Annual Achievements Report
Available Now
 
34 pages, 963 KiB  
Article
Machine Learning-Based Prediction of Resilience in Green Agricultural Supply Chains: Influencing Factors Analysis and Model Construction
by Daqing Wu, Tianhao Li, Hangqi Cai and Shousong Cai
Systems 2025, 13(7), 615; https://doi.org/10.3390/systems13070615 (registering DOI) - 21 Jul 2025
Abstract
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory [...] Read more.
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory and complex adaptive systems, this paper constructs a resilience framework covering the three stages of “steady-state maintenance–dynamic adjustment–continuous evolution” from both single and multiple perspectives. Combined with 768 units of multi-agent questionnaire data, it adopts Structural Equation Modeling (SEM) and fuzzy-set Qualitative Comparative Analysis (fsQCA) to analyze the influencing factors of resilience and reveal the nonlinear mechanisms of resilience formation. Secondly, by integrating configurational analysis with machine learning, it innovatively constructs a resilience level prediction model based on fsQCA-XGBoost. The research findings are as follows: (1) fsQCA identifies a total of four high-resilience pathways, verifying the core proposition of “multiple conjunctural causality” in complex adaptive system theory; (2) compared with single algorithms such as Random Forest, Decision Tree, AdaBoost, ExtraTrees, and XGBoost, the fsQCA-XGBoost prediction method proposed in this paper achieves an optimization of 66% and over 150% in recall rate and positive sample identification, respectively. It reduces false negative risk omission by 50% and improves the ability to capture high-risk samples by three times, which verifies the feasibility and applicability of the fsQCA-XGBoost prediction method in the field of resilience prediction for agricultural product green supply chains. This research provides a risk prevention and control paradigm with both theoretical explanatory power and practical operability for agricultural product green supply chains, and promotes collaborative realization of the “carbon reduction–supply stability–efficiency improvement” goals, transforming them from policy vision to operational reality. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
33 pages, 1553 KiB  
Review
Multifaceted Human Antigen R (HuR): A Key Player in Liver Metabolism and MASLD
by Natalie Eppler, Elizabeth Jones, Forkan Ahamed and Yuxia Zhang
Livers 2025, 5(3), 33; https://doi.org/10.3390/livers5030033 (registering DOI) - 21 Jul 2025
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease worldwide, affecting approximately 25–30% of the global adult population and highlighting the urgent need for effective therapeutics and prevention strategies. MASLD is characterized by excessive hepatic lipid accumulation [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease worldwide, affecting approximately 25–30% of the global adult population and highlighting the urgent need for effective therapeutics and prevention strategies. MASLD is characterized by excessive hepatic lipid accumulation and can progress, in a subset of patients, to metabolic dysfunction-associated steatohepatitis (MASH), a pro-inflammatory and pro-fibrotic condition associated with increased risk of liver cirrhosis and hepatocellular carcinoma. Although the molecular drivers of MASLD progression remain incompletely understood, several key metabolic pathways—such as triglyceride handling, cholesterol catabolism, bile acid metabolism, mitochondrial function, and autophagy—are consistently dysregulated in MASLD livers. This narrative review summarizes primary literature and highlights insights from recent reviews on the multifaceted role of the mRNA-binding protein Human antigen R (HuR) in the post-transcriptional regulation of critical cellular processes, including nutrient metabolism, cell survival, and stress responses. Emerging evidence underscores HuR’s essential role in maintaining liver homeostasis, particularly under metabolic stress conditions characteristic of MASLD, with hepatocyte-specific HuR depletion associated with exacerbated disease severity. Moreover, comorbid conditions such as obesity, type 2 diabetes mellitus, and cardiovascular disease not only exacerbate MASLD progression but also involve HuR dysregulation in extrahepatic tissues, further contributing to liver dysfunction. A deeper understanding of HuR-regulated post-transcriptional networks across metabolic organs may enable the development of targeted therapies aimed at halting or reversing MASLD progression. Full article
Show Figures

Figure 1

21 pages, 2817 KiB  
Article
A Handheld IoT Vis/NIR Spectroscopic System to Assess the Soluble Solids Content of Wine Grapes
by Xu Zhang, Ziquan Qin, Ruijie Zhao, Zhuojun Xie and Xuebing Bai
Sensors 2025, 25(14), 4523; https://doi.org/10.3390/s25144523 (registering DOI) - 21 Jul 2025
Abstract
The quality of wine largely depends on the quality of wine grapes, which is determined by their chemical composition. Therefore, measuring parameters related to grape ripeness, such as soluble solids content (SSC), is crucial for harvesting high-quality grapes. Visible–Near-Infrared (Vis/NIR) spectroscopy enables effective, [...] Read more.
The quality of wine largely depends on the quality of wine grapes, which is determined by their chemical composition. Therefore, measuring parameters related to grape ripeness, such as soluble solids content (SSC), is crucial for harvesting high-quality grapes. Visible–Near-Infrared (Vis/NIR) spectroscopy enables effective, non-destructive detection of SSC in grapes. However, commercial Vis/NIR spectrometers are often expensive, bulky, and power-consuming, making them unsuitable for on-site applications. This article integrated the AS7265X sensor to develop a low-cost handheld IoT multispectral detection device, which can collect 18 variables in the wavelength range of 410–940 nm. The data can be sent in real time to the cloud configuration, where it can be backed up and visualized. After simultaneously removing outliers detected by both Monte Carlo (MC) and principal component analysis (PCA) methods from the raw spectra, the SSC prediction model was established, resulting in an RV2 of 0.697. Eight preprocessing methods were compared, among which moving average smoothing (MAS) and Savitzky–Golay smoothing (SGS) improved the RV2 to 0.756 and 0.766, respectively. Subsequently, feature wavelengths were selected using UVE and SPA, reducing the number of variables from 18 to 5 and 6, respectively, further increasing the RV2 to 0.809 and 0.795. The results indicate that spectral data optimization methods are effective and essential for improving the performance of SSC prediction models. The IoT Vis/NIR Spectroscopic System proposed in this study offers a miniaturized, low-cost, and practical solution for SSC detection in wine grapes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

20 pages, 2290 KiB  
Article
Use of Bacillus pretiosus and Pseudomonas agronomica for the Synthesis of a Valorized Water Waste Treatment Plant Waste as a Biofertilizer Intended for Quercus pyrenaica L. Fertigation
by Diana Penalba-Iglesias, Marina Robas-Mora, Daniel González-Reguero, Vanesa M. Fernández-Pastrana, Agustín Probanza and Pedro A. Jiménez-Gómez
Biology 2025, 14(7), 902; https://doi.org/10.3390/biology14070902 (registering DOI) - 21 Jul 2025
Abstract
The loss of hectares of forest areas has become a global issue that has worsened over recent years due to unsustainable human activities. In a context of limited availability of productive land, it is urgent to adopt efficient strategies to recover the affected [...] Read more.
The loss of hectares of forest areas has become a global issue that has worsened over recent years due to unsustainable human activities. In a context of limited availability of productive land, it is urgent to adopt efficient strategies to recover the affected natural areas. Actions based on a circular economy, such as the use of organic chemical matrices recovered from water waste treatment plant waste, have proven to be effective. In this regard, the addition of plant growth-promoting bacteria (PGPB), such as Bacillus pretiosus and Pseudomonas agronomica, can contribute to the chemical treatment, favoring the recovery of soils, accelerating the recovery of vegetation cover, and inducing an increase in biodiversity. In this research, the effect of bio-fertigation under controlled laboratory conditions in Quercus pyrenaica is evaluated. After a thirty-six-week trial, the biometric and nutritional parameters of the plants were harvested and measured, and the diversity and composition of the metagenomes of their rhizospheres were evaluated. As well, the cenoantibiogram and the metabolic diversity were measured. The results showed that the use of these biofertilizers increased the variables related to plant production, quality of plant composition as an indirect means of their resilience, as well as an increase in rhizospheric microbial diversity and a reduction in their MIC resistance to the most widely used antibiotics. For all these reasons, the use of the biofertilizer result of the combination of WWTP waste, Bacillus pretiosus, and Pseudomonas agronomica is postulated as an environmentally friendly strategy that can contribute to the recovery of potential oak forest areas. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

13 pages, 329 KiB  
Article
Postoperative Morbidity Is Not Associated with a Worse Mid-Term Quality of Life After Colorectal Surgery for Colorectal Carcinoma
by Maximilian Brunner, Theresa Jendrusch, Henriette Golcher, Klaus Weber, Axel Denz, Georg F. Weber, Robert Grützmann and Christian Krautz
J. Clin. Med. 2025, 14(14), 5167; https://doi.org/10.3390/jcm14145167 (registering DOI) - 21 Jul 2025
Abstract
Objectives: The aim of the present study was to investigate the impact of postoperative morbidity on mid-term quality of life and patient-related outcome (PRO) parameters after colorectal surgery for colorectal carcinoma. Methods: Quality of life and perioperative data were prospectively collected [...] Read more.
Objectives: The aim of the present study was to investigate the impact of postoperative morbidity on mid-term quality of life and patient-related outcome (PRO) parameters after colorectal surgery for colorectal carcinoma. Methods: Quality of life and perioperative data were prospectively collected from 99 adult patients treated for colorectal carcinoma—56 patients with colonic carcinoma and 43 with rectal carcinoma, all of whom underwent R0 colorectal resection, at the University Hospital Erlangen between 2018 and 2021. Quality of life data (EQL C29 and C30) were assessed before the start of treatment and one year after. Patients were grouped based on the presence or absence of postoperative morbidity, and their quality of life was compared between the two groups. Results: In the colonic carcinoma cohort, global quality of life and emotional functioning showed significant improvement from pre-treatment to the one-year follow-up (63 vs. 72, p = 0.012 and 63 vs. 76, p = 0.009, respectively). Among the symptom scales, five items improved, while two worsened. Patients who experienced postoperative morbidity (32% in the colonic carcinoma group) did not exhibit worse outcomes in functioning or symptom scales compared to those without morbidity (4 items improved and 1 worsened in the morbidity group vs. 3 improved and 1 worsened in the no-morbidity group). The rectal carcinoma cohort demonstrated a decline in quality of life from pre-treatment to the one-year follow-up. Two functioning scales worsened significantly (physical function: 89 vs. 83, p < 0.001; role function: 81 vs. 68, p = 0.009), and twelve symptom scales showed deterioration, with only two symptom scales improving. Postoperative morbidity (33% in the rectal carcinoma group) did not result in more pronounced impairments compared to those without morbidity. The morbidity group experienced 2 worsened and 0 improved items, while the no-morbidity group had 10 worsened and 1 improved item. Conclusions: Postoperative morbidity was not significantly associated with a worse quality of life at one-year follow-up after treatment of colorectal carcinomas, including colorectal resections, compared to patients who did not develop postoperative morbidity. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

20 pages, 1243 KiB  
Article
Optimized Design of Low-Carbon Fly Ash–Slag Composite Concrete Considering Carbonation Durability and CO2 Concentration Rising Impacts
by Kang-Jia Wang, Seung-Jun Kwon and Xiao-Yong Wang
Materials 2025, 18(14), 3418; https://doi.org/10.3390/ma18143418 (registering DOI) - 21 Jul 2025
Abstract
Fly ash and slag are widely used as mineral admixtures to partially replace cement in low-carbon concrete. However, such composite concretes often exhibit a greater carbonation depth than plain Portland concrete with the same 28-day strength, increasing the risk of steel reinforcement corrosion. [...] Read more.
Fly ash and slag are widely used as mineral admixtures to partially replace cement in low-carbon concrete. However, such composite concretes often exhibit a greater carbonation depth than plain Portland concrete with the same 28-day strength, increasing the risk of steel reinforcement corrosion. Previous mix design methods have overlooked this issue. This study proposes an optimized design method for fly ash–slag composite concrete, considering carbonation exposure classes and CO2 concentrations. Four exposure classes are addressed—XC1 (completely dry or permanently wet environments such as indoor floors or submerged concrete), XC2 (wet but rarely dry, e.g., inside water tanks), XC3 (moderate humidity, e.g., sheltered outdoor environments), and XC4 (cyclic wet and dry, e.g., bridge decks and exterior walls exposed to rain). Two CO2 levels—0.04% (ambient) and 0.05% (elevated)—were also considered. In Scenario 1 (no durability constraint), the optimized designs for all exposure classes were identical, with 60% slag and 75% total fly ash–slag replacement. In Scenario 2 (0.04% CO2 with durability), the designs for XC1 and XC2 remained the same, but for XC3 and XC4, the carbonation depth became the controlling factor, requiring a higher binder content and leading to compressive strengths exceeding the target. In Scenario 3 (0.05% CO2), despite the increased carbonation depth, the XC1 and XC2 designs were unchanged. However, XC3 and XC4 required further increases in binder content and actual strength to meet durability limits. Overall, compressive strength governs the design for XC1 and XC2, while carbonation durability is critical for XC3 and XC4. Increasing the water-to-binder ratio reduces strength, while higher-strength mixes emit more CO2 per cubic meter, confirming the proposed method’s engineering validity. Full article
21 pages, 3527 KiB  
Article
Confocal Laser Scanning Microscopy of Light-Independent ROS in Arabidopsis thaliana (L.) Heynh. TROL-FNR Mutants
by Ena Dumančić, Lea Vojta and Hrvoje Fulgosi
Int. J. Mol. Sci. 2025, 26(14), 7000; https://doi.org/10.3390/ijms26147000 - 21 Jul 2025
Abstract
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR [...] Read more.
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR complex maintains redox equilibrium in chloroplasts and systemically in plant cells. Improvement in the knowledge of redox regulation mechanisms is critical for engineering stress-tolerant plants in times of elevated global drought intensity. To further test this hypothesis and confirm our previous results, we monitored light-independent ROS propagation in the leaves of Arabidopsis wild type (WT), TROL knock-out (KO), and TROL ΔRHO (RHO-domain deletion mutant) mutant plants in situ by using confocal laser scanning microscopy with specific fluorescent probes for the three different ROS: O2·−, H2O2, and 1O2. Plants were grown under the conditions of normal substrate moisture and under drought stress conditions. Under the drought stress conditions, the TROL KO line showed ≈32% less O2·− while the TROL ΔRHO line showed ≈49% less H2O2 in comparison with the WT. This research confirms the role of dynamical TROL-FNR complex formation in redox equilibrium maintenance by redirecting electrons in alternative sinks under stress and also points it out as promising target for stress-tolerant plant engineering. Full article
(This article belongs to the Special Issue Molecular Insight into Oxidative Stress in Plants)
Show Figures

Figure 1

26 pages, 5535 KiB  
Article
Research on Power Cable Intrusion Identification Using a GRT-Transformer-Based Distributed Acoustic Sensing (DAS) System
by Xiaoli Huang, Xingcheng Wang, Han Qin and Zhaoliang Zhou
Informatics 2025, 12(3), 75; https://doi.org/10.3390/informatics12030075 (registering DOI) - 21 Jul 2025
Abstract
To address the high false alarm rate of intrusion detection systems based on distributed acoustic sensing (DAS) for power cables in complex underground environments, an innovative GRT-Transformer multimodal deep learning model is proposed. The core of this model lies in its distinctive three-branch [...] Read more.
To address the high false alarm rate of intrusion detection systems based on distributed acoustic sensing (DAS) for power cables in complex underground environments, an innovative GRT-Transformer multimodal deep learning model is proposed. The core of this model lies in its distinctive three-branch parallel collaborative architecture: two branches employ Gramian Angular Summation Field (GASF) and Recursive Pattern (RP) algorithms to convert one-dimensional intrusion waveforms into two-dimensional images, thereby capturing rich spatial patterns and dynamic characteristics and the third branch utilizes a Gated Recurrent Unit (GRU) algorithm to directly focus on the temporal evolution features of the waveform; additionally, a Transformer component is integrated to capture the overall trend and global dependencies of the signals. Ultimately, the terminal employs a Bidirectional Long Short-Term Memory (BiLSTM) network to perform a deep fusion of the multidimensional features extracted from the three branches, enabling a comprehensive understanding of the bidirectional temporal dependencies within the data. Experimental validation demonstrates that the GRT-Transformer achieves an average recognition accuracy of 97.3% across three typical intrusion events—illegal tapping, mechanical operations, and vehicle passage—significantly reducing false alarms, surpassing traditional methods, and exhibiting strong practical potential in complex real-world scenarios. Full article
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
An Efficient and Accurate Random Forest Node-Splitting Algorithm Based on Dynamic Bayesian Methods
by Jun He, Zhanqi Li and Linzi Yin
Mach. Learn. Knowl. Extr. 2025, 7(3), 70; https://doi.org/10.3390/make7030070 (registering DOI) - 21 Jul 2025
Abstract
Random Forests are powerful machine learning models widely applied in classification and regression tasks due to their robust predictive performance. Nevertheless, traditional Random Forests face computational challenges during tree construction, particularly in high-dimensional data or on resource-constrained devices. In this paper, a novel [...] Read more.
Random Forests are powerful machine learning models widely applied in classification and regression tasks due to their robust predictive performance. Nevertheless, traditional Random Forests face computational challenges during tree construction, particularly in high-dimensional data or on resource-constrained devices. In this paper, a novel node-splitting algorithm, BayesSplit, is proposed to accelerate decision tree construction via a Bayesian-based impurity estimation framework. BayesSplit treats impurity reduction as a Bernoulli event with Beta-conjugate priors for each split point and incorporates two main strategies. First, Dynamic Posterior Parameter Refinement updates the Beta parameters based on observed impurity reductions in batch iterations. Second, Posterior-Derived Confidence Bounding establishes statistical confidence intervals, efficiently filtering out suboptimal splits. Theoretical analysis demonstrates that BayesSplit converges to optimal splits with high probability, while experimental results show up to a 95% reduction in training time compared to baselines and maintains or exceeds generalization performance. Compared to the state-of-the-art MABSplit, BayesSplit achieves similar accuracy on classification tasks and reduces regression training time by 20–70% with lower MSEs. Furthermore, BayesSplit enhances feature importance stability by up to 40%, making it particularly suitable for deployment in computationally constrained environments. Full article
23 pages, 1828 KiB  
Article
Using Sentiment Analysis to Study the Potential for Improving Sustainable Mobility in University Campuses
by Ewerton Chaves Moreira Torres and Luís Guilherme de Picado-Santos
Sustainability 2025, 17(14), 6645; https://doi.org/10.3390/su17146645 (registering DOI) - 21 Jul 2025
Abstract
This study investigates public perceptions of sustainable mobility within university environments, which are important trip generation hubs with the potential to influence and disseminate sustainable mobility behaviors. Using sentiment analysis on 120,236 tweets from São Paulo, Rio de Janeiro, Lisbon, and Porto, tweets [...] Read more.
This study investigates public perceptions of sustainable mobility within university environments, which are important trip generation hubs with the potential to influence and disseminate sustainable mobility behaviors. Using sentiment analysis on 120,236 tweets from São Paulo, Rio de Janeiro, Lisbon, and Porto, tweets were classified into positive, neutral, and negative sentiments to assess perceptions across transport modes. It was hypothesized that universities would exhibit more positive sentiment toward active and public transport modes compared to perceptions of these modes within the broader city environment. Results show that active modes and public transport consistently receive higher positive sentiment rates than individual motorized modes, and, considering the analyzed contexts, universities demonstrate either similar (São Paulo) or more positive perceptions compared to the overall sentiment observed in the city (Rio de Janeiro, Lisbon, and Porto). Chi-square tests confirmed significant associations between transport mode and sentiment distribution. An exploratory analysis using topic modeling revealed that perceptions around bicycle use are linked to themes of safety, cycling infrastructure, and bike sharing. The findings highlight opportunities to promote sustainable mobility in universities by leveraging user sentiment while acknowledging limitations such as demographic bias in social media data and potential misclassification. This study advances data-driven methods to support targeted strategies for increasing active and public transport in university settings. Full article
(This article belongs to the Section Sustainable Transportation)
14 pages, 2600 KiB  
Article
Enhancement of Oral Mucosal Regeneration Using Human Exosomal Therapy in SD Rats
by Chien Ming Lee, Qasim Hussain, Kuo Pin Chuang and Hoang Minh
Biomedicines 2025, 13(7), 1785; https://doi.org/10.3390/biomedicines13071785 (registering DOI) - 21 Jul 2025
Abstract
Background/Objectives: Oral cavity wound recovery presents unique challenges due to constant moisture exposure and functional mechanical stresses. Nanoscale extracellular vesicles (exosomes) with regenerative properties offer promising therapeutic potential for tissue regeneration, contributing to improved health outcomes. This study evaluated human exosomal preparations in [...] Read more.
Background/Objectives: Oral cavity wound recovery presents unique challenges due to constant moisture exposure and functional mechanical stresses. Nanoscale extracellular vesicles (exosomes) with regenerative properties offer promising therapeutic potential for tissue regeneration, contributing to improved health outcomes. This study evaluated human exosomal preparations in promoting oral mucosal regeneration. Methods: We established standardized full-thickness wounds in the buccal mucosa of SD rats and divided subjects into experimental (receiving 50 billion human exosomes) and control (receiving carrier solution only) groups. Comprehensive wound assessment occurred at predetermined intervals (days 0, 3, 7, and 10) through photographic documentation, histological examination, and quantitative measurement. Results: Exosomal-treated tissues demonstrated statistically significant acceleration in closure rates (p < 0.05), achieving 87.3% reduction by day 10 versus 64.1% in the controls. Microscopic analysis revealed superior epithelial development, reduced inflammatory infiltration, and enhanced collagen architectural organization in exosomal-treated specimens. Semi-quantitative evaluation confirmed consistently superior healing metrics in the experimental group across all assessment timepoints. Conclusions: These findings demonstrate that human exosome preparations significantly enhance oral mucosal regeneration in SD rats, suggesting potential clinical applications for accelerating recovery following oral surgical procedures. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

19 pages, 431 KiB  
Article
The Detection of a Defect in a Dual-Coupling Optomechanical System
by Zhen Li and Ya-Feng Jiao
Symmetry 2025, 17(7), 1166; https://doi.org/10.3390/sym17071166 (registering DOI) - 21 Jul 2025
Abstract
We provide an approach to detect a nitrogen-vacancy (NV) center, which might be a defect in a diamond nanomembrane, using a dual-coupling optomechanical system. The NV center modifies the energy-level structure of a dual-coupling optomechanical system through dressed states arising from its interaction [...] Read more.
We provide an approach to detect a nitrogen-vacancy (NV) center, which might be a defect in a diamond nanomembrane, using a dual-coupling optomechanical system. The NV center modifies the energy-level structure of a dual-coupling optomechanical system through dressed states arising from its interaction with the mechanical membrane. Thus, we study the photon blockade in the cavity of a dual-coupling optomechanical system in which an NV center is embedded in a single-crystal diamond nanomembrane. The NV center significantly influences the statistical properties of the cavity field. We systematically investigate how three key NV center parameters affect photon blockade: (i) its coupling strength to the mechanical membrane, (ii) transition frequency, and (iii) decay rate. We find that the NV center can shift, give rise to a new dip, and even suppress the original dip in a bare quadratic optomechanical system. In addition, we can amplify the effect of the NV center on photon statistics by adding a gravitational potential when the NV center has little effect on photon blockade. Therefore, our study provides a method to detect diamond nanomembrane defects in a dual-coupling optomechanical system. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

17 pages, 2496 KiB  
Article
Study on the Reproductive Group Behavior of Schizothorax wangchiachii Based on Acoustic Telemetry
by Bo Li, Fanxu Hu, Wenjing Li, Wei Su, Jiazhi Zhu and Wei Jiang
Fishes 2025, 10(7), 362; https://doi.org/10.3390/fishes10070362 (registering DOI) - 21 Jul 2025
Abstract
To investigate the group behavioral characteristics of Schizothorax wangchiachii during the spawning period, we used acoustic telemetry to track 10 mature individuals (4 females, 12 males) in a semi-controlled stream section (28.1 m × 5.8 m) simulating natural spawning microhabitats from 23 to [...] Read more.
To investigate the group behavioral characteristics of Schizothorax wangchiachii during the spawning period, we used acoustic telemetry to track 10 mature individuals (4 females, 12 males) in a semi-controlled stream section (28.1 m × 5.8 m) simulating natural spawning microhabitats from 23 to 26 January 2024. By integrating trajectory similarity analysis and wavelet transform, we examined the aggregation patterns and activity rhythms during natural spawning events. The population formed two relatively stable subgroups, with significantly shorter inter-individual distances during the day (1.69 ± 0.72 m) than at night (2.54 ± 0.85 m, p < 0.01). Aggregation behavior exhibited a dominant ultradian rhythm of 16.5 h, with stable clustering between 09:00 and 16:00 (spawning window: 13:40–14:20) and dispersal from 19:00 to 00:00. Group activity followed a decreasing-then-increasing trend, with higher nighttime activity. Males were more active than females (F = 51.89, p < 0.01); female activity peaked on the spawning day and was influenced by reproductive progression, while male activity was mainly driven by diel rhythms (p < 0.01). A weak positive correlation was found between active time and inter-individual distance in both sexes (r = 0.32, p < 0.05), indicating reduced activity when aggregated. These findings provide insight into the temporal coordination and spatial regulation of reproductive behavior under semi-controlled conditions. However, due to the short monitoring period and experimental setup, caution is warranted when generalizing to the full reproductive season or fully natural habitats. Full article
(This article belongs to the Special Issue Behavioral Ecology of Fishes)
Show Figures

Figure 1

35 pages, 13218 KiB  
Review
Research Advances in Nanosensor for Pesticide Detection in Agricultural Products
by Li Feng, Xiaofei Yue, Junhao Li, Fangyao Zhao, Xiaoping Yu and Ke Yang
Nanomaterials 2025, 15(14), 1132; https://doi.org/10.3390/nano15141132 (registering DOI) - 21 Jul 2025
Abstract
Over the past few decades, pesticide application has increased significantly, driven by population growth and associated urbanization. To date, pesticide use remains crucial for sustaining global food security by enhancing crop yields and preserving quality. However, extensive pesticide application raises serious environmental and [...] Read more.
Over the past few decades, pesticide application has increased significantly, driven by population growth and associated urbanization. To date, pesticide use remains crucial for sustaining global food security by enhancing crop yields and preserving quality. However, extensive pesticide application raises serious environmental and health concerns worldwide due to its chemical persistence and high toxicity to organisms, including humans. Therefore, there is an urgent need to develop rapid and reliable analytical procedures for the quantification of trace pesticide residues to support public health management. Traditional methods, such as chromatography-based detection techniques, cannot simultaneously achieve high sensitivity, selectivity, cost-effectiveness, and portability, which limits their practical application. Nanomaterial-based sensing techniques are increasingly being adopted due to their rapid, efficient, user-friendly, and on-site detection capabilities. In this review, we summarize recent advances and emerging trends in commonly used nanosensing technologies, such as optical and electrochemical sensing, with a focus on recognition elements including enzymes, antibodies, aptamers, and molecularly imprinted polymers (MIPs). We discuss the types of nanomaterials used, preparation methods, performance, characteristics, advantages and limitations, and applications of these nanosensors in detecting pesticide residues in agricultural products. Furthermore, we highlight current challenges, ongoing efforts, and future directions in the development of pesticide detection nanosensors. Full article
(This article belongs to the Special Issue Nanosensors for the Rapid Detection of Agricultural Products)
Show Figures

Figure 1

40 pages, 1446 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 (registering DOI) - 21 Jul 2025
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
29 pages, 2659 KiB  
Review
Dynamic Skin: A Systematic Review of Energy-Saving Design for Building Facades
by Jian Wang, Shengcai Li and Peng Ye
Buildings 2025, 15(14), 2572; https://doi.org/10.3390/buildings15142572 (registering DOI) - 21 Jul 2025
Abstract
The construction industry is one of the main areas of energy consumption and carbon emissions, and strengthening research on the thermal performance of building facades can effectively promote energy conservation and emission reduction. Compared with traditional static enclosure structures, dynamic skin can adapt [...] Read more.
The construction industry is one of the main areas of energy consumption and carbon emissions, and strengthening research on the thermal performance of building facades can effectively promote energy conservation and emission reduction. Compared with traditional static enclosure structures, dynamic skin can adapt its functions, characteristics, and methods based on constantly changing environmental conditions and performance requirements. It has great potential in adapting to the environment, reducing energy consumption, adjusting shading and natural ventilation, and improving human thermal and visual comfort. To comprehensively understand the key technologies of dynamic skin energy-saving design, previous research results were comprehensively compiled from relevant databases. The research results indicate that various types of dynamic skins, intelligent materials, multi-layer facades, dynamic shading, and biomimetic facades are commonly used core technologies for dynamic facades. Parametric modeling, computer simulation, and multi-objective algorithms are commonly used to optimize the performance of dynamic skin. In addition, integrated technology design, interaction design, and lifecycle design should be effective methods for improving dynamic skin energy efficiency, resident satisfaction, and economic benefits. Despite current challenges, dynamic skin energy-saving technology remains one of the most effective solutions for future sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
15 pages, 1757 KiB  
Article
Development of a Design Formula for Estimating the Residual Strength of Corroded Stiffened Cylindrical Structures
by Sang-Hyun Park, Byoungjae Park, Sang-Rai Cho, Sung-Ju Park and Kookhyun Kim
J. Mar. Sci. Eng. 2025, 13(7), 1381; https://doi.org/10.3390/jmse13071381 (registering DOI) - 21 Jul 2025
Abstract
This paper develops a novel design formula to estimate the residual strength of corroded stiffened cylindrical structures. It extends a previously established ultimate strength formulation for intact cylinders by introducing a corrosion-induced strength reduction factor. The foundational formula considers failure mode interactions like [...] Read more.
This paper develops a novel design formula to estimate the residual strength of corroded stiffened cylindrical structures. It extends a previously established ultimate strength formulation for intact cylinders by introducing a corrosion-induced strength reduction factor. The foundational formula considers failure mode interactions like yielding, local buckling, overall buckling, and stiffener tripping. This research utilizes recent experimental and numerical investigations on corroded ring-stiffened cylinder models. Experimental results validate the numerical analysis method, showing good agreement in collapse pressures (2–4% difference) and shapes. The validated numerical method is then subject to an extensive parametric study, systematically varying corrosion characteristics. Results indicate a clear relationship between corrosion volume and strength reduction, with overall buckling being more sensitive. Based on these comprehensive results, a new empirical strength reduction factor (ρc) is derived as a function of the corrosion volume ratio (Vnon). This factor is integrated into the existing ultimate strength formula, allowing direct residual strength estimation for corroded structures. The proposed formula is rigorously verified against experimental and numerical data, showing excellent agreement (mean 1.00, COV 5.86%). This research provides a practical, accurate design tool for assessing the integrity and service life of corroded stiffened cylindrical structures. Full article
Show Figures

Figure 1

19 pages, 626 KiB  
Article
A Strong Anonymous Privacy Protection Authentication Scheme Based on Certificateless IOVs
by Xiaohu He, Shan Gao, Hua Wang and Chuyan Wang
Symmetry 2025, 17(7), 1163; https://doi.org/10.3390/sym17071163 (registering DOI) - 21 Jul 2025
Abstract
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing [...] Read more.
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing anonymous authentication schemes have limitations, including large vehicle storage demands, information redundancy, time-dependent pseudonym updates, and public–private key updates coupled with pseudonym changes. To address these issues, we propose a certificateless strong anonymous privacy protection authentication scheme that allows vehicles to autonomously generate and dynamically update pseudonyms. Additionally, the trusted authority transmits each entity’s partial private key via a session key, eliminating reliance on secure channels during transmission. Based on the elliptic curve discrete logarithm problem, the scheme’s existential unforgeability is proven in the random oracle model. Performance analysis shows that it outperforms existing schemes in computational cost and communication overhead, with the total computational cost reduced by 70.29–91.18% and communication overhead reduced by 27.75–82.55%, making it more suitable for privacy-sensitive and delay-critical IoV environments. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Applied Cryptography)
Show Figures

Figure 1

20 pages, 2189 KiB  
Article
Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry
by Miguel A. Gallardo, M. Esther Martínez-Navarro, Irene García Panadero, José E. Pardo and Manuel Álvarez-Ortí
Foods 2025, 14(14), 2548; https://doi.org/10.3390/foods14142548 (registering DOI) - 21 Jul 2025
Abstract
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) [...] Read more.
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) obtained from by-products into cracker formulation. Crackers were prepared by replacing 10% and 20% of wheat flour with pumpkin flour, assessing the effects based on drying method. Physical parameters (expansion, color, and texture parameters) were measured, in the dough and in the baked products. Furthermore, β-carotene content was analyzed by HPLC-DAD, antioxidant capacity was measured with DPPH, ABTS, and ORAC, and total phenolic content was evaluated with the Folin–Ciocalteu method. Proximate composition and mineral content were also analyzed. Additionally, a preliminary sensory evaluation was conducted with 50 untrained consumer judges to assess acceptability of external appearance, texture, and taste. The inclusion of pumpkin flour significantly increased β-carotene content (up to 2.36 mg/100 g), total phenolics, and antioxidant activity of the baked crackers. Proximate analysis showed a marked improvement in fiber content and a slight reduction in energy value compared to wheat flour. Mineral analysis revealed that pumpkin flours exhibited significantly higher levels of K, Ca, Mg, and P, with improved but not always statistically significant retention in the final crackers. Freeze-dried flour retained more bioactive compounds and enhanced color. However, it also increased cracker hardness, particularly with dehydrated flour. Only the 10% freeze-dried formulation showed mechanical properties similar to those of the control. Sensory analysis indicated that all formulations were positively accepted, with the 10% freeze-dried sample showing the best balance in consumer preference across all evaluated attributes. Frozen pumpkin by-products can be effectively valorized through their incorporation into bakery products such as crackers, enhancing their nutritional and functional profile. Freeze-drying better preserves antioxidants and β-carotene, while a 10% substitution offers a balance between nutritional enrichment and technological performance and sensory acceptability. Full article
(This article belongs to the Section Food Nutrition)
32 pages, 7284 KiB  
Article
Hydrogen Embrittlement Behavior and Applicability of X52 Steel in Pure Hydrogen Pipelines
by Tianlei Li, Honglin Zhang, Wentao Hu, Ke Li, Yaxi Wang and Yuanhua Lin
Materials 2025, 18(14), 3417; https://doi.org/10.3390/ma18143417 (registering DOI) - 21 Jul 2025
Abstract
This study investigates the mechanical behavior of X52 steel pipes and their weld regions under pure hydrogen transport conditions, with a focus on assessing potential hydrogen embrittlement risks. Through experimental analysis, the research evaluates how different pipeline regions—including the base metal, weld metal, [...] Read more.
This study investigates the mechanical behavior of X52 steel pipes and their weld regions under pure hydrogen transport conditions, with a focus on assessing potential hydrogen embrittlement risks. Through experimental analysis, the research evaluates how different pipeline regions—including the base metal, weld metal, and heat-affected zones—respond to varying hydrogen pressures. Key mechanical properties such as elongation, fracture toughness, and crack growth resistance are analyzed to determine their implications for structural integrity and safety. Based on the findings, this study proposes criteria for the safety evaluation of X52 pipelines operating in hydrogen service environments. The results are intended to inform decisions regarding the repurposing of existing pipelines or the design of new infrastructure dedicated to pure hydrogen transport, offering insights into material performance and critical safety considerations for hydrogen pipeline applications. Full article
(This article belongs to the Section Mechanics of Materials)
29 pages, 1814 KiB  
Article
Comparative Evaluation of Nutritional Quality and In Vitro Protein Digestibility in Selected Vegetable Soybean Genotypes at R6 and R8 Maturity
by Kanneboina Soujanya, T. Supraja, Aparna Kuna, Ramakrishnan M. Nair, S. Triveni and Kalenahalli Yogendra
Foods 2025, 14(14), 2549; https://doi.org/10.3390/foods14142549 (registering DOI) - 21 Jul 2025
Abstract
The nutritional and quality characteristics of improved vegetable soybean genotypes were evaluated and compared with those of a grain-type soybean at the R6 (green maturity) and R8 (physiological maturity) stages. Significant variation (p < 0.05) was observed among genotypes for all measured [...] Read more.
The nutritional and quality characteristics of improved vegetable soybean genotypes were evaluated and compared with those of a grain-type soybean at the R6 (green maturity) and R8 (physiological maturity) stages. Significant variation (p < 0.05) was observed among genotypes for all measured traits. The overall quality parameters increased from the R6 (green maturity) stage to the R8 (physiological maturity) stage. Among the R6-stage genotypes, AVSB2001 recorded the highest contents of protein (15.30 ± 0.57 g/100 g), ash (2.31 ± 0.06 g/100 g), fat (8.05 ± 0.17 g/100 g), and calcium (140.78 ± 0.97 mg/100 g). The genotype Karune exhibited significantly higher levels of total sugars, non-reducing sugars, iron, and magnesium than the other entries. At the R8 stage, Swarna Vasundhara showed the highest protein content (39.23%), while AGS 447 recorded the highest values for fat, total sugars, in vitro protein digestibility, iron, copper, magnesium, and manganese. Notably, in vitro protein digestibility was lower across all genotypes at the R8 stage compared to the R6 stage. These findings suggest that selected vegetable soybean genotypes possess substantial nutritional value and can contribute meaningfully to meeting the recommended dietary allowance (RDA) across different age and occupational groups, underscoring this research’s potential public health impact. Based on stage-specific quality profiles, R6-stage genotypes may be better suited for fresh vegetables, whereas R8-stage genotypes can be utilized similarly to grain-type soybean for processing into products such as dhal, oil, flour, and other value-added foods. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

13 pages, 2246 KiB  
Article
Development and Evaluation of a Three-Way Flexible Cannula for Tracheostomy Recovery
by Christopher René Torres-SanMiguel
Fluids 2025, 10(7), 186; https://doi.org/10.3390/fluids10070186 (registering DOI) - 21 Jul 2025
Abstract
The use of implants in the trachea is increasing in respiratory diseases as an alternative to address pathological problems with airway obstruction. This article presents the design and development of a three-way cannula and its evaluation in a testbed capable of emulating the [...] Read more.
The use of implants in the trachea is increasing in respiratory diseases as an alternative to address pathological problems with airway obstruction. This article presents the design and development of a three-way cannula and its evaluation in a testbed capable of emulating the human breathing cycle. The new tracheal cannula allows airflow through a third duct (vertical one) towards the vocal folds, enabling phonation. The testbed assesses Total Lung Capacity (TLC) and endotracheal pressure by considering the cannula inside a replica of a trachea. The flow is generated by a mechanism composed of electronic elements, and the implementation of instruments for measuring pressure and lung capacity enables the visual and continuous collection of data. The three-way cannula offers improvements in airway capacity, with an average of up to 1.766 L of airflow and a pressure of 17.083 mbar. The airflow at the upper branch allows for improvement, enabling the patient to phonate even with the implant in place, while preserving patency due to the biocompatibility and elasticity of platinum silicone. Full article
(This article belongs to the Special Issue Respiratory Flows)
Show Figures

Figure 1

19 pages, 15604 KiB  
Article
Effect of Plant Growth Regulators on the Physiological Response and Yield of Cucumis melo var. inodorus Under Different Salinity Levels in a Controlled Environment
by Dayane Mércia Ribeiro Silva, Francisca Zildélia da Silva, Isabelly Cristina da Silva Marques, Eduardo Santana Aires, Francisco Gilvan Borges Ferreira Freitas Júnior, Fernanda Nery Vargens, Vinicius Alexandre Ávila dos Santos, João Domingos Rodrigues and Elizabeth Orika Ono
Horticulturae 2025, 11(7), 861; https://doi.org/10.3390/horticulturae11070861 (registering DOI) - 21 Jul 2025
Abstract
The objective of this study was to evaluate the physiological, biochemical, and productive effects of the foliar application of bioregulators, based on auxin, cytokinin, and gibberellic acid, on yellow melon, cultivar DALI®, plants subjected to different salinity levels in a protected [...] Read more.
The objective of this study was to evaluate the physiological, biochemical, and productive effects of the foliar application of bioregulators, based on auxin, cytokinin, and gibberellic acid, on yellow melon, cultivar DALI®, plants subjected to different salinity levels in a protected environment to simulate Brazil’s semi-arid conditions. The experiment was conducted using a completely randomized block design, in a 4 × 3 factorial scheme, with four salinity levels (0, 2, 4, and 6 dS m−1) and three doses of the bioregulator, Stimulate® (0%, 100%, and 150% of the recommended dose), with six weekly applications. The physiological variables (chlorophyll a fluorescence and gas exchange) and biochemical parameters (antioxidant enzyme activity and lipid peroxidation) were evaluated at 28 and 42 days after transplanting, and the agronomic traits (fresh fruit mass, physical attributes, and post-harvest quality) were evaluated at the end of the experiment. The results indicated that salinity impaired the physiological and productive performance of the plants, especially at higher levels (4 and 6 dS m−1), causing oxidative stress, reduced photosynthesis, and decreased yield. However, the application of the bioregulator at the 100% dose mitigated the effects of salt stress under moderate salinity (2 dS m−1), promoting higher CO2 assimilation rates of up to 31.5%, better water-use efficiency, and reduced lipid peroxidation. In addition, the fruits showed a greater mass of up to 66%, thicker pulp, and higher soluble solids (> 10 °Brix) content, making them suitable for sale in the market. The 150% dose did not provide additional benefits and, in some cases, resulted in inhibitory effects. It is concluded that the application of Stimulate® at the recommended dose is effective in mitigating the effects of moderate salinity, up to ~3 dS m−1, in yellow melon crops; however, its effectiveness is limited under high salinity conditions, requiring the use of complementary strategies. Full article
(This article belongs to the Section Protected Culture)
24 pages, 4780 KiB  
Article
Bioinformatics and Functional Validation of CqPRX9L1 in Chenopodium quinoa
by Hongxia Guo, Linzhuan Song, Yufa Wang, Li Zhao and Chuangyun Wang
Plants 2025, 14(14), 2246; https://doi.org/10.3390/plants14142246 (registering DOI) - 21 Jul 2025
Abstract
As a plant-specific peroxidase family, class III peroxidase (PRX) plays an important role in plant growth, development, and stress response. In this study, a preliminary functional analysis of CqPRX9L1 was conducted. Bioinformatics analysis revealed that CqPRX9L1 encodes a 349-amino acid protein belonging to [...] Read more.
As a plant-specific peroxidase family, class III peroxidase (PRX) plays an important role in plant growth, development, and stress response. In this study, a preliminary functional analysis of CqPRX9L1 was conducted. Bioinformatics analysis revealed that CqPRX9L1 encodes a 349-amino acid protein belonging to the plant-peroxidase-like superfamily, featuring a transmembrane domain and cytoplasmic localization. The promoter region of CqPRX9L1 harbors various cis-acting elements associated with stress responses, hormone signaling, light regulation, and meristem-specific expression. The tissue-specific expression pattern of the CqPRX9L1 gene and its characteristics in response to different stresses were explored using subcellular localization, quantitative real-time PCR (qRT-PCR), and heterologous transformation into Arabidopsis thaliana. The results showed that CqPRX9L1, with a transmembrane structure, was localized in the cytoplasm, which encodes 349 amino acids and belongs to the plant-peroxisome-like superfamily. The promoter region contains stress-response elements, hormone-response elements, light-response elements, and meristem expression-related elements. The expression of CqPRX9L1 was relatively higher in ears and roots at the panicle stage than in stems and leaves. CqPRX9L1 showed a dynamic expression pattern of first decreasing and then increasing under abiotic stresses such as 15% PEG 6000, low temperature, and salt damage, with differences in response time and degree. CqPRX9L1 plays an important role in response to abiotic stress by affecting the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD), as well as the synthesis and decomposition of proline (Pro). CqPRX9L1 also affects plant bolting and flowering by regulating key flowering genes (such as FT and AP1) and gibberellin (GA)-related pathways. The results establish a foundation for revealing the functions and molecular mechanisms of the CqPRX9L1 gene. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 2438 KiB  
Review
The Influence of Eco-Anxiety on Sustainable Consumption Choices: A Brief Narrative Review
by Anastasia Gkargkavouzi, George Halkos and Panagiota Halkou
Urban Sci. 2025, 9(7), 286; https://doi.org/10.3390/urbansci9070286 (registering DOI) - 21 Jul 2025
Abstract
Background: This review explores the influence of eco-anxiety on sustainable consumption, with a specific focus on the urban context. While the literature on green consumerism continues to expand, the role of emotional and psychological factors, especially eco-anxiety, in shaping sustainable consumption decisions remains [...] Read more.
Background: This review explores the influence of eco-anxiety on sustainable consumption, with a specific focus on the urban context. While the literature on green consumerism continues to expand, the role of emotional and psychological factors, especially eco-anxiety, in shaping sustainable consumption decisions remains underexplored. Most existing studies emphasize cognitive, social, or contextual drivers, often overlooking affective dimensions that may significantly influence consumer behavior. Addressing this gap, the review examines how emotional responses to climate change, such as eco-anxiety, inform and potentially motivate eco-friendly consumption patterns. Understanding these affective pathways offers valuable insights on how individuals and urban communities can effectively adapt to climate change and establish a sustainable consumption culture. Methods: A systematic literature search was conducted in Scopus and Web of Sciences databases, following a predefined keyword strategy, resulting in 56 initial records. We further implemented a supplementary search of gray literature on Google Scholar to search for additional reports. The full-text screening process identified 12 eligible studies based on the following inclusion criteria: quantitative or mixed-methods studies focusing on adult and young adult individuals, including both measures of eco-anxiety and green consumption and assessing their direct or indirect relationship. Results: Findings suggest that eco-anxiety functions as a cognitive–affective motivator for sustainable consumer choices; however, the strength and direction of this influence appear contingent on moderating emotional and psychological variables and cross-cultural and demographic moderators. Discussion: This review highlights the need for urban-focused intervention tailored communication, marketing, and business strategies that address the emotional dimensions of climate change. Policymakers and businesses are encouraged to consider affective drivers as eco-anxiety to promote sustainable consumption stewardship within urban communities. By addressing these psychological responses, urban societies can become more resilient and proactive in confronting climate change challenges. Full article
Show Figures

Figure 1

32 pages, 1156 KiB  
Article
A Study of the Response Surface Methodology Model with Regression Analysis in Three Fields of Engineering
by Hsuan-Yu Chen and Chiachung Chen
Appl. Syst. Innov. 2025, 8(4), 99; https://doi.org/10.3390/asi8040099 (registering DOI) - 21 Jul 2025
Abstract
Researchers conduct experiments to discover factors influencing the experimental subjects, so the experimental design is essential. The response surface methodology (RSM) is a special experimental design used to evaluate factors significantly affecting a process and determine the optimal conditions for different factors. The [...] Read more.
Researchers conduct experiments to discover factors influencing the experimental subjects, so the experimental design is essential. The response surface methodology (RSM) is a special experimental design used to evaluate factors significantly affecting a process and determine the optimal conditions for different factors. The relationship between response values and influencing factors is mainly established using regression analysis techniques. These equations are then used to generate contour and surface response plots to provide researchers with further insights. The impact of regression techniques on response surface methodology (RSM) model building has not been studied in detail. This study uses complete regression techniques to analyze sixteen datasets from the literature on semiconductor manufacturing, steel materials, and nanomaterials. Whether each variable significantly affected the response value was assessed using backward elimination and a t-test. The complete regression techniques used in this study included considering the significant influencing variables of the model, testing for normality and constant variance, using predictive performance criteria, and examining influential data points. The results of this study revealed some problems with model building in RSM studies in the literature from three engineering fields, including the direct use of complete equations without statistical testing, deletion of variables with p-values above a preset value without further examination, existence of non-normality and non-constant variance conditions of the dataset without testing, and presence of some influential data points without examination. Researchers should strengthen training in regression techniques to enhance the RSM model-building process. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop