Topic Editors

Prof. Dr. Lucian Hritcu
Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
Prof. Dr. Omayma A. Eldahshan
1. Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
2. Center for Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo 11566, Egypt

Memory-Enhancing Activity of Bioactive Compounds: From Natural Sources to Brain

Abstract submission deadline
closed (31 October 2022)
Manuscript submission deadline
31 December 2022
Viewed by
13443

Topic Information

Dear Colleagues,

Plants have been used to flavor and preserve food for thousands of years, as well as to treat health problems and prevent diseases such as epidemics. The medicinal powers of these plants have been passed down the generations within and among human communities. The biological qualities of some plant species used around the world for various purposes are usually due to active chemicals created during secondary vegetal metabolism. Many experimental, pharmacological, and clinical studies have shown that plant extracts exhibit various biological activities, such as antimicrobial, antioxidant, antimutagenic, anticytotoxic, anti-inflammatory, and neuroprotective properties.

The present Topic invites manuscript submissions, research, and review papers, targeting the identification and mechanistic characterization of novel pharmacological targets, signaling pathways, and mechanisms of action of natural compounds and their derivatives in multiple ways.

Potential topics include but are not limited to the following:

• Molecular docking studies;

• Neurobehavioral pharmacological studies;

• Antioxidants;

• Signaling pathways;

• Anti-inflammatory;

• Anti-neurodegenerative.

Prof. Dr. Lucian Hriţcu
Prof. Dr. Omayma A. Eldahshan
Topic Editors

Keywords

• bioactive products

• neurodegenerative diseases

• molecular docking

• neuroinflammation

• neurodegeneration

• signal pathways

• behavioral neuroscience

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Antioxidants
antioxidants
7.675 6.5 2012 15.1 Days 2200 CHF Submit
Brain Sciences
brainsci
3.333 3.1 2011 18.5 Days 2000 CHF Submit
Molecules
molecules
4.927 5.9 1996 14.2 Days 2300 CHF Submit
Nutrients
nutrients
6.706 7.9 2009 17.2 Days 2600 CHF Submit
Plants
plants
4.658 3.6 2012 13.3 Days 2200 CHF Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (8 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Protective Effects of Resveratrol on Adolescent Social Isolation-Induced Anxiety-Like Behaviors via Modulating Nucleus Accumbens Spine Plasticity and Mitochondrial Function in Female Rats
Nutrients 2022, 14(21), 4542; https://doi.org/10.3390/nu14214542 - 28 Oct 2022
Viewed by 517
Abstract
Social isolation (SI) is a major risk factor for mood disorders in adolescents. The nucleus accumbens (NAc) is an important reward center implicated in psychiatric disorders. Resveratrol (RSV) is one of the most effective natural polyphenols with anti-anxiety and depression effects. However, little [...] Read more.
Social isolation (SI) is a major risk factor for mood disorders in adolescents. The nucleus accumbens (NAc) is an important reward center implicated in psychiatric disorders. Resveratrol (RSV) is one of the most effective natural polyphenols with anti-anxiety and depression effects. However, little is known about the therapeutic effects and mechanisms of RSV on behavioral abnormality of adolescent social stress. Therefore, this study aimed to investigate the underlying mechanism of RSV on the amelioration of SI-induced behavioral abnormality. We found that SI induced anxiety-like behavior and social dysfunction in isolated female rats. Moreover, SI reduced mitochondrial number and ATP levels and increased thin spine density in the NAc. RNA sequencing results showed that SI changed the transcription pattern in the NAc, including 519 upregulated genes and 610 downregulated genes, especially those related to mitochondrial function. Importantly, RSV ameliorated behavioral and spine abnormalities induced by SI and increased NAc ATP levels and mitochondria number. Furthermore, RSV increased the activity of cytochrome C oxidase (COX) and upregulated mRNA levels of Cox5a, Cox6a1 and Cox7c. These results demonstrate that the modulation of spine plasticity and mitochondrial function in the NAc by RSV has a therapeutic effect on mood disorders induced by social isolation. Full article
Show Figures

Figure 1

Article
Caffeic Acid Alleviates Memory and Hippocampal Neurogenesis Deficits in Aging Rats Induced by D-Galactose
Nutrients 2022, 14(10), 2169; https://doi.org/10.3390/nu14102169 - 23 May 2022
Viewed by 1259
Abstract
Hippocampal neurogenesis occurs throughout life, but it declines with age. D-galactose (D-gal) enhances cellular senescence through oxidative stress leading to neurodegeneration and memory impairment. Caffeic acid (CA) acts as an antioxidant via decreasing brain oxidative stress. This study aims to investigate the advantages [...] Read more.
Hippocampal neurogenesis occurs throughout life, but it declines with age. D-galactose (D-gal) enhances cellular senescence through oxidative stress leading to neurodegeneration and memory impairment. Caffeic acid (CA) acts as an antioxidant via decreasing brain oxidative stress. This study aims to investigate the advantages of CA in alleviating the loss of memory and neurogenesis production in the hippocampus in aged rats activated by D-gal. Fifty-four male Sprague-Dawley rats were unpredictably arranged into six groups. In the D-gal group, rats were administered D-gal (50 mg/kg) by intraperitoneal (i.p.) injection. For the CA groups, rats received 20 or 40 mg/kg CA by oral gavage. In the co-treated groups, rats received D-gal (50 mg/kg) and CA (20 or 40 mg/kg) for eight weeks. The results of novel object location (NOL) and novel object recognition (NOR) tests showed memory deficits. Moreover, a decline of neurogenesis in the hippocampus was detected in rats that received D-gal by detecting rat endothelial cell antigen-1 (RECA-1)/Ki-67, 5-bromo-2′-deoxyuridine (BrdU)/neuronal nuclear protein (NeuN), doublecortin (DCX) by means of staining to evaluate blood vessel associated proliferating cells, neuronal cell survival and premature neurons, respectively. By contrast, CA attenuated these effects. Our results postulate that CA attenuated the impairment of memory in D-gal-stimulated aging by up-regulating levels of hippocampal neurogenesis. Full article
Show Figures

Figure 1

Article
Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop
Nutrients 2022, 14(7), 1504; https://doi.org/10.3390/nu14071504 - 04 Apr 2022
Cited by 1 | Viewed by 2700
Abstract
Vitamin K2, a natural fat-soluble vitamin, is a potent neuroprotective molecule, owing to its antioxidant effect, but its mechanism has not been fully elucidated. Therefore, we stimulated SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) in a proper dose-dependent manner, followed by a treatment of vitamin [...] Read more.
Vitamin K2, a natural fat-soluble vitamin, is a potent neuroprotective molecule, owing to its antioxidant effect, but its mechanism has not been fully elucidated. Therefore, we stimulated SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) in a proper dose-dependent manner, followed by a treatment of vitamin K2. In the presence of 6-OHDA, cell viability was reduced, the mitochondrial membrane potential was decreased, and the accumulation of reactive oxygen species (ROS) was increased. Moreover, the treatment of 6-OHDA promoted mitochondria-mediated apoptosis and abnormal mitochondrial fission and fusion. However, vitamin K2 significantly suppressed 6-OHDA-induced changes. Vitamin K2 played a significant part in apoptosis by upregulating and downregulating Bcl-2 and Bax protein expressions, respectively, which inhibited mitochondrial depolarization, and ROS accumulation to maintain mitochondrial structure and functional stabilities. Additionally, vitamin K2 significantly inhibited the 6-OHDA-induced downregulation of the MFN1/2 level and upregulation of the DRP1 level, respectively, and this enabled cells to maintain the dynamic balance of mitochondrial fusion and fission. Furthermore, vitamin K2 treatments downregulated the expression level of p62 and upregulated the expression level of LC3A in 6-OHDA-treated cells via the PINK1/Parkin signaling pathway, thereby promoting mitophagy. Moreover, it induced mitochondrial biogenesis in 6-OHDA damaged cells by promoting the expression of PGC-1α, NRF1, and TFAM. These indicated that vitamin K2 can release mitochondrial damage, and that this effect is related to the participation of vitamin K2 in the regulation of the mitochondrial quality-control loop, through the maintenance of the mitochondrial quality-control system, and repair mitochondrial dysfunction, thereby alleviating neuronal cell death mediated by mitochondrial damage. Full article
Show Figures

Figure 1

Article
The Neuroprotection of Verbascoside in Alzheimer’s Disease Mediated through Mitigation of Neuroinflammation via Blocking NF-κB-p65 Signaling
Nutrients 2022, 14(7), 1417; https://doi.org/10.3390/nu14071417 - 29 Mar 2022
Cited by 4 | Viewed by 1559
Abstract
Verbascoside (VB) is a phenylethanoid glycoside extracted from the herbaceous plant Verbascum sinuatum and plays a neuroprotective role in Alzheimer’s disease (AD). The goal of this study was to explore the neuroprotective mechanism of VB. Based on the proteomics analysis, immunohistochemistry, immunofluorescence, Western [...] Read more.
Verbascoside (VB) is a phenylethanoid glycoside extracted from the herbaceous plant Verbascum sinuatum and plays a neuroprotective role in Alzheimer’s disease (AD). The goal of this study was to explore the neuroprotective mechanism of VB. Based on the proteomics analysis, immunohistochemistry, immunofluorescence, Western blot, and ELISA were utilized to explore the neuroprotective mechanism of VB in context of neuroinflammation in APP/PS1 mice, LPS-induced BV2 cells, and/or Aβ1-42-stimulated N2a cells. Proteomic analysis demonstrated that the neuroprotection of VB correlated closely to its anti-inflammatory effect. VB significantly blocked microglia and astrocyte against activation in brains of APP/PS1 mice, suppressed the generation of IL-1β as well as IL-6, and boosted that of IL-4, IL-10 and TGF-β in vivo, which were analogous to results acquired in vitro. Furthermore, VB effectively restrained the phosphorylation of IKKα+β, IκBα, and NF-κB-p65 in APP/PS1 mice; LPS-induced BV2 cells, and Aβ1-42-stimulated N2a cells and lowered the tendency of NF-κB-p65 translocation towards nucleus in vitro. These results demonstrate that the neuroprotective effect of VB correlates to the modulation of neuroinflammation via NF-κB-p65 pathway, making VB as a hopeful candidate drug for the prevention and treatment of AD. Full article
Show Figures

Figure 1

Article
Effects of Peppermint Essential Oil on Learning and Memory Ability in APP/PS1 Transgenic Mice
Molecules 2022, 27(7), 2051; https://doi.org/10.3390/molecules27072051 - 22 Mar 2022
Cited by 1 | Viewed by 1944
Abstract
Objective: To explore the effect and mechanism of peppermint essential oil on learning and memory ability of APP/PS1 transgenic mice. Methods: Morris water maze test and shuttle box test were used to explore the changes in learning and memory ability of APP/PS1 transgenic [...] Read more.
Objective: To explore the effect and mechanism of peppermint essential oil on learning and memory ability of APP/PS1 transgenic mice. Methods: Morris water maze test and shuttle box test were used to explore the changes in learning and memory ability of APP/PS1 transgenic mice after sniffing essential oil. The cellular status of neurons in the hippocampal CA1 region of the right hemisphere, Aβ deposition, oxidative stress level, and serum metabonomics were detected to explore its mechanism. Results: Sniffing peppermint essential oil can improve the learning and memory ability of APP/PS1 transgenic mice. Compared with the model group, the state of neurons in the hippocampal CA1 region of the peppermint essential oil group returned to normal, and the deposition of Aβ decreased. The MDA of brain tissue decreased significantly, and the activity of SOD and GSH-PX increased significantly to the normal level. According to the results of metabonomics, it is speculated that peppermint essential oil may improve cognitive function in AD by regulating arginine and proline metabolism, inositol phosphate metabolism, and cysteine and methionine metabolism. Full article
Show Figures

Figure 1

Article
Natural Dietary Compound Xanthohumol Regulates the Gut Microbiota and Its Metabolic Profile in a Mouse Model of Alzheimer’s Disease
Molecules 2022, 27(4), 1281; https://doi.org/10.3390/molecules27041281 - 14 Feb 2022
Cited by 3 | Viewed by 1247
Abstract
Discovering new and effective drugs for the treatment of Alzheimer’s disease (AD) is a major clinical challenge. This study focuses on chemical modulation of the gut microbiome in an established murine AD model. We used the 16S rDNA sequencing technique to investigate the [...] Read more.
Discovering new and effective drugs for the treatment of Alzheimer’s disease (AD) is a major clinical challenge. This study focuses on chemical modulation of the gut microbiome in an established murine AD model. We used the 16S rDNA sequencing technique to investigate the effect of xanthohumol (Xn) on the diversity of intestinal microflora in 2-month- and 6-month-old APP/PS1 mice, respectively. APP/PS1 and wild-type mice were treated by gavage with corn oil with or without Xn every other day for 90 days. Prior to and following treatment, animals were tested for spatial learning, cognitive and memory function. We found Xn reduced cognitive dysfunction in APP/PS1 mice and significantly regulated the composition and abundance of gut microbiota both in prevention experiments (with younger mice) and therapeutic experiments (with older mice). Differential microflora Gammaproteobacteria were significantly enriched in APP/PS1 mice treated with Xn. Nodosilineaceae and Rikenellaceae may be the specific microflora modulated by Xn. The penicillin and cephalosporin biosynthesis pathway and the atrazine degradation pathway may be the principal modulation pathways. Taken together, oral treatment with Xn may have a neuroprotective role by regulating the composition of intestinal microflora, a result that contributes to the scientific basis for a novel prophylactic and therapeutic approach to AD. Full article
Show Figures

Figure 1

Article
Synthesis and Insecticidal Activity of Fire Ant Venom Alkaloid-Based 2-Methyl-6-alkyl-Δ1,6-piperideines
Molecules 2022, 27(3), 1107; https://doi.org/10.3390/molecules27031107 - 07 Feb 2022
Viewed by 1292
Abstract
2,6-dialkylpiperideines found in the venom of Solenopsis (Hymenoptera, Formicidae) fire ants are a range of compounds possessing various biological activities. A series of racemic 2-methyl-6-alkyl-Δ1,6-piperideines were synthesized for chemical confirmation of the natural products found in fire ant venom, and the [...] Read more.
2,6-dialkylpiperideines found in the venom of Solenopsis (Hymenoptera, Formicidae) fire ants are a range of compounds possessing various biological activities. A series of racemic 2-methyl-6-alkyl-Δ1,6-piperideines were synthesized for chemical confirmation of the natural products found in fire ant venom, and the evaluation of their biological activity. Synthetic Δ1,6-piperideines and the natural compounds in the cis-alkaloid fraction of Solenopsis invicta had identical mass spectra and retention times. Their insecticidal activities against the third-instar larvae of cotton bollworm (Helicoverpa armigera) were evaluated by using injection and topical application methods. All three compounds exhibited no lethal effect at concentrations of 0.05–0.4 mol/L by topical treatment, but moderate lethal effect at 0.4 mol/L through injection treatment. Compound 6a showed significantly higher activity than the natural insecticide nicotine. The differences in activity among compounds 6b, 6c and nicotine were not significant. The elongation of the carbon chain at the 6-position of the piperideine ring appears to decrease insecticidal activity. Full article
Show Figures

Figure 1

Article
Guggulsterone Mediated JAK/STAT and PPAR-Gamma Modulation Prevents Neurobehavioral and Neurochemical Abnormalities in Propionic Acid-Induced Experimental Model of Autism
Molecules 2022, 27(3), 889; https://doi.org/10.3390/molecules27030889 - 28 Jan 2022
Cited by 13 | Viewed by 1458
Abstract
Autism spectrum disorder is a neurodevelopmental disorder marked by repetitive behaviour, challenges in verbal and non-verbal communication, poor socio-emotional health, and cognitive impairment. An increased level of signal transducer and activator of transcription 3 (STAT3) and a decreased level of peroxisome proliferator-activated receptor [...] Read more.
Autism spectrum disorder is a neurodevelopmental disorder marked by repetitive behaviour, challenges in verbal and non-verbal communication, poor socio-emotional health, and cognitive impairment. An increased level of signal transducer and activator of transcription 3 (STAT3) and a decreased level of peroxisome proliferator-activated receptor (PPAR) gamma have been linked to autism pathogenesis. Guggulsterone (GST) has a neuroprotective effect on autistic conditions by modulating these signalling pathways. Consequently, the primary objective of this study was to examine potential neuroprotective properties of GST by modulating JAK/STAT and PPAR-gamma levels in intracerebroventricular propionic acid (ICV PPA) induced experimental model of autism in adult rats. In this study, the first 11 days of ICV-PPA injections in rats resulted in autism-like behavioural, neurochemical, morphological, and histopathological changes. The above modifications were also observed in various biological samples, including brain homogenate, CSF, and blood plasma. GST was also observed to improve autism-like behavioural impairments in autistic rats treated with PPA, including locomotion, neuromuscular coordination, depression-like behaviour, spatial memory, cognition, and body weight. Prolonged GST treatment also restored neurochemical deficits in a dose-dependent manner. Chronic PPA administration increased STAT3 and decreased PPAR gamma in autistic rat brain, CSF, and blood plasma samples, which were reversed by GST. GST also restored the gross and histopathological alterations in PPA-treated rat brains. Our results indicate the neuroprotective effects of GST in preventing autism-related behavioural and neurochemical alterations. Full article
Show Figures

Graphical abstract

Back to TopTop