Open AccessArticle
Waveguide Coupled Full-Color Quantum Dot Light-Emitting Diodes Modulated by Microcavities
by
Yilan Zhang, Wenhao Wang, Fankai Zheng, Jiajun Zhu, Guanding Mei, Yuxuan Ye, Jieyu Tan, Hechun Zhang, Qiang Jing, Bin He, Kai Wang and Dan Wu
Abstract
Integrated light-emitting diodes (LEDs) with waveguides play an important role in applications such as augmented reality (AR) displays, particularly regarding coupling efficiency optimization. Quantum dot light-emitting diodes (QLEDs), an emerging high-performance optoelectronic device, demonstrate substantial potential for next-generation display technologies. This study investigates
[...] Read more.
Integrated light-emitting diodes (LEDs) with waveguides play an important role in applications such as augmented reality (AR) displays, particularly regarding coupling efficiency optimization. Quantum dot light-emitting diodes (QLEDs), an emerging high-performance optoelectronic device, demonstrate substantial potential for next-generation display technologies. This study investigates the influence of microcavity modulation on the output of QLEDs coupled with a silicon nitride (SiNx) waveguide by simulating a white light QLED (W-QLED) with a broad spectrum and mixed RGB QDs (RGB-QLED) with a comparatively narrower spectrum. The microcavity converts both W-QLED and RGB-QLED emissions from broadband white-light emissions into narrowband single-wavelength outputs. Specifically, both of them have demonstrated wavelength tuning and full-width at half-maximum (FWHM) narrowing across the visible spectrum from 400 nm to 750 nm due to the microcavity modulation. The resulting RGB-QLED achieves a FWHM of 11.24 nm and reaches 110.76% of the National Television System Committee 1953 (NTSC 1953) standard color gamut, which is a 20.95% improvement over W-QLED. Meanwhile, due to the Purcell effect of the microcavity, the output efficiency of the QLED coupled with a SiNx waveguide is also significantly improved by optimizing the thickness of the Ag anode and introducing a tilted reflective mirror into the SiNx waveguide. Moreover, the optimal output efficiency of RGB-QLED with the tilted Ag mirror is 10.13%, representing a tenfold increase compared to the sample without the tilted Ag mirror. This design demonstrates an efficient and compact approach for the near-eye full-color display technology.
Full article
►▼
Show Figures