Topic Editors

International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
College of Electrical, Energy and Power Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225127, China
Dr. Hua Zhang
Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

Advanced Nanomaterials and Technologies for Sustainable Development

Abstract submission deadline
30 April 2026
Manuscript submission deadline
30 June 2026
Viewed by
10669

Topic Information

Dear Colleagues,

Various advanced nanomaterials have been developed using versatile technologies including electrodeposition, electrospray, electrospinning, chemical vapor deposition, hydrothermal/solvothermal reactions and atom layer deposition. These nanomaterials are generally defined as materials with at least one dimension in the nanometer range (usually below 100 nm). In a broad sense, bulk materials assembled using low-dimensional nanomaterials can also be referred to as nanomaterials. In addition, porous materials comprising abundant nanopores with diameters below 100 nm can also be classified as nanomaterials. As such, these materials exhibit extremely high surface area to volume ratios, and the reduction in dimensionality leads to quantum confinement effects that engender unique physical/chemical properties that are substantially different from their bulk counterparts. The use of nanomaterials is crucial in energy storage/conversion devices such as lithium ion batteries, electrochemical capacitors, hybrid ion capacitors, solar cells and flow batteries due to their exceptional cycling stability and high charge storage capacity. Nanomaterials can be utilized as stable (photo)electrocatalysts in various reactions including (sea)water splitting, the oxygen reduction reaction, the CO2 reduction reaction, the N2 reduction reaction and the urea oxidation reaction. Nanomaterials also have shown promise regarding their application in wastewater treatment as adsorbents to remove/separate dyes, heavy metal ions, antibiotics and oil from water. This Topic aims to provide an overview of recent advances and future prospects regarding the contribution of nanomaterials and related technologies to sustainable development; therefore, we welcome original articles, perspectives, and review articles. We invite authors to submit their latest experimental and theoretical contributions that address the following areas of interest:

  • Synthesis and characterization of nanomaterials;
  • Advances in analytical tools (in situ, ex situ, operando);
  • Applications as (photo)electrocatalysts;
  • Applications in energy conversion;
  • Applications in energy storage;
  • Applications in wastewater treatment.

Prof. Dr. Shuijian He
Prof. Dr. Haoqi Yang
Dr. Hua Zhang
Topic Editors

Keywords

  • nanomaterials
  • porous materials
  • template methods
  • electrospinning
  • electrospray
  • chemical vapor deposition
  • energy storage
  • energy conversion
  • wastewater treatment

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Batteries
batteries
4.6 4.0 2015 19.7 Days CHF 2700 Submit
Catalysts
catalysts
3.8 6.8 2011 13.9 Days CHF 2200 Submit
Gels
gels
5.0 4.7 2015 10.8 Days CHF 2100 Submit
Molecules
molecules
4.2 7.4 1996 15.1 Days CHF 2700 Submit
Nanomaterials
nanomaterials
4.4 8.5 2010 14.1 Days CHF 2400 Submit
International Journal of Molecular Sciences
ijms
4.9 8.1 2000 16.8 Days CHF 2900 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (11 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
13 pages, 4881 KiB  
Article
Electrochemiluminescence/Electrochemistry Dual-Mode Synchronous Sensing of Pb2+ Based on G4–hemin DNAzyme Complex During One-Step Scan
by Rukai Wei, Lei Shang, Wei Zhang, Xiaojian Li, Liping Jia, Rongna Ma and Huaisheng Wang
Molecules 2025, 30(9), 1951; https://doi.org/10.3390/molecules30091951 - 28 Apr 2025
Viewed by 85
Abstract
Electrochemiluminescence (ECL)/electrochemistry (EC) dual-mode sensors have garnered significant interest for their enhanced analytical reliability through the cross-verification of dual-signal outputs. However, conventional approaches necessitate two potential scans to acquire ECL and EC signals independently, resulting in temporal and environmental discrepancies between the two [...] Read more.
Electrochemiluminescence (ECL)/electrochemistry (EC) dual-mode sensors have garnered significant interest for their enhanced analytical reliability through the cross-verification of dual-signal outputs. However, conventional approaches necessitate two potential scans to acquire ECL and EC signals independently, resulting in temporal and environmental discrepancies between the two detection modes. In this paper, we present a novel synchronous ECL/EC dual-mode sensing platform for lead ion (Pb2+) detection via a one-step potential scan (0.2 to −0.4 V vs. Ag/AgCl) utilizing a G-quadruplex (G4)–hemin DNAzyme complex. This complex synergistically catalyzed the electrochemical reduction of dissolved oxygen, concurrently generating a distinct cathodic ECL emission from Ru(bpy)32+ and a synchronous reduction current peak at −0.25 V. Pb2+ quantification was achieved through its dose-dependent suppression of DNAzyme activity by destabilizing the G4–hemin interaction, thereby proportionally attenuating both ECL intensity and EC signal (reduction current). The integrated sensor demonstrated high sensitivity (detection limits of 1.51 nM for ECL detection and 2.03 nM for EC detection), robust anti-interference capability, and satisfactory reproducibility, with recoveries ranging from 95.5 to 103.1% in environmental water analysis. This work established a paradigm for one-step dual-mode sensor design, offering new prospects for environmental monitoring. Full article
Show Figures

Figure 1

14 pages, 5342 KiB  
Article
Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber
by Guo-Dong Zhang, Yuan Gao, Pi-Hang Yu, Chao Zhang, Chuan-Hui Guo, Seeram Ramakrishna, Yun-Ze Long and Jun Zhang
Nanomaterials 2025, 15(8), 578; https://doi.org/10.3390/nano15080578 - 11 Apr 2025
Viewed by 234
Abstract
Water is the most environmentally friendly solvent; however, conventional solution spinning using water as a solvent is challenging due to its low evaporation rate. We developed a double-pronged solution blow spinning (DP-SBS) system. This spinning technique significantly enhances solvent evaporation, and the designed [...] Read more.
Water is the most environmentally friendly solvent; however, conventional solution spinning using water as a solvent is challenging due to its low evaporation rate. We developed a double-pronged solution blow spinning (DP-SBS) system. This spinning technique significantly enhances solvent evaporation, and the designed structure (double-pronged) avoids the common problem of needle clogging caused by heating. DP-SBS enables high-yield production of water-soluble polymer nanofibers, with a production rate of up to 5.94 g/h, which far exceeds what can be achieved with traditional electrospinning or solution blow spinning. This method is also highly efficient for producing non-water-soluble polymer nanofibers, achieving a production rate of up to 7.91 g/h, the highest reported value to date. Additionally, this approach can be used to produce not only common two-dimensional fiber membranes but also fiber sponges in a single step using the double-pronged airflow system. For the first time, chitosan nanofiber sponges were successfully produced and demonstrated to have excellent hemostatic properties in medical hemostasis. This method can also be extended to the production of other 3D nanomaterials, such as mullite nanofiber sponges, which exhibit outstanding thermal insulation performance at high temperatures. Full article
Show Figures

Figure 1

13 pages, 3465 KiB  
Article
Influence of the Support Nature of Copper Catalysts on Catalytic Properties in the Hydrogenation of Fatty Acid Esters
by Anastasiya Shesterkina, Anna Strekalova, Mikhail Mashkin, Igor Mishin, Kseniia Vikanova, Obid Tursunov, Sergey Dunaev and Alexander Kustov
Int. J. Mol. Sci. 2025, 26(7), 3289; https://doi.org/10.3390/ijms26073289 - 2 Apr 2025
Viewed by 659
Abstract
Copper-containing catalysts supported on different commercial oxide supports (SiO2, Al2O3, and mixed oxide supports) were prepared by the incipient wetness impregnation method and investigated for the selective hydrogenation of methyl esters (methyl butyrate, methyl hexanoate, methyl stearate) [...] Read more.
Copper-containing catalysts supported on different commercial oxide supports (SiO2, Al2O3, and mixed oxide supports) were prepared by the incipient wetness impregnation method and investigated for the selective hydrogenation of methyl esters (methyl butyrate, methyl hexanoate, methyl stearate) to fatty alcohols. Characterization techniques, including transmission (TEM) and scanning electron microscopy (SEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms, and the temperature-programmed hydrogen reduction (H2-TPR) method, were utilized and revealed the relationship between catalyst properties and its structure. The best results of catalytic activity were obtained in the presence of the Cu catalyst supported on SiO2 with co-precipitated Al2O3, where the conversion of esters was above 50% with a selectivity for the corresponding alcohols of 40–70%. This efficient and inexpensive Cu-based catalyst can be widely used in industrial production, which is conducive to promoting the development of non-precious metal catalysts in the biomass industry. Full article
Show Figures

Figure 1

25 pages, 33164 KiB  
Article
Poria cocos-Derived Exosome-like Nanovesicles Alleviate Metabolic Dysfunction-Associated Fatty Liver Disease by Promoting Mitophagy and Inhibiting NLRP3 Inflammasome Activation
by Tao Wang, Jun Zhao, Qiu-Yi Li, Hui-Qiong Yang, Min Li, Rong Duan, Mei Zhang, Yan Qi, Jie Yu and Xing-Xin Yang
Int. J. Mol. Sci. 2025, 26(5), 2253; https://doi.org/10.3390/ijms26052253 - 3 Mar 2025
Viewed by 1023
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects approximately one-quarter of the world’s adult population, and no effective therapeutic drugs are available. Poria cocos is a fungus used as a herb and food nutrient for centuries as well as for MAFLD treatment. Exosome-like nanovesicles [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects approximately one-quarter of the world’s adult population, and no effective therapeutic drugs are available. Poria cocos is a fungus used as a herb and food nutrient for centuries as well as for MAFLD treatment. Exosome-like nanovesicles have many pharmacological activities; however, studies on the effects of Poria cocos-derived exosome-like nanovesicles (PCELNs) on MAFLD are lacking. Therefore, our study aimed at identifying the effects and mechanism of action of PCELNs on MAFLD. PCELNs were isolated by ultracentrifugation and their morphology was characterized, such as particle size, zeta potential, protein distributions, as well as lipid and miRNA compositions. Then, the absorption and distribution of PCELNs were observed in vivo and in vitro. Finally, L02 cell steatosis model induced by fat emulsion and MAFLD mouse model induced by high-fat diet (HFD) were used to evaluate the effect and mechanism of PCELNs on MAFLD. PCELNs were membrane structured vesicles, with a particle size of 161.4 ± 1.7 nm, a zeta potential of −3.20 ± 0.37 mV, and contained a range of proteins, lipids, and miRNAs. PCELNs were absorbed by L02 cells and targeted the liver and spleen after intraperitoneal injection. PCELNs inhibited body weight gain and improved the index of heart, liver, spleen, and various fats, as well as decreased lipid accumulation and lipid level. They also protected mitochondrial ultrastructure and regulated oxidative stress and energy metabolism disorder. Furthermore, PCELNs increased PTEN induced kinase 1 (PINK1), E3 ubiquitin ligase (Parkin) and microtubule associated protein light chain-3 (LC3) protein expression in the liver, reduced oxidized mitochondrial DNA (Ox-mtDNA) content in mitochondria and cytoplasm of the liver, reduced nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3), pro-cysteinyl aspartate specific proteinase-1 (caspase-1), cleared-caspase-1, and mature-interleukin-1β (IL-1β) protein expression in the liver, and reduced the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, and interleukin-18 (IL-18) in serum and liver. In conclusion, we demonstrated that PCELNs may alleviate HFD-induced MAFLD by promoting mitochondrial autophagy and inhibiting NLRP3 inflammasome activation. Full article
Show Figures

Figure 1

16 pages, 7205 KiB  
Article
Comprehensive Structural, Chemical, and Optical Characterization of Cu2ZnSnS4 Films on Kapton Using the Automated Successive Ionic Layer Adsorption and Reaction Method
by Perla J. Vázquez-González, Martha L. Paniagua-Chávez, Lizette A. Zebadua-Chavarria, Rafael Mota-Grajales, C. A. Meza-Avendaño, Enrique Campos-González, A. Escobosa-Echavarría, Yaoqiao Hu, Aldo E. Pérez-Ramos, Manuel-Matuz and Carlos A. Hernández-Gutiérrez
Nanomaterials 2025, 15(2), 85; https://doi.org/10.3390/nano15020085 - 8 Jan 2025
Viewed by 826
Abstract
This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) [...] Read more.
This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles. These films exhibited a notable reduction in secondary phases in the as-deposited state, with further improvements observed after annealing at 400 °C and 450 °C in a sulfur atmosphere. A pole figure analysis indicates a decrease in texture disorder with annealing, suggesting improved crystalline orientation at higher temperatures. Field emission scanning electron microscopy (FE-SEM) showed enhancements in surface morphology, with increased grain size and uniformity post-annealing. Chemical uniformity was confirmed through Secondary Ion Mass Spectrometry (SIMS), Energy-Dispersive Spectroscopy (EDS), and X-ray Photoelectron Spectroscopy (XPS). XPS revealed the presence of CZTS phases alongside oxidized phases. Annealing effectively reduced secondary phases, such as ZnO, SnO2, CuO, and SO2, enhancing the CZTS phase. An optical analysis demonstrated that annealing at 200 °C in an air atmosphere reduced the band gap from 1.53 eV to 1.38 eV. In contrast, annealing at 400 °C and 450 °C in a sulfur atmosphere increased the band gap to 1.59 eV and 1.63 eV, respectively. The films exhibited p-type conductivity, as inferred from a valence band structure analysis. Density Functional Theory (DFT) calculations provided insights into the observed band gap variations, further substantiating the findings. Full article
Show Figures

Figure 1

14 pages, 4482 KiB  
Article
Novel Electrochemiluminescence Sensor for Dopamine Detection Based on Perylene Diimide/CuO Nanomaterials
by Qirong Tian, Xinyang Sun, Chuan Li, Lei Shang, Rongna Ma, Xiaojian Li, Liping Jia, Shuijian He, Qian Zhang, Wei Zhang and Huaisheng Wang
Molecules 2025, 30(1), 184; https://doi.org/10.3390/molecules30010184 - 5 Jan 2025
Viewed by 1020
Abstract
Dopamine (DA) is an important catecholamine neurotransmitter and its abnormal concentration is closely related to diseases such as hypertension, Parkinson’s disease and schizophrenia. Due to the advantages of high sensitivity and fast response for electrochemiluminescence (ECL), developing ECL sensors for detecting DA was [...] Read more.
Dopamine (DA) is an important catecholamine neurotransmitter and its abnormal concentration is closely related to diseases such as hypertension, Parkinson’s disease and schizophrenia. Due to the advantages of high sensitivity and fast response for electrochemiluminescence (ECL), developing ECL sensors for detecting DA was very critical in clinical diagnosis. ECL resonance energy transfer (ECL-RET) was an effective signaling mechanism. However, the shortage of highly efficient ECL-RET pairs impeded the development of DA sensors. Herein, methyl-modified perylene diimide derivative (PDI-CH3) self-assembly nanorod materials as luminophores and CuO nanomaterials as acceptors were integrated into nanocomposites. An obvious ECL-RET was found in PDI-CH3/CuO nanocomposites. After PDI-CH3/CuO nanocomposites were treated with DA, a large increase in ECL intensity was observed. Then, PDI-CH3/CuO nanocomposites were taken as an ECL platform to detect DA. This ECL sensor exhibited a linear response to DA from 10−12 M to 10−8 M with a limit of detection of 0.20 pM. Compared with other sensors for DA detection, the constructed ECL sensor exhibited higher sensitivity. In addition, the novel ECL sensor in this work showed good practicability in a human serum sample. Full article
Show Figures

Graphical abstract

14 pages, 2963 KiB  
Article
Synthesis, Structure, and Electrophysical and Electrochemical Properties of Novel Composite La0.9MnO3-LaFeO3
by Mukhametkali Mataev, Zamira Sarsenbaeva, Bahadir Keskin, Marzhan Nurbekova, Amangeldi Meldeshov, Zhanar Tursyn and Karima Seitbekova
Molecules 2025, 30(1), 132; https://doi.org/10.3390/molecules30010132 - 31 Dec 2024
Cited by 1 | Viewed by 935
Abstract
This article presents the synthesis, electrophysical, and catalytic properties of a La0.9MnO3–LaFeO3 nanocomposite material. The nanocomposite was synthesized via the sol–gel (Pechini) method. X-ray diffraction (XRD) analysis revealed a polycrystalline, biphasic perovskite structure combining both hexagonal and cubic [...] Read more.
This article presents the synthesis, electrophysical, and catalytic properties of a La0.9MnO3–LaFeO3 nanocomposite material. The nanocomposite was synthesized via the sol–gel (Pechini) method. X-ray diffraction (XRD) analysis revealed a polycrystalline, biphasic perovskite structure combining both hexagonal and cubic symmetry. The microstructure and elemental composition, examined using field emission scanning electron microscopy (FESEM), indicated an average particle size of approximately 186.9 nm. The composite exhibits semiconducting behavior within the temperature ranges of 293–323 K and 343–393 K. Developing electrocatalysts free of precious metals for the hydrogen evolution reaction (HER) is increasingly important to facilitate the production of hydrogen from renewable sources. In this study, the conductive La0.9MnO3–LaFeO3 composite was deposited on graphite and, for the first time, evaluated as an electrocatalyst for HER in acidic media. The resulting composite films were tested using linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in a glassy carbon electrode (GCE) setup, providing insights into their potential as effective, cost-efficient electrocatalysts. Full article
Show Figures

Figure 1

11 pages, 1831 KiB  
Article
Self-Powered Photoelectrochemistry Biosensor for Ascorbic Acid Determination in Beverage Samples Based on Perylene Material
by Wei Zhang, Xinyang Sun, Hong Liu, Lei Shang, Rongna Ma, Xiaojian Li, Liping Jia, Shuijian He, Chuan Li and Huaisheng Wang
Molecules 2024, 29(22), 5254; https://doi.org/10.3390/molecules29225254 - 6 Nov 2024
Cited by 1 | Viewed by 903
Abstract
Ascorbic acid plays an important role in the synthesis and metabolism of the human body. However, it cannot be synthesized by the human body and needs to be supplemented from exogenous food intake. Ascorbic acid is easily degraded during storage and heating, often [...] Read more.
Ascorbic acid plays an important role in the synthesis and metabolism of the human body. However, it cannot be synthesized by the human body and needs to be supplemented from exogenous food intake. Ascorbic acid is easily degraded during storage and heating, often causing its content in food to change. It is important to develop a sensitive and accurate photoelectrochemistry (PEC) biosensor for detecting ascorbic acid. The shortage of PEC materials with long illumination wavelengths and low bias voltages impedes the development of ascorbic acid biosensors. Herein, a 3,4,9,10-perylenetetracarboxylic dianhydride (PDA) self-assembly rod material was firstly reported to show significant photocurrent increases to ascorbic acid at 630 nm illumination and 0 V vs. Ag/AgCl. Moreover, the PDA self-assembly rod material was used as a PEC platform to detect ascorbic acid. This self-powered PEC biosensor exhibited a linear response for ascorbic acid from 5 μM·L−1 to 400 μM·L−1; the limit of detection was calculated to be 4.1 μM·L−1. Compared with other ascorbic acid biosensors, the proposed self-powered PEC biosensor shows a relatively wide linear range. In addition, the proposed self-powered PEC biosensor exhibits good practicability in beverage samples. Full article
Show Figures

Graphical abstract

18 pages, 16171 KiB  
Article
Mycelium-Doped Straw Biochars for Antibiotic Control
by Bolun Zhang, Ruqi Li, Huiji Zhang, Ye Han, Yunzhe Jia, Siji Chen and Xiaoxiao Yu
Int. J. Mol. Sci. 2024, 25(21), 11387; https://doi.org/10.3390/ijms252111387 - 23 Oct 2024
Cited by 1 | Viewed by 786
Abstract
Straw, a predominant agricultural residue, represents a significant waste product. Harnessing its potential is of paramount importance both in terms of research and economic value. In this study, chemically pretreated corn straw was infused with distinct microbial fungal mycelium variants and subsequently transformed [...] Read more.
Straw, a predominant agricultural residue, represents a significant waste product. Harnessing its potential is of paramount importance both in terms of research and economic value. In this study, chemically pretreated corn straw was infused with distinct microbial fungal mycelium variants and subsequently transformed into a series of biochars through a process involving carbonization and activation. The findings revealed enhancements in the specific surface area and total pore volume of mycelium-doped straw biochars compared to the original corn straw biochar (BCS). Additionally, discernible disparities were observed in their physical and chemical attributes, encompassing functional groups, surface chemistry, and micro-morphology. Notably, in water-based antibiotic removal experiments focusing on tetracycline hydrochloride (TH) and chloramphenicol (CP), the mycelium-doped straw biochars outperformed BCS. Their maximum adsorption capacities for TH and CP surpassed those of alternative adsorbents, including other biochars. Impressively, even after five cycles, the biochar exhibited a removal rate exceeding 80%, attesting to its robust stability. This study successfully emphasized the efficacy of incorporating fungal mycelium to enhance the adsorption properties of straw-based biochar, introducing a new theoretical basis for the development of lignocellulosic materials. Full article
Show Figures

Figure 1

23 pages, 8131 KiB  
Article
Catalytic Reactivity Assessment of AgM and CuM (M = Cr, Fe) Catalysts for Dry Reforming of Methane Process with CO2
by Amel Barr, Rafik Benrabaa, Hayat Henni, Laaldja Meddour-Boukhobza, Pascal Roussel and Axel Löfberg
Molecules 2024, 29(19), 4597; https://doi.org/10.3390/molecules29194597 - 27 Sep 2024
Cited by 1 | Viewed by 949
Abstract
CuM and AgM (M = Cr, Fe) catalysts were synthesized, characterized, and evaluated in methane reforming with CO2 with and without pretreatment under a H2 atmosphere. Their textural and structural characteristics were evaluated using various physicochemical methods, including XRD, B.E.T., SEM-EDS, [...] Read more.
CuM and AgM (M = Cr, Fe) catalysts were synthesized, characterized, and evaluated in methane reforming with CO2 with and without pretreatment under a H2 atmosphere. Their textural and structural characteristics were evaluated using various physicochemical methods, including XRD, B.E.T., SEM-EDS, XPS, and H2-TPR. It was shown that the nature of the species has a significant effect on these structural, textural, and reactivity properties. AgCr catalysts, presenting several oxidation states (Ag0, Ag+1, Cr3+, and Cr6+ in Ag, AgCrO2, and AgCr2O4), showed the most interesting catalytic performance in their composition. The intermediate Cr2O3 phase, formed during the catalytic reaction, played an important role as a catalytic precursor in the in situ production of highly dispersed nanoparticles, being less prone to coke formation in spite of the severe reaction conditions. In contrast, the AgFe catalyst showed low activity and a low selectivity for DRM in the explored temperature range, due to a significant contribution of the reverse water–gas shift reaction, which accounted for the low H2/CO ratios. Full article
Show Figures

Figure 1

21 pages, 5375 KiB  
Article
Formulation and Development of Nanofiber-Based Ophthalmic Insert for the Treatment of Bacterial Conjunctivitis
by Eszter Farkas, Houssam Abboud, Nándor Nagy, Bálint Hofmeister, Eszter Ostorházi, Bence Tóth, Balázs Pinke, László Mészáros, Romána Zelkó and Adrienn Kazsoki
Int. J. Mol. Sci. 2024, 25(17), 9228; https://doi.org/10.3390/ijms25179228 - 25 Aug 2024
Cited by 3 | Viewed by 1669
Abstract
A novel ophthalmic delivery system utilizing levofloxacin-loaded, preservative-free, nanofiber-based inserts was investigated. Polyvinyl alcohol (PVA) and Poloxamer 407 (Polox)were employed as matrix materials, while hydroxypropyl-beta-cyclodextrin (HP-β-CD) was a solubilizer. The formulations were prepared via electrospinning and characterized for fiber morphology, drug dissolution, cytotoxicity, [...] Read more.
A novel ophthalmic delivery system utilizing levofloxacin-loaded, preservative-free, nanofiber-based inserts was investigated. Polyvinyl alcohol (PVA) and Poloxamer 407 (Polox)were employed as matrix materials, while hydroxypropyl-beta-cyclodextrin (HP-β-CD) was a solubilizer. The formulations were prepared via electrospinning and characterized for fiber morphology, drug dissolution, cytotoxicity, and antimicrobial activity. Scanning electron microscopy confirmed uniform fibrous structures. Fourier Transform Infrared spectroscopy and X-ray diffraction analyses demonstrated the amorphous state of levofloxacin within the fibers. In vitro dissolution studies revealed a rapid (within 2 min) and complete drug release, with higher HP-β-CD levels slightly delaying the release. Cytotoxicity tests showed increased HP-β-CD concentrations induced irritation, that was mitigated by sodium hyaluronate. The antimicrobial efficacy of the nanofibers was comparable to conventional eye drops, with lower minimum inhibitory concentrations for most tested strains. The nanofibrous formulation prepared from a PVA–Polox-based viscous solution of the drug:CD 1:1 mol ratio, containing 0.4% (w/w) sodium hyaluronate) was identified as a particularly promising alternative formulation due to its rapid and complete dissolution, good biocompatibility, and effective antimicrobial properties. Its gelling properties indicate that the residence time on the eye surface can be increased, potentially reducing discomfort and enhancing therapeutic outcomes. The nanofibrous formulations enhanced antimicrobial efficacy, providing a preservative-free alternative that minimizes the potential eye irritation that might occur because of the preservative agent and reduces the administrated dose frequency by extending the drug’s retention time on the eye’s surface. Subsequently, it improves patients’ adherence, which would reflect positively on the bioavailability. The levofloxacin-HP-β-CD nanofibers demonstrate promise as an alternative to traditional eye drops, offering advantages in solubility, stability, and patient compliance for ocular infection treatment. Full article
Show Figures

Figure 1

Back to TopTop