Annual Achievements Report
Available Now
 
17 pages, 2979 KiB  
Article
Discussion on the Design of Sprayed Eco-Protection for Near-Slope Roads Along Multi-Level Slopes
by Haonan Chen and Jianjun Ye
Appl. Sci. 2025, 15(15), 8408; https://doi.org/10.3390/app15158408 (registering DOI) - 29 Jul 2025
Abstract
This study proposes a design method for near-slope roads along multi-level slopes that integrates excavation requirements and post-construction ecological restoration through sprayed eco-protection. Firstly, the design principles and procedural steps for near-slope roads are established. The planar layouts of multi-level slopes are categorized, [...] Read more.
This study proposes a design method for near-slope roads along multi-level slopes that integrates excavation requirements and post-construction ecological restoration through sprayed eco-protection. Firstly, the design principles and procedural steps for near-slope roads are established. The planar layouts of multi-level slopes are categorized, including mixing areas, turnaround areas, berms, and access ramps. Critical technical parameters, such as curve radii and widths of berms and ramps, as well as dimensional specifications for turnaround areas, are systematically formulated with corresponding design formulas. The methodology is applied to the ecological restoration project of multi-level slopes in the Huamahu mountainous area, and a comparative technical-economic analysis is conducted between the proposed design and the original scheme. Results demonstrate that the optimized design reduces additional maintenance costs caused by near-slope roads by 6.5–8.0% during the curing period. This research advances the technical framework for multi-level slope governance and enhances the ecological design standards for slope protection engineering. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 3308 KiB  
Article
Photocatalytic Degradation of Typical Fibrates by N and F Co-Doped TiO2 Nanotube Arrays Under Simulated Sunlight Irradiation
by Xiangyu Chen, Hao Zhong, Juanjuan Yao, Jingye Gan, Haibing Cong and Tengyi Zhu
Water 2025, 17(15), 2261; https://doi.org/10.3390/w17152261 (registering DOI) - 29 Jul 2025
Abstract
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical [...] Read more.
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical removal from water, powered by inexhaustible sunlight. In this study, the degradation of two typical fibrates, i.e., bezafibrate (BZF) and ciprofibrate (CPF), under simulated sunlight irradiation through NF-TNAs were investigated. The photocatalytic degradation of BZF/CPF was achieved through combined radical and non-radical oxidation processes, while the generation and reaction mechanisms of associated reactive oxygen species (ROS) were examined. Electron paramagnetic resonance detection and quenching tests confirmed the existence of h+, •OH, O2•−, and 1O2, with O2•− playing the predominant role. The transformation products (TPs) of BZF/CPF were identified through high-resolution mass spectrometry analysis combined with quantum chemical calculations to elucidate the degradation pathways. The influence of co-existing ions and typical natural organic matters (NOM) on BZF/CPF degradation were also tested. Eventually, the ecological risk of BZF/CPF transformation products was assessed through quantitative structure–activity relationship (QSAR) modeling, and the results showed that the proposed photocatalytic system can largely alleviate fibrate toxicity. Full article
Show Figures

Figure 1

37 pages, 1528 KiB  
Systematic Review
The Effectiveness of Compassion Focused Therapy for the Three Flows of Compassion, Self-Criticism, and Shame in Clinical Populations: A Systematic Review
by Naomi Brown and Katie Ashcroft
Behav. Sci. 2025, 15(8), 1031; https://doi.org/10.3390/bs15081031 (registering DOI) - 29 Jul 2025
Abstract
Compassion Focused therapy (CFT) is designed to reduce shame (internal and external) and self-criticism while enhancing the three flows of compassion (compassion to others, from others, and for the self). This systematic review evaluated the effectiveness of CFT on these core theoretical constructs [...] Read more.
Compassion Focused therapy (CFT) is designed to reduce shame (internal and external) and self-criticism while enhancing the three flows of compassion (compassion to others, from others, and for the self). This systematic review evaluated the effectiveness of CFT on these core theoretical constructs in adult clinical populations. A systematic search of three databases (2000–2024) identified 21 studies (N = 450) meeting the inclusion criteria. The studies were narratively synthesised, and quality was assessed using the EPHPP tool. Consistent improvements in self-compassion (g = 0.23–4.14) and reductions in self-criticism (g = 0.29–1.56) were reported. Reductions in external shame were also observed (g = 0.54–1.22), though this outcome was examined in fewer studies. Limited and inconsistent evidence was found for internal shame and interpersonal compassion flows (compassion to and from others), with only a small number of low- to moderate-quality studies addressing these outcomes. Follow-up effects were rarely assessed, and comparator groups were limited. Most interventions were group-based and of variable methodological quality, with frequent selection bias, small sample sizes, and limited demographic diversity. Overall, CFT shows promise for targeting self-directed processes in clinical populations, though stronger evidence is needed to understand its effects on relational components of compassion. Future research should adopt standardised measures, improve methodological rigour, and recruit more diverse samples. Full article
25 pages, 3102 KiB  
Article
Rainfall Drives Fluctuating Antibiotic Resistance Gene Levels in a Suburban Freshwater Lake
by Jack Roddey, Karlen Enid Correa Velez and R. Sean Norman
Water 2025, 17(15), 2260; https://doi.org/10.3390/w17152260 (registering DOI) - 29 Jul 2025
Abstract
Antibiotic resistance genes (ARGs) in suburban freshwater ecosystems pose a growing public health concern by potentially reducing the effectiveness of medical treatments. This study investigated how rainfall influences ARG dynamics in Lake Katherine, a 62-hectare suburban lake in Columbia, South Carolina, over one [...] Read more.
Antibiotic resistance genes (ARGs) in suburban freshwater ecosystems pose a growing public health concern by potentially reducing the effectiveness of medical treatments. This study investigated how rainfall influences ARG dynamics in Lake Katherine, a 62-hectare suburban lake in Columbia, South Carolina, over one year. Surface water was collected under both dry and post-rain conditions from three locations, and ARGs were identified using metagenomic sequencing. Statistical models revealed that six of nine ARG classes with sufficient data showed significant responses to rainfall. Three classes, Bacitracin, Aminoglycoside, and Unclassified, were more abundant after rainfall, while Tetracycline, Multidrug, and Peptide resistance genes declined. Taxonomic analysis showed that members of the Pseudomonadota phylum, especially Betaproteobacteria, were prevalent among ARG-carrying microbes. These findings suggest that rainfall can alter the distribution of ARGs in suburban lakes, highlighting the importance of routine monitoring and water management strategies to limit the environmental spread of antibiotic resistance. Full article
(This article belongs to the Special Issue Water Safety, Ecological Risk and Public Health)
Show Figures

Figure 1

20 pages, 1564 KiB  
Article
Real-Time Energy Management in Microgrids: Integrating T-Cell Optimization, Droop Control, and HIL Validation with OPAL-RT
by Achraf Boukaibat, Nissrine Krami, Youssef Rochdi, Yassir El Bakkali, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(15), 4035; https://doi.org/10.3390/en18154035 (registering DOI) - 29 Jul 2025
Abstract
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these [...] Read more.
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these challenges. A JADE-based multi-agent system (MAS) orchestrates coordination between the T-Cell optimizer and edge-level controllers, enabling scalable and fault-tolerant decision-making. The T-Cell algorithm, inspired by adaptive immune system dynamics, optimizes global power distribution through the MAS platform, while droop control ensures local voltage stability via autonomous adjustments by distributed energy resources (DERs). The framework is rigorously validated through Hardware-in-the-Loop (HIL) testing using OPAL-RT, which interfaces MATLAB/Simulink models with Raspberry Pi for real-time communication (MQTT/Modbus protocols). Experimental results demonstrate a 91% reduction in grid dependency, 70% mitigation of voltage fluctuations, and a 93% self-consumption rate, significantly enhancing power quality and resilience. By integrating centralized optimization with decentralized control through MAS coordination, the hybrid approach achieves scalable, self-organizing microgrid operation under variable generation and load conditions. This work advances the practical deployment of adaptive energy management systems, offering a robust solution for sustainable and resilient microgrids. Full article
24 pages, 764 KiB  
Article
A Company-Based View on Sustainable Packaging Orientation
by Paulo Duarte, Maria Inês Ribeiro, Susana C. Silva, Rúben Pinhal and Ana Estima
Sustainability 2025, 17(15), 6890; https://doi.org/10.3390/su17156890 (registering DOI) - 29 Jul 2025
Abstract
This study aims to understand how companies address and integrate sustainability challenges in packaging design, as well as the motivations and processes that influence managers’ decisions when adopting sustainable practices. Semi-structured interviews were conducted with managers from five major Portuguese companies to gather [...] Read more.
This study aims to understand how companies address and integrate sustainability challenges in packaging design, as well as the motivations and processes that influence managers’ decisions when adopting sustainable practices. Semi-structured interviews were conducted with managers from five major Portuguese companies to gather qualitative data on the motivations and processes related to sustainable packaging strategies and actions. The list of questions was developed based on the literature review, from which the dimensions to be analyzed were identified. The results indicate that several factors influence companies’ decisions regarding sustainability in packaging. Despite some factors being beyond the control of companies, the interviews reveal that companies possess the necessary knowledge and are committed to adopting more sustainable packaging. Full article
18 pages, 1297 KiB  
Article
Effect of Window Structure and Mounting on Sound Insulation: A Laboratory-Based Study
by Leszek Dulak and Artur Nowoświat
Sustainability 2025, 17(15), 6892; https://doi.org/10.3390/su17156892 (registering DOI) - 29 Jul 2025
Abstract
The acoustic performance of windows significantly influences evaluations of building quality, particularly in urban environments. This study presents the results of laboratory tests on the airborne sound insulation of windows with dimensions greater than those specified in ISO 10140-5:2021-10. The aim was to [...] Read more.
The acoustic performance of windows significantly influences evaluations of building quality, particularly in urban environments. This study presents the results of laboratory tests on the airborne sound insulation of windows with dimensions greater than those specified in ISO 10140-5:2021-10. The aim was to determine the impact of construction details and installation techniques on sound insulation, specifically Rw and Rw + Ctr values. The experimental variables included mounting methods (expansion tape versus low-pressure polyurethane foam), the presence or absence of a threshold in the lower frame, and the type of mullion (fixed versus movable). The tests involved two types of IGUs characterized by different acoustic properties. The findings indicate that the frame configuration, including threshold and mullion type, has a negligible influence on sound insulation. However, the standard method for estimating acoustic performance (EN 14351-1:2006 + A2:2017), which relies on IGU-based data, proved unreliable for modern window assemblies. The estimated values of Rw and Rw + Ctr were consistently lower than those obtained from direct laboratory measurements. These results highlight the need for verification through full-size window testing and suggest that reliance on simplified estimation procedures may lead to underperformance in real-world acoustic applications. Full article
(This article belongs to the Special Issue Advancements in Green Building Materials, Structures, and Techniques)
18 pages, 3780 KiB  
Article
Total Internal Reflection End-Pumped Solar Laser with the Solar-to-Laser Conversion Efficiency of 6.09%
by Lin Wang, Haiyang Zhang, Dário Garcia, Weichen Xu, Changming Zhao and Anran Guo
Energies 2025, 18(15), 4033; https://doi.org/10.3390/en18154033 (registering DOI) - 29 Jul 2025
Abstract
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a [...] Read more.
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a single Ce (0.05 at.%): Nd (1 at.%): YAG crystal rod, measuring 4 mm in diameter and 10 mm in length, thereby promoting total internal reflection and extending the pumping path. Simulation results indicate that under the same solar input power conditions (249.05 W), the conversion efficiencies of the conical solid reflector and cavity reflector systems are 1.2 times and 1.33 times higher than the current highest recorded efficiency of single-rod systems, respectively. At 950 W/m2, the conical reflector reaches 5.48% efficiency, while the cavity reflector attains 6.09%. Their collection efficiencies are 52.03 W/m2 and 57.90 W/m2, with slope efficiencies of 6.65% and 7.72%. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
19 pages, 1706 KiB  
Article
LGM-YOLO: A Context-Aware Multi-Scale YOLO-Based Network for Automated Structural Defect Detection
by Chuanqi Liu, Yi Huang, Zaiyou Zhao, Wenjing Geng and Tianhong Luo
Processes 2025, 13(8), 2411; https://doi.org/10.3390/pr13082411 (registering DOI) - 29 Jul 2025
Abstract
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable [...] Read more.
Ensuring the structural safety of steel trusses in escalators is critical for the reliable operation of vertical transportation systems. While manual inspection remains widely used, its dependence on human judgment leads to extended cycle times and variable defect-recognition rates, making it less reliable for identifying subtle surface imperfections. To address these limitations, a novel context-aware, multi-scale deep learning framework based on the YOLOv5 architecture is proposed, which is specifically designed for automated structural defect detection in escalator steel trusses. Firstly, a method called GIES is proposed to synthesize pseudo-multi-channel representations from single-channel grayscale images, which enhances the network’s channel-wise representation and mitigates issues arising from image noise and defocused blur. To further improve detection performance, a context enhancement pipeline is developed, consisting of a local feature module (LFM) for capturing fine-grained surface details and a global context module (GCM) for modeling large-scale structural deformations. In addition, a multi-scale feature fusion module (MSFM) is employed to effectively integrate spatial features across various resolutions, enabling the detection of defects with diverse sizes and complexities. Comprehensive testing on the NEU-DET and GC10-DET datasets reveals that the proposed method achieves 79.8% mAP on NEU-DET and 68.1% mAP on GC10-DET, outperforming the baseline YOLOv5s by 8.0% and 2.7%, respectively. Although challenges remain in identifying extremely fine defects such as crazing, the proposed approach offers improved accuracy while maintaining real-time inference speed. These results indicate the potential of the method for intelligent visual inspection in structural health monitoring and industrial safety applications. Full article
22 pages, 2525 KiB  
Article
mmHSE: A Two-Stage Framework for Human Skeleton Estimation Using mmWave FMCW Radar Signals
by Jiake Tian, Yi Zou and Jiale Lai
Appl. Sci. 2025, 15(15), 8410; https://doi.org/10.3390/app15158410 (registering DOI) - 29 Jul 2025
Abstract
We present mmHSE, a two-stage framework for human skeleton estimation using dual millimeter-Wave (mmWave) Frequency-Modulated Continuous-Wave (FMCW) radar signals. To enable data-driven model design and evaluation, we collect and process over 30,000 range–angle maps from 12 users across three representative indoor environments using [...] Read more.
We present mmHSE, a two-stage framework for human skeleton estimation using dual millimeter-Wave (mmWave) Frequency-Modulated Continuous-Wave (FMCW) radar signals. To enable data-driven model design and evaluation, we collect and process over 30,000 range–angle maps from 12 users across three representative indoor environments using a dual-node radar acquisition platform. Leveraging the collected data, we develop a two-stage neural architecture for human skeleton estimation. The first stage employs a dual-branch network with depthwise separable convolutions and self-attention to extract multi-scale spatiotemporal features from dual-view radar inputs. A cross-modal attention fusion module is then used to generate initial estimates of 21 skeletal keypoints. The second stage refines these estimates using a skeletal topology module based on graph convolutional networks, which captures spatial dependencies among joints to enhance localization accuracy. Experiments show that mmHSE achieves a Mean Absolute Error (MAE) of 2.78 cm. In cross-domain evaluations, the MAE remains at 3.14 cm, demonstrating the method’s generalization ability and robustness for non-intrusive human pose estimation from mmWave FMCW radar signals. Full article
Show Figures

Figure 1

12 pages, 2831 KiB  
Article
IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations
by Shunjie Yu, Lijuan Hu, Yazhen Qin, Guorui Ruan, Yazhe Wang, Hao Jiang, Feifei Tang, Ting Zhao, Jinsong Jia, Jing Wang, Qiang Fu, Xiaohui Zhang, Lanping Xu, Yu Wang, Yuqian Sun, Yueyun Lai, Hongxia Shi, Xiaojun Huang and Qian Jiang
Cancers 2025, 17(15), 2494; https://doi.org/10.3390/cancers17152494 - 29 Jul 2025
Abstract
Background: CCAAT/enhancer-binding protein alpha–basic leucine zipper in-frame (CEBPAbZIP-inf) mutations are associated with favorable outcomes in acute myeloid leukemia (AML). So far, there are limited data on integrating clinical and genomic features impacting the outcomes. Methods: Clinical and genomic data from [...] Read more.
Background: CCAAT/enhancer-binding protein alpha–basic leucine zipper in-frame (CEBPAbZIP-inf) mutations are associated with favorable outcomes in acute myeloid leukemia (AML). So far, there are limited data on integrating clinical and genomic features impacting the outcomes. Methods: Clinical and genomic data from consecutive patients with CEBPAbZIP-inf were reviewed. A Cox proportional hazards regression was used to identify the variables associated with event-free survival (EFS), relapse-free survival (RFS) and survival. Results: 224 CEBPAbZIP-inf patients were included in this study. In the 201 patients, except for the 19 receiving the transplant in the first complete remission with no events (the transplant cohort), multivariate analyses showed that IKZF1 mutations/deletions were significantly associated with poor EFS (p = 0.001) and RFS (p < 0.001); FLT3-ITD mutations, poor RFS (p = 0.048). In addition, increasing WBC count, lower hemoglobin concentration, non-intensive induction, and MRD positivity after first consolidation predicted poor outcomes. On the basis of the number of adverse prognostic covariates for RFS, the 201 patients were classified into low-, intermediate- or high-risk subgroups, and there were significant differences in the 3-year EFS, RFS and survival rates (all p < 0.001); however, except for survival in the low-risk group, these metrics were lower than those in the transplant cohort. Conclusions: We identified a potential high-risk population with adverse prognostic factors in CEBPAbZIP-inf AML patients for which transplantation should be considered. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

22 pages, 2083 KiB  
Article
Novel Gaussian-Decrement-Based Particle Swarm Optimization with Time-Varying Parameters for Economic Dispatch in Renewable-Integrated Microgrids
by Yuan Wang, Wangjia Lu, Wenjun Du and Changyin Dong
Mathematics 2025, 13(15), 2440; https://doi.org/10.3390/math13152440 (registering DOI) - 29 Jul 2025
Abstract
Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization [...] Read more.
Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization algorithm is proposed in this study. Methods: Mathematical models of photovoltaic power generation, energy storage systems, and electric vehicles were established, thereby constructing the microgrid system model of the power load in the expressway service area. Taking the economic cost of electricity consumption in the service area as the objective function and simultaneously meeting constraints such as power balance, power grid interactions, and energy storage systems, a microgrid economy dispatch model is constructed. An improved particle swarm optimization algorithm with time-varying parameters of the inertia weight and learning factor was designed to solve the optimal dispatching strategy. The inertia weight was improved by adopting the Gaussian decreasing method, and the asymmetric dynamic learning factor was adjusted simultaneously. Findings: Field case studies demonstrate that, compared to other algorithms, the improved Particle Swarm Optimization algorithm effectively reduces the operational costs of microgrid systems while exhibiting accelerated convergence speed and enhanced robustness. Value: This study provides a theoretical mathematical reference for the economic dispatch optimization of microgrids in renewable-integrated transportation systems. Full article
21 pages, 741 KiB  
Article
Partnering Contracts and Conflict Levels in Norwegian Construction Projects
by Omar K. Sabri and Haakon Nygaard Kristiansen
Buildings 2025, 15(15), 2676; https://doi.org/10.3390/buildings15152676 (registering DOI) - 29 Jul 2025
Abstract
The Norwegian construction sector has long struggled with conflict, particularly in large-scale and complex projects, where adversarial practices, rigid procurement systems, and insufficient early collaboration are common. This study explores how partnering contracts, which are collaborative delivery models designed to align stakeholder interests, [...] Read more.
The Norwegian construction sector has long struggled with conflict, particularly in large-scale and complex projects, where adversarial practices, rigid procurement systems, and insufficient early collaboration are common. This study explores how partnering contracts, which are collaborative delivery models designed to align stakeholder interests, affect conflict dynamics in real-world settings. Employing a mixed-methods approach, it combines semi-structured interviews with 21 experienced Norwegian construction professionals and a structured survey of 33 industry experts. The findings reveal that partnering can foster trust, improve communication, and reduce adversarial behavior through mechanisms such as early contractor involvement, joint goal setting, and open dialogue. However, participants also identified critical risks: superficial collaboration rituals, ambiguous roles, and unresolved structural inequalities that can exacerbate tensions. Importantly, the study emphasizes that partnering success depends less on the contract itself and more on cultural alignment, stakeholder competence, and long-term relational commitment. These insights contribute to a more nuanced understanding of how collaborative contracting influences conflict mitigation in the Norwegian construction sector. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 1326 KiB  
Article
Beyond Performance: Explaining and Ensuring Fairness in Student Academic Performance Prediction with Machine Learning
by Kadir Kesgin, Salih Kiraz, Selahattin Kosunalp and Bozhana Stoycheva
Appl. Sci. 2025, 15(15), 8409; https://doi.org/10.3390/app15158409 (registering DOI) - 29 Jul 2025
Abstract
This study addresses fairness in machine learning for student academic performance prediction using the UCI Student Performance dataset. We comparatively evaluate logistic regression, Random Forest, and XGBoost, integrating the Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance and 5-fold cross-validation for robust [...] Read more.
This study addresses fairness in machine learning for student academic performance prediction using the UCI Student Performance dataset. We comparatively evaluate logistic regression, Random Forest, and XGBoost, integrating the Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance and 5-fold cross-validation for robust model training. A comprehensive fairness analysis is conducted, considering sensitive attributes such as gender, school type, and socioeconomic factors, including parental education (Medu and Fedu), cohabitation status (Pstatus), and family size (famsize). Using the AIF360 library, we compute the demographic parity difference (DP) and Equalized Odds Difference (EO) to assess model biases across diverse subgroups. Our results demonstrate that XGBoost achieves high predictive performance (accuracy: 0.789; F1 score: 0.803) while maintaining low bias for socioeconomic attributes, offering a balanced approach to fairness and performance. A sensitivity analysis of bias mitigation strategies further enhances the study, advancing equitable artificial intelligence in education by incorporating socially relevant factors. Full article
(This article belongs to the Special Issue Challenges and Trends in Technology-Enhanced Learning)
19 pages, 9284 KiB  
Article
UAV-YOLO12: A Multi-Scale Road Segmentation Model for UAV Remote Sensing Imagery
by Bingyan Cui, Zhen Liu and Qifeng Yang
Drones 2025, 9(8), 533; https://doi.org/10.3390/drones9080533 (registering DOI) - 29 Jul 2025
Abstract
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes UAV-YOLOv12, a multi-scale segmentation model specifically designed for UAV-based road imagery analysis. The proposed model builds on the YOLOv12 architecture by adding two key modules. It uses a Selective Kernel Network (SKNet) to adjust receptive fields dynamically and a Partial Convolution (PConv) module to improve spatial focus and robustness in occluded regions. These enhancements help the model better detect small and irregular road features in complex aerial scenes. Experimental results on a custom UAV dataset collected from national highways in Wuxi, China, show that UAV-YOLOv12 achieves F1-scores of 0.902 for highways (road-H) and 0.825 for paths (road-P), outperforming the original YOLOv12 by 5% and 3.2%, respectively. Inference speed is maintained at 11.1 ms per image, supporting near real-time performance. Moreover, comparative evaluations with U-Net show that UAV-YOLOv12 improves by 7.1% and 9.5%. The model also exhibits strong generalization ability, achieving F1-scores above 0.87 on public datasets such as VHR-10 and the Drone Vehicle dataset. These results demonstrate that the proposed UAV-YOLOv12 can achieve high accuracy and robustness in diverse road environments and object scales. Full article
Show Figures

Figure 1

22 pages, 3797 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 (registering DOI) - 29 Jul 2025
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
10 pages, 1969 KiB  
Case Report
A Rare t(3;15;17) in a Patient with Acute Promyelocytic Leukemia: Case Report and Review of the Literature
by Linda Shi, Chu En Chen, Tahmeena Ahmed, Jacob Rocha, Pons Materum, Sashank Cherukuri, Leah Gallagher, Paula Fernicola, Roxana Ponce, Htien Lee, Christina Giordano, Gabriela Evans, Changtai Tian and Carlos A. Tirado
Diagnostics 2025, 15(15), 1901; https://doi.org/10.3390/diagnostics15151901 (registering DOI) - 29 Jul 2025
Abstract
We present a 48-year-old female with a past medical history of endometrioid adenocarcinoma who presented with symptoms of spontaneous gum bleeding, post-coital bleeding, and upper extremities–lower extremities-abdomen ecchymosis. Initial laboratory findings were significant for cytopenia and disseminated intravascular coagulation (DIC). Due to a [...] Read more.
We present a 48-year-old female with a past medical history of endometrioid adenocarcinoma who presented with symptoms of spontaneous gum bleeding, post-coital bleeding, and upper extremities–lower extremities-abdomen ecchymosis. Initial laboratory findings were significant for cytopenia and disseminated intravascular coagulation (DIC). Due to a suspected case of acute promyelocytic leukemia (APL), conventional karyotyping and fluorescence in situ hybridization (FISH) were performed. FISH analysis confirmed an unusual chromosome rearrangement that affected chromosomes 3, 15, and 17. This t(3;15;17)(q29;q24;q21) was characterized by the presence of PML::RARA fusion on the derivative chromosome 15. Treatment at the hospital with standard APL therapy of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) was complicated by the development of differentiation syndrome, which necessitated the temporary stoppage of ATO. However, complete remission was achieved despite complications after starting consolidation treatment. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

11 pages, 1132 KiB  
Article
The Effect of Aromatherapy on Post-Exercise Hypotension: A Pilot Study
by Sieun Park and Seung Kyum Kim
Appl. Sci. 2025, 15(15), 8407; https://doi.org/10.3390/app15158407 (registering DOI) - 29 Jul 2025
Abstract
The global prevalence of hypertension continues to rise, affecting an estimated one billion worldwide. Regular exercise is well recognized as a non-pharmacological approach for individuals with hypertension due to its blood pressure (BP)-lowering effect, largely attributed to repeated exposure to post-exercise hypotension (PEH). [...] Read more.
The global prevalence of hypertension continues to rise, affecting an estimated one billion worldwide. Regular exercise is well recognized as a non-pharmacological approach for individuals with hypertension due to its blood pressure (BP)-lowering effect, largely attributed to repeated exposure to post-exercise hypotension (PEH). Recent evidence also indicates that aromatherapy can contribute to BP reduction, indicating that combining aromatherapy with exercise may enhance the overall BP-lowering effects. Therefore, this pilot study aimed to investigate the effects of aromatherapy on PEH during the recovery phase following exercise. Fourteen healthy young males (22.7 ± 0.7 yrs) participated in this randomized crossover-designed study. All participants completed two exercise sessions per week, each lasting 30 min, at a target heart rate (HR) of 60–65%. The individuals inhaled either aroma oil or water vapor at 5, 35, 65, and 95 min after exercise. The HR, BP, blood lactate level, and arterial stiffness index were measured before and after the exercise. Our findings revealed the following. (1) PEH occurred in both groups. (2) In the aroma group, PEH was augmented compared with the control group, with the maximum reduction in BP being greater in the aroma group. (3) The reduction in arterial stiffness was greater and longer in the aroma group than in the control group. (4) The changes in the lactate levels after exercise did not differ between the groups. Our findings indicate that aromatherapy can amplify PEH, suggesting that its use after exercise may help maximize the positive effects of exercise on BP reduction. Full article
(This article belongs to the Special Issue Sports Medicine, Exercise, and Health: Latest Advances and Prospects)
Show Figures

Figure 1

21 pages, 3912 KiB  
Article
Screening and Phenotyping of Lactic Acid Bacteria in Boza
by Xudong Zhao, Longying Pei, Xinqi Wang, Mingming Luo, Sihan Hou, Xingqian Ye, Wei Liu and Yuting Zhou
Microorganisms 2025, 13(8), 1767; https://doi.org/10.3390/microorganisms13081767 (registering DOI) - 29 Jul 2025
Abstract
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid [...] Read more.
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid decarboxylase activity) and probiotic properties (gastrointestinal tolerance, bile salt tolerance, hydrophobicity, self-aggregation, drug resistance, bacteriostatic properties) of the 16 isolated LAB were systematically analyzed by morphological, physiological, and biochemical tests and 16S rDNA molecular biology. This analysis utilized principal component analysis (PCA) to comprehensively evaluate the biological properties of the strains. The identified LAB included Limosilactobacillus fermentum (9 strains), Levilactobacillus brevis (2 strains), Lacticaseibacillus paracasei (2 strains), and Lactobacillus helveticus (3 strains). These strains showed strong environmental adaptation at different pH (3.5) and temperature (45 °C), with different gastrointestinal colonization, tolerance, and antioxidant properties. All the strains did not show hemolytic activity and were inhibitory to Staphylococcus aureus, and showed resistance to kanamycin, gentamicin, vancomycin, and streptomycin. Based on the integrated scoring of biological properties by principal component analysis, Limosilactobacillus fermentum S4 and S6 and Levilactobacillus brevis S5 had excellent fermentation properties and tolerance and could be used as potential functional microbial resources. Full article
(This article belongs to the Special Issue Microbial Fermentation in Food Processing)
Show Figures

Figure 1

21 pages, 342 KiB  
Article
From Road Transport to Intermodal Freight: The Formula 1 Races Logistics Case
by Martina Maria Petralia and Letizia Tebaldi
Sustainability 2025, 17(15), 6889; https://doi.org/10.3390/su17156889 (registering DOI) - 29 Jul 2025
Abstract
According to the Formula 1 commitment to produce net zero carbon emissions by 2030, the present paper examines the environmental impact of Formula 1 logistics by means of a case study carried out from the point of view of an Italian company, with [...] Read more.
According to the Formula 1 commitment to produce net zero carbon emissions by 2030, the present paper examines the environmental impact of Formula 1 logistics by means of a case study carried out from the point of view of an Italian company, with reference to the European Grand Prix. Logistics accounts for approximately 49% of the sport’s total emissions and accordingly, to reduce its carbon footprint, addressing the logistics activity is vital. Two scenarios are compared in detail: AS-IS, involving only road transport of assets, and TO-BE, in which a combined rail–road approach (i.e., intermodal freight) is implemented. While the AS-IS scenario is more cost-effective, it has a significant environmental impact in terms of CO2 emissions; in contrast, though more complex and costly, TO-BE offers major advantages for environmental sustainability, including reduced emissions (approximately half compared to AS-IS) and improved efficiency through intermodal transport units. This study stresses that a combined transport system, facilitated by the European rail infrastructure, is a more sustainable option for Formula 1 logistics. However, achieving full carbon neutrality still represents a challenge that will require further innovations and collaboration among the stakeholders of this world. Full article
18 pages, 9954 KiB  
Article
Adaptive Continuous Non-Singular Terminal Sliding Mode Control for High-Pressure Common Rail Systems: Design and Experimental Validation
by Jie Zhang, Yinhui Yu, Sumin Wu, Wenjiang Zhu and Wenqian Liu
Processes 2025, 13(8), 2410; https://doi.org/10.3390/pr13082410 (registering DOI) - 29 Jul 2025
Abstract
The High-Pressure Common Rail System (HPCRS) is designed based on fundamental hydrodynamic principles, after which this paper formally defines the key control challenges. The proposed continuous sliding mode control strategy is developed based on a non-singular terminal sliding mode framework, integrated with an [...] Read more.
The High-Pressure Common Rail System (HPCRS) is designed based on fundamental hydrodynamic principles, after which this paper formally defines the key control challenges. The proposed continuous sliding mode control strategy is developed based on a non-singular terminal sliding mode framework, integrated with an improved power reaching law. This design effectively eliminates chattering and achieves fast dynamic response with enhanced tracking precision. Subsequently, a bidirectional adaptive mechanism is integrated into the proposed control scheme to eliminate the necessity for a priori knowledge of unknown disturbances within the HPCRS. This mechanism enables real-time evaluation of the system’s state relative to a predefined detection region. To validate the effectiveness of the proposed strategy, experimental studies are conducted under three distinct operating conditions. The experimental results indicate that, compared with conventional rail pressure controllers, the proposed method achieves superior tracking accuracy, faster dynamic response, and improved disturbance rejection. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

18 pages, 3972 KiB  
Article
Naphthalimide-Based Fluorescent Probe for Portable and Rapid Response to γ-Glutamyl Transpeptidase
by Jinhu Wang, Xianchao Jia, Yihao Zhang, Ye Gao, Lei Zhang, Changgong Meng, Zhaohui Wang and Yang Jiao
Molecules 2025, 30(15), 3174; https://doi.org/10.3390/molecules30153174 (registering DOI) - 29 Jul 2025
Abstract
γ-Glutamyl transpeptidase (GGT) is overexpressed in a variety of diseases, making it an important diagnostic criterion for diseases. Herein, a new fluorescence probe based on naphthalimide (Glu-MDA) was developed and employed for the rapid detection of GGT in tumor cells or samples. Alkynylated [...] Read more.
γ-Glutamyl transpeptidase (GGT) is overexpressed in a variety of diseases, making it an important diagnostic criterion for diseases. Herein, a new fluorescence probe based on naphthalimide (Glu-MDA) was developed and employed for the rapid detection of GGT in tumor cells or samples. Alkynylated naphthalimide is the fluorescent core for excellent fluorescence response. The covalent bridging of self-immolative short linkers reduces the steric hindrance between probes and enzyme cleavage sites, which leads to improved enzymatic reaction kinetics. Glu-MDA shows a rapid response and excellent selectivity with a detection limit of 0.044 U/L. This allows the efficient detection of GGT levels in solution and cells. Simultaneously, the construction of Glu-MDA pre-stained test strips provided an innovative strategy for the qualitative detection of GGT activity, helping to detect GGT faster, more portably, and cost-effectively in various scenarios. Full article
Show Figures

Figure 1

14 pages, 866 KiB  
Article
Switching to Long-Acting Cabotegravir and Rilpivirine in Turkey: Perspectives from People Living with HIV in a Setting of Increasing HIV Incidence
by Rıdvan Dumlu, Yeliz Çiçek, Mahir Kapmaz, Okan Derin, Halis Akalın, Uğur Önal, Egemen Özdemir, Çiğdem Ataman Hatipoğlu, Günay Tuncer Ertem, Alper Şener, Leyla Akgül, Yeşim Çağlar, Derya Tuna Ecer, Mustafa Kemal Çelen, Nur Bahar Oğuz, Figen Yıldırım, Deniz Borcak, Sevtap Şenoğlu, Eyüp Arslan, Sinan Çetin, Meryem Balcı and Ali Mertadd Show full author list remove Hide full author list
Medicina 2025, 61(8), 1373; https://doi.org/10.3390/medicina61081373 (registering DOI) - 29 Jul 2025
Abstract
Background and Objectives: Long-acting cabotegravir and rilpivirine (LA-CAB/RPV) offers an alternative to daily oral antiretroviral therapy (ART) for people living with HIV (PLWH). Although LA-CAB/RPV has been approved in Turkey, the country remains in the pre-rollout period, and national data on patient [...] Read more.
Background and Objectives: Long-acting cabotegravir and rilpivirine (LA-CAB/RPV) offers an alternative to daily oral antiretroviral therapy (ART) for people living with HIV (PLWH). Although LA-CAB/RPV has been approved in Turkey, the country remains in the pre-rollout period, and national data on patient perspectives are lacking. This is the first nationwide study from Turkey, a setting of increasing HIV incidence, assessing PLWH perspectives on switching to LA-CAB/RPV and the influence of motivational factors on treatment preferences. Materials and Methods: A prospective, multicenter, cross-sectional study was conducted across 11 HIV treatment centers representing all regions of Turkey. Virologically suppressed PLWH meeting current eligibility criteria for LA-CAB/RPV were included. Treatment preferences (switch to LA-CAB/RPV or remain on oral ART) and five anticipated motivational domains, namely perceived efficacy, safety, convenience, privacy, and cost, were systematically assessed through structured, face-to-face interviews. Results: Among 200 eligible participants, 86% (n = 172) preferred switching to LA-CAB/RPV. In all subgroups, LA-CAB/RPV was preferred over oral ART, except for those with no formal literacy. Prior awareness of LA-CAB/RPV was significantly associated with the switching preference (p < 0.001), with healthcare providers being the most common source of information, at 45.5% (n = 172) (p < 0.001). Residential proximity to the healthcare center (p = 0.018) and all motivational factors significantly influenced the preference (p < 0.05). Notably, when participants who initially chose to remain on oral ART were asked whether they would reconsider switching if injections were administered every six months, overall preference for long-acting therapy increased from 86% to 98%. Conclusions: High clinical eligibility and strong acceptability for LA-CAB/RPV were observed among Turkish PLWH. Our findings demonstrate that structured motivational factors significantly influence the treatment preference. Addressing these patient-centered factors and logistical barriers may support the successful integration of long-acting therapies into routine HIV care. Future longer-interval agents may improve patient-centered acceptability. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

21 pages, 763 KiB  
Review
Pathway Analysis Interpretation in the Multi-Omic Era
by William G. Ryan V., Smita Sahay, John Vergis, Corey Weistuch, Jarek Meller and Robert E. McCullumsmith
BioTech 2025, 14(3), 58; https://doi.org/10.3390/biotech14030058 (registering DOI) - 29 Jul 2025
Abstract
In bioinformatics, pathway analyses are used to interpret biological data by mapping measured molecules with known pathways to discover their functional processes and relationships. Pathway analysis has become an essential tool for interpreting large-scale omics data, translating complex gene sets into actionable experimental [...] Read more.
In bioinformatics, pathway analyses are used to interpret biological data by mapping measured molecules with known pathways to discover their functional processes and relationships. Pathway analysis has become an essential tool for interpreting large-scale omics data, translating complex gene sets into actionable experimental insights. However, issues inherent to pathway databases and misinterpretations of pathway relevance often result in “pathway fails,” where findings, though statistically significant, lack biological applicability. For example, the Tumor Necrosis Factor (TNF) pathway was originally annotated based on its association with observed tumor necrosis, while it is multifunctional across diverse physiological processes in the body. This review broadly evaluates pathway analysis interpretation, including embedding-based, semantic similarity-based, and network-based approaches to clarify their ideal use-case scenarios. Each method for interpretation is assessed for its strengths, such as high-quality visualizations and ease of use, as well as its limitations, including data redundancy and database compatibility challenges. Despite advancements in the field, the principle of “garbage in, garbage out” (GIGO) shows that input quality and method choice are critical for reliable and biologically meaningful results. Methodological standardization, scalability improvements, and integration with diverse data sources remain areas for further development. By providing critical guidance with contextual examples such as TNF, we aim to help researchers align their objectives with the appropriate method. Advancing pathway analysis interpretation will further enhance the utility of pathway analysis, ultimately propelling progress in systems biology and personalized medicine. Full article
(This article belongs to the Topic Computational Intelligence and Bioinformatics (CIB))
Show Figures

Graphical abstract

47 pages, 768 KiB  
Review
Neural Correlates of Burnout Syndrome Based on Electroencephalography (EEG)—A Mechanistic Review and Discussion of Burnout Syndrome Cognitive Bias Theory
by James Chmiel and Agnieszka Malinowska
J. Clin. Med. 2025, 14(15), 5357; https://doi.org/10.3390/jcm14155357 (registering DOI) - 29 Jul 2025
Abstract
Introduction: Burnout syndrome, long described as an “occupational phenomenon”, now affects 15–20% of the general workforce and more than 50% of clinicians, teachers, social-care staff and first responders. Its precise nosological standing remains disputed. We conducted a mechanistic review of electroencephalography (EEG) [...] Read more.
Introduction: Burnout syndrome, long described as an “occupational phenomenon”, now affects 15–20% of the general workforce and more than 50% of clinicians, teachers, social-care staff and first responders. Its precise nosological standing remains disputed. We conducted a mechanistic review of electroencephalography (EEG) studies to determine whether burnout is accompanied by reproducible brain-function alterations that justify disease-level classification. Methods: Following PRISMA-adapted guidelines, two independent reviewers searched PubMed/MEDLINE, Scopus, Google Scholar, Cochrane Library and reference lists (January 1980–May 2025) using combinations of “burnout,” “EEG”, “electroencephalography” and “event-related potential.” Only English-language clinical investigations were eligible. Eighteen studies (n = 2194 participants) met the inclusion criteria. Data were synthesised across three domains: resting-state spectra/connectivity, event-related potentials (ERPs) and longitudinal change. Results: Resting EEG consistently showed (i) a 0.4–0.6 Hz slowing of individual-alpha frequency, (ii) 20–35% global alpha-power reduction and (iii) fragmentation of high-alpha (11–13 Hz) fronto-parietal coherence, with stage- and sex-dependent modulation. ERP paradigms revealed a distinctive “alarm-heavy/evaluation-poor” profile; enlarged N2 and ERN components signalled hyper-reactive conflict and error detection, whereas P3b, Pe, reward-P3 and late CNV amplitudes were attenuated by 25–50%, indicating depleted evaluative and preparatory resources. Feedback processing showed intact or heightened FRN but blunted FRP, and affective tasks demonstrated threat-biassed P3a latency shifts alongside dampened VPP/EPN to positive cues. These alterations persisted in longitudinal cohorts yet normalised after recovery, supporting trait-plus-state dynamics. The electrophysiological fingerprint differed from major depression (no frontal-alpha asymmetry, opposite connectivity pattern). Conclusions: Across paradigms, burnout exhibits a coherent neurophysiological signature comparable in magnitude to established psychiatric disorders, refuting its current classification as a non-disease. Objective EEG markers can complement symptom scales for earlier diagnosis, treatment monitoring and public-health surveillance. Recognising burnout as a clinical disorder—and funding prevention and care accordingly—is medically justified and economically imperative. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation)
15 pages, 2519 KiB  
Article
Twin-Disc Wear Assessment of Solid Stick Flange Lubricants
by Martin David Evans, Zing Siang Lee and Roger Lewis
Lubricants 2025, 13(8), 330; https://doi.org/10.3390/lubricants13080330 (registering DOI) - 29 Jul 2025
Abstract
Lubrication between the rail gauge face and wheel flange is necessary to improve vehicle performance and reduce component wear. One way to achieve this is to use a solid stick loaded against the wheel flange. This paper details twin-disc testing of eight stick [...] Read more.
Lubrication between the rail gauge face and wheel flange is necessary to improve vehicle performance and reduce component wear. One way to achieve this is to use a solid stick loaded against the wheel flange. This paper details twin-disc testing of eight stick products according to Annex H of EN 15427-2-1:2022 (previously Annex L of EN 16028:2012) and then describes a new assessment methodology using conditions more relevant to field application. EN 15427-2-1:2022 specifies a test involving the application of the product during wheel–rail specimen contact. Once a specified time has elapsed, product application ceases, and performance is assessed as the time taken for the friction coefficient to return to a nominal dry value. This is described as “retentivity”. In the new test, the product is applied whilst wheel and rail are out of contact, to allow the product to build up on the wheel, then the specimens are put into contact, under conditions representing 150 m of continuous, heavy flange contact; this process is repeated a set number of times. The new test showed that products that failed the current friction criteria successfully protect the wheel and rail from wear, which is ultimately the aim of the product application. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop