134304 - 04 Jul 2022
Cited by 22 | Viewed by 4034
Abstract
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it [...] Read more.
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin’s beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways. Full article
Show Figures

Figure 1

12 pages, 2992 KiB  
Article
Identification and Evaluation of Traditional Chinese Medicine Natural Compounds as Potential Myostatin Inhibitors: An In Silico Approach
by Shahid Ali, Khurshid Ahmad, Sibhghatulla Shaikh, Jeong Ho Lim, Hee Jin Chun, Syed Sayeed Ahmad, Eun Ju Lee and Inho Choi
Molecules 2022, 27(13), 4303; https://doi.org/10.3390/molecules27134303 - 04 Jul 2022
Cited by 12 | Viewed by 2320
Abstract
Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we [...] Read more.
Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein. Potential ligands were screened, based on binding affinity (150), physicochemical (53) and ADMET properties (17). We found two hits (ZINC85592908 and ZINC85511481) with high binding affinity and specificity, and their binding patterns with MSTN protein. In addition, molecular dynamic simulations were run on each complex to better understand the interaction mechanism of MSTN with the control (curcumin) and the hit compounds (ZINC85592908 and ZINC85511481). We determined that the hits bind to the active pocket site (Helix region) and trigger conformational changes in the MSTN protein. Since the stability of the ZINC85592908 compound was greater than the MSTN control, we believe that ZINC85592908 has therapeutic potential against the MSTN protein and may hinder downstream singling by inhibiting the MSTN protein and increasing myogenesis in the skeletal muscle tissues. Full article
Show Figures

Figure 1

13 pages, 2759 KiB  
Article
A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry
by Hongxue Gao, Zhiqiang Liu, Fengrui Song, Junpeng Xing, Zhong Zheng and Shu Liu
Molecules 2022, 27(13), 4302; https://doi.org/10.3390/molecules27134302 - 04 Jul 2022
Cited by 8 | Viewed by 1929
Abstract
Plantago asiatica L. (PAL) as a medicinal and edible plant is rich in chemical compounds, which makes the systematic and comprehensive characterization of its components challenging. In this study, an integrated strategy based on three-dimensional separation including AB-8 macroporous resin column chromatography, ultra-high [...] Read more.
Plantago asiatica L. (PAL) as a medicinal and edible plant is rich in chemical compounds, which makes the systematic and comprehensive characterization of its components challenging. In this study, an integrated strategy based on three-dimensional separation including AB-8 macroporous resin column chromatography, ultra-high performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF MS), and ultra-high performance liquid chromatography-mass spectrometry with ion-mobility spectrometry (UHPLC-IM-MS) was established and used to separate and identify the structures of compounds from PAL. The extracts of PAL were firstly separated into three parts by AB-8 macroporous resin and further separated and identified by UHPLC-Q-TOF MS and UHPLC-IM-MS, respectively. Additionally, UHPLC-IM-MS was used to identify isomers and coeluting compounds, so that the product ions appearing at the same retention time (RT)can clearly distinguish where the parent ion belongs by their different drift times. UNIFI software was used for data processing and structure identification. A total of 86 compounds, including triterpenes, iridoids, phenylethanoid glycosides, guanidine derivatives, organic acids, and fatty acids, were identified by using MS information and fragment ion information provided by UHPLC-Q-TOF MS and UHPLC-IM-MS. In particular, a pair of isoforms of plantagoside from PAL were detected and identified by UHPLC-IM-MS combined with the theoretical calculation method for the first time. In conclusion, the AB-8 macroporous resin column chromatography can separate the main compounds of PAL and enrich the trace compounds. Combining UHPLC-IM-MS and UHPLC-Q-TOF MS can obtain not only more fragments but also their unique drift times and RT, which is more conducive to the identification of complex systems, especially isomers. This proposed strategy can provide an effective method to separate and identify chemical components, and distinguish isomers in the complex system of traditional Chinese medicine (TCM). Full article
(This article belongs to the Special Issue State-of-the-Art Analytical Technologies for Natural Products)
Show Figures

Figure 1

22 pages, 10175 KiB  
Article
In Silico Studies on Zinc Oxide Based Nanostructured Oil Carriers with Seed Extracts of Nigella sativa and Pimpinella anisum as Potential Inhibitors of 3CL Protease of SARS-CoV-2
by Awatif A. Hendi, Promy Virk, Manal A. Awad, Mai Elobeid, Khalid M. O. Ortashi, Meznah M. Alanazi, Fatemah H. Alkallas, Maha Mohammad Almoneef and Mohammed Aly Abdou
Molecules 2022, 27(13), 4301; https://doi.org/10.3390/molecules27134301 - 04 Jul 2022
Cited by 7 | Viewed by 2111
Abstract
Coming into the second year of the pandemic, the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants continue to be a serious health hazard globally. A surge in the omicron wave, despite the discovery of the vaccines, has shifted the attention of [...] Read more.
Coming into the second year of the pandemic, the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants continue to be a serious health hazard globally. A surge in the omicron wave, despite the discovery of the vaccines, has shifted the attention of research towards the discovery and use of bioactive compounds, being potential inhibitors of the viral structural proteins. The present study aimed at the green synthesis of zinc oxide (ZnO) nanoparticles with seed extracts of Nigella sativa and Pimpinella anisum—loaded nanostructured oil carriers (NLC)—using a mixture of olive and black seed essential oils. The synthesized ZnO NLC were extensively characterized. In addition, the constituent compounds in ZnO NLC were investigated as a potential inhibitor for the SARS-CoV-2 main protease (3CLpro or Mpro) where 27 bioactive constituents, along with ZnO in the nanostructure, were subjected to molecular docking studies. The resultant high-score compounds were further validated by molecular dynamics simulation. The study optimized the compounds dithymoquinone, δ-hederin, oleuropein, and zinc oxide with high docking energy scores (ranging from −7.9 to −9.9 kcal/mol). The RMSD and RMSF data that ensued also mirrored these results for the stability of proteins and ligands. RMSD and RMSF data showed no conformational change in the protein during the MD simulation. Histograms of every simulation trajectory explained the ligand properties and ligand–protein contacts. Nevertheless, further experimental investigations and validation of the selected candidates are imperative to take forward the applicability of the nanostructure as a potent inhibitor of COVID-19 (Coronavirus Disease 2019) for clinical trials. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Extracts)
Show Figures

Figure 1

10 pages, 977 KiB  
Article
Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose
by Ramiro Sánchez, Emanuele Boselli, Antonio Fernández, Patricia Arroyo, Jesús Lozano and Daniel Martín-Vertedor
Molecules 2022, 27(13), 4300; https://doi.org/10.3390/molecules27134300 - 04 Jul 2022
Cited by 15 | Viewed by 1574
Abstract
Spanish-style table olives are one of the most common processed foods in the Mediterranean countries. Lack of control during fermentation can lead to one of the main defects of the olive, called ‘Zapateria’, caused by the combination of volatile fatty acids reminiscent of [...] Read more.
Spanish-style table olives are one of the most common processed foods in the Mediterranean countries. Lack of control during fermentation can lead to one of the main defects of the olive, called ‘Zapateria’, caused by the combination of volatile fatty acids reminiscent of rotten leather. In this study, table olives altered with ‘Zapateria’ defect were stuffed with a hydrocolloid flavoured with the aroma ‘Mojo picón’ to improve consumer acceptance. Sensory analysis, determination of volatile compounds and electronic nose (E-nose) were used to evaluate the quality of the olives. The control samples had a high concentration of the defect ‘Zapateria’ and were classified in the second commercial category, while higher ‘Mojo picón’ flavour concentrations resulted in these olives being classified as ‘extra category’ (a masking effect). The main volatile compounds in olives with ‘Zapateria’ defect were cyclohexanecarboxylic acid and pentanoic acid. E-nose allowed discrimination between stuffed olives without added flavouring and olives with ‘Mojo picón’ flavouring at different concentrations. Finally, PLS regression allowed a predictive linear model to be established between E-nose and sensory analysis values. The RP2 values were 0.74 for perceived defect and 0.86 for perceived aroma. The E-nose was successfully applied for the first time to classify Spanish-style table olives with ‘Zapateria’ defect intensity and with the addition of the ‘Mojo picón’ aroma masking the defect. Full article
(This article belongs to the Special Issue Flavoromics for the Quality and Authenticity of Foods and Beverages)
Show Figures

Figure 1

16 pages, 67934 KiB  
Article
Ultrasound-Assisted Extraction of Anthocyanins from Malus ‘Royalty’ Fruits: Optimization, Separation, and Antitumor Activity
by Yixin Liu, Yuheng Zhao, Yue Zhuo, Yuwen Li, Jiaxin Meng, Yilin Wang and Houhua Li
Molecules 2022, 27(13), 4299; https://doi.org/10.3390/molecules27134299 - 04 Jul 2022
Cited by 6 | Viewed by 1994
Abstract
Red Malus ‘Royalty’ fruits are rich in anthocyanins. This study aimed to obtain the optimal parameters for the extraction and separation of anthocyanins from Malus ‘Royalty’ fruits and to evaluate the inhibitory effect of the enriched anthocyanin fraction on gastric cancer cells. Ultrasonic-assisted [...] Read more.
Red Malus ‘Royalty’ fruits are rich in anthocyanins. This study aimed to obtain the optimal parameters for the extraction and separation of anthocyanins from Malus ‘Royalty’ fruits and to evaluate the inhibitory effect of the enriched anthocyanin fraction on gastric cancer cells. Ultrasonic-assisted extraction was used for the extraction of the anthocyanins of Malus ‘Royalty’ fruit, and the extraction results showed that the optimum parameters were an extraction temperature of 20 °C, a solid–liquid ratio of 1:6 (g/mL), ethanol and formic acid contents of 70% and 0.4%, respectively, an extraction time of 40 min, and an ultrasonic power of 300 W. The optimum extraction parameters to achieve the highest anthocyanin yield by a single-factor experiment coupled with response surface methodology were identified. The separation results showed that the AB-8 macroporous resin was a better purifying material, with 60% ethanol as an adsorbent, and the adsorption–desorption equilibrium times were 6 h and 1 h, respectively. Cyanidin-3-galactoside was the main body composition separation of anthocyanins by a high-performance liquid chromatography-diode array detector. The antitumor activity results showed that the anthocyanins of Malus ‘Royalty’ fruits have a significant inhibitory effect on the gastric cancer cell line BGC-803. The in vitro cell viability test of CCK-8 showed that the inhibitory effect on tumor cells was more significant with the increased anthocyanin concentration, with a half maximal inhibitory concentration (IC50) value of 105.5 μg/mL. The cell morphology was observed by an inverted microscope, and it was found that the backbone of BGC-803 treated with a high concentration of anthocyanins was disintegrated and the nucleoplasm was concentrated. The mechanism of apoptosis was analyzed by Western blotting, and the results showed that with increasing anthocyanin concentration in the medium, the expression levels of the proapoptotic proteins Bax and Bak increased, and the expression levels of the antiapoptotic proteins Bcl-2 and Bcl-xL decreased, which coordinated the regulation of cell apoptosis. This research suggests that the enriched anthocyanin fraction from Malus ‘Royalty’ fruits have potential antitumor and adjuvant therapeutic effects on gastric cancer. Full article
Show Figures

Figure 1

15 pages, 4008 KiB  
Article
The Dynamic Change in Fatty Acids during the Postharvest Process of Oolong Tea Production
by Zi-Wei Zhou, Qing-Yang Wu, Yun Yang, Qing-Cai Hu, Zong-Jie Wu, Hui-Qing Huang, Hong-Zheng Lin, Zhong-Xiong Lai and Yun Sun
Molecules 2022, 27(13), 4298; https://doi.org/10.3390/molecules27134298 - 04 Jul 2022
Cited by 8 | Viewed by 1794
Abstract
As important factors to oolong tea quality, the accumulation and dynamic change in aroma substances attracts great attention. The volatile composition of oolong tea is closely related to the precursor contents. Fatty acids (FAs) and their derivatives are basic components of oolong tea [...] Read more.
As important factors to oolong tea quality, the accumulation and dynamic change in aroma substances attracts great attention. The volatile composition of oolong tea is closely related to the precursor contents. Fatty acids (FAs) and their derivatives are basic components of oolong tea fragrance during the postharvest process. However, information about the precursors of FAs during the postharvest process of oolong tea production is rare. To investigate the transformation of fatty acids during the process of oolong tea production, gas chromatograph–flame ionization detection (GC-FID) was conducted to analyze the composition of FAs. The results show that the content of total polyunsaturated FAs initially increased and then decreased. Specifically, the contents of α-linolenic acid, linoleic acid and other representative substances decreased after the turn-over process of oolong tea production. The results of partial least squares discrimination analysis (PLS-DA) showed that five types of FAs were obviously impacted by the processing methods of oolong tea (VIP > 1.0). LOX (Lipoxygenase, EC 1.13.11.12) is considered one of the key rate-limiting enzymes of long-chain unsaturated FAs in the LOX-HPL (hydroperoxide lyase) pathway, and the mechanical wounding occurring during the postharvest process of oolong tea production greatly elevated the activity of LOX. Full article
Show Figures

Figure 1

45 pages, 5865 KiB  
Review
Natural Products Inhibitors of Monoamine Oxidases—Potential New Drug Leads for Neuroprotection, Neurological Disorders, and Neuroblastoma
by Narayan D. Chaurasiya, Francisco Leon, Ilias Muhammad and Babu L. Tekwani
Molecules 2022, 27(13), 4297; https://doi.org/10.3390/molecules27134297 - 04 Jul 2022
Cited by 23 | Viewed by 5694
Abstract
Monoamine oxidase inhibitors (MAOIs) are an important class of drugs prescribed for treatment of depression and other neurological disorders. Evidence has suggested that patients with atypical depression preferentially respond to natural product MAOIs. This review presents a comprehensive survey of the natural products, [...] Read more.
Monoamine oxidase inhibitors (MAOIs) are an important class of drugs prescribed for treatment of depression and other neurological disorders. Evidence has suggested that patients with atypical depression preferentially respond to natural product MAOIs. This review presents a comprehensive survey of the natural products, predominantly from plant sources, as potential new MAOI drug leads. The psychoactive properties of several traditionally used plants and herbal formulations were attributed to their MAOI constituents. MAO inhibitory constituents may also be responsible for neuroprotective effects of natural products. Different classes of MAOIs were identified from the natural product sources with non-selective as well as selective inhibition of MAO-A and -B. Selective reversible natural product MAOIs may be safer alternatives to the conventional MAOI drugs. Characterization of MAO inhibitory constituents of natural products traditionally used as psychoactive preparations or for treatment of neurological disorders may help in understanding the mechanism of action, optimization of these preparations for desired bioactive properties, and improvement of the therapeutic potential. Potential therapeutic application of natural product MAOIs for treatment of neuroblastoma is also discussed. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Natural Products Chemistry)
Show Figures

Figure 1

15 pages, 3681 KiB  
Article
Effects of Preparation Conditions on the Efficiency of Visible-Light-Driven Hydrogen Generation Based on Ni(II)-Modified Cd0.25Zn0.75S Photocatalysts
by Maali-Amel Mersel, Lajos Fodor, Péter Pekker, Éva Makó and Ottó Horváth
Molecules 2022, 27(13), 4296; https://doi.org/10.3390/molecules27134296 - 04 Jul 2022
Cited by 5 | Viewed by 1599
Abstract
Hydrogen as an environmentally friendly fuel can be produced by photocatalytic procedures from aqueous systems, utilizing H2S, an industrial side-product, by conversion and storage of renewable solar energy. Although composites of CdS and ZnS prepared by co-precipitation are very efficient in [...] Read more.
Hydrogen as an environmentally friendly fuel can be produced by photocatalytic procedures from aqueous systems, utilizing H2S, an industrial side-product, by conversion and storage of renewable solar energy. Although composites of CdS and ZnS prepared by co-precipitation are very efficient in heterogeneous photocatalytic H2 generation, the optimal conditions for their synthesis and the effects of the various influencing factors are still not fully clarified. In this work, we investigated how the efficiency of Cd0.25Zn0.75S composites modified with Ni(II) was affected by the doping method, Ni-content, hydrothermal treatment, and presence of a complexing agent (ammonia) used in the preparation. The composition, optical, and structural properties of the photocatalysts prepared were determined by ICP, DRS, XRD, TEM, and STEM-EDS. Although hydrothermal treatment proved preferable for Ni-free composites, Ni-modification was more efficient for untreated composites precipitated from ammonia-containing media. The best efficiency (14.9% quantum yield at 380 nm irradiation, 109.8 mmol/g/h hydrogen evolution rate) achieved by surface modification with 0.1–0.3% Ni(II) was 15% and 20% better than those for hydrothermally treated catalyst and similarly prepared Pt-modified one, respectively. Structural characterization of the composites clearly confirmed that the Ni2+ ions were not embedded into the CdS-ZnS crystal lattice but were enriched on the surface of particles of the original catalyst in the form of NiO or Ni(OH)2. This co-catalyst increased the efficiency by electron-trapping, but its too high amount caused an opposite effect by diminishing the excitable surface of the CdS-ZnS particles. Full article
(This article belongs to the Special Issue Thermal and Photocatalytic Analysis of Nanomaterials)
Show Figures

Graphical abstract

12 pages, 2327 KiB  
Article
Designed Syntheses of Three {Ni6PW9}-Based Polyoxometalates, from Isolated Cluster to Cluster-Organic Helical Chain
by Chong-An Chen, Yan Liu and Guo-Yu Yang
Molecules 2022, 27(13), 4295; https://doi.org/10.3390/molecules27134295 - 04 Jul 2022
Cited by 2 | Viewed by 1515
Abstract
Three new hexa-Ni-substituted Keggin-type polyoxometalates (POMs), [Ni6(OH)3- (DACH)3(H2O)6(PW9O34)]·31H2O (1), [Ni(DACH)2][Ni6(OH)3(DACH)3(HMIP)2(H2O)2(PW9 [...] Read more.
Three new hexa-Ni-substituted Keggin-type polyoxometalates (POMs), [Ni6(OH)3- (DACH)3(H2O)6(PW9O34)]·31H2O (1), [Ni(DACH)2][Ni6(OH)3(DACH)3(HMIP)2(H2O)2(PW9O34)]·56 H2O (2), and [Ni(DACH)2][Ni6(OH)3(DACH)2(AP)(H2O)5(PW9O34)]·2H2O (3) (DACH = 1,2-Diami- nocyclohexane, MIP = 5-Methylisophthalate, AP = Adipate) were successfully made in the presence of DACH under hydrothermal conditions. 1 is an isolated hexa-Ni-substituted Keggin unit decorated by DACH. In order to further construct POM cluster-organic frameworks (POMCOFs) on the basis of 1, by analyzing the steric hindrances and orientations of the POM units, the rigid HMIP and flexible AP ligands were successively incorporated, and another anionic monomeric POM 2 and the new 1D POM cluster organic chain (POMCOC) 3 were obtained. HMIP ligand still acts as a decorating group on the Ni6 core of 2 but results in the different spatial arrangement of the {Ni6PW9} units. AP ligands in 3 successfully bridge adjacent isolated POM cluster units to 1D POMCOC with left-hand helices. The AP in 3 is the longest aliphatic carboxylic acid ligand in POMs, and the 1D POM cluster-AP helical chain represents the first 1D POMCOC with a helical feature. Full article
(This article belongs to the Special Issue Research on Polyoxometalate Materials)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop