Topic Editors

School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy

Enzymes and Enzyme Inhibitors in Drug Research

Abstract submission deadline
31 October 2025
Manuscript submission deadline
31 December 2025
Viewed by
17788

Topic Information

Dear Colleagues,

Enzymes are involved in many pathological conditions, such as inflammation, diabetes, microbial infections, HIV, neoplastic diseases and others. Enzyme inhibition is universally accepted as a strategy to treat the above-mentioned conditions or to reverse the mechanism involved. In the long drug development process, the design of potent enzyme inhibitors is a crucial step. This Topic is dedicated to enzymes and their inhibition in drug design and development; these may include HIV-1 RT, transcriptase, SAR CoV-2, PTP1B, LOX, COX carbonic anhydrase, aldose reductase, and many others.

We welcome relevant original research, reviews, and other articles that cover (but are not limited to) the following subjects:

  • The role of enzymes in many pathological conditions;
  • Strategies for the development of enzyme inhibitors;
  • Targets for the development of new drugs, as well as the role of computational chemistry in drug design.

Prof. Dr. Athina Geronikaki
Prof. Dr. Cosimo D. Altomare
Prof. Dr. Maria Stefania Sinicropi
Topic Editors

Keywords

  • enzymes
  • inhibitors of HIV
  • SARS Cov-2
  • PTP1B
  • SHP2
  • LOX
  • COX
  • CA
  • aldose reductase
  • kinase inhibitors
  • gyrase
  • primase

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Biomolecules
biomolecules
4.8 9.4 2011 18.4 Days CHF 2700 Submit
Chemistry
chemistry
2.4 3.2 2019 17.2 Days CHF 1800 Submit
International Journal of Molecular Sciences
ijms
4.9 8.1 2000 16.8 Days CHF 2900 Submit
Molecules
molecules
4.2 7.4 1996 15.1 Days CHF 2700 Submit
Pharmaceuticals
pharmaceuticals
4.3 6.1 2004 13.9 Days CHF 2900 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (8 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
22 pages, 7063 KiB  
Article
Sulfide, Sulfoxide, and Sulfone Derivatives of Usnic Acid as Inhibitors of Human TDP1 and TDP2 Enzymes
by Aleksandr S. Filimonov, Marina A. Mikhailova, Nadezhda S. Dyrkheeva, Irina A. Chernyshova, Tatyana E. Kornienko, Konstantin A. Naumenko, Rashid O. Anarbaev, Andrey A. Nefedov, Chigozie Achara, Anthony D. M. Curtis, Olga A. Luzina, Konstantin P. Volcho, Nariman F. Salakhutdinov, Olga I. Lavrik and Jóhannes Reynisson
Chemistry 2024, 6(6), 1658-1679; https://doi.org/10.3390/chemistry6060101 - 17 Dec 2024
Viewed by 756
Abstract
Tyrosyl-DNA phosphodiesterases 1 and 2 (TDP1 and TDP2) are important DNA repair enzymes that remove various adducts from the 3′- and 5′-ends of DNA, respectively. The suppression of the activity of these enzymes is considered as a promising adjuvant therapy for oncological diseases [...] Read more.
Tyrosyl-DNA phosphodiesterases 1 and 2 (TDP1 and TDP2) are important DNA repair enzymes that remove various adducts from the 3′- and 5′-ends of DNA, respectively. The suppression of the activity of these enzymes is considered as a promising adjuvant therapy for oncological diseases in combination with topoisomerase inhibitors. The simultaneous inhibition of TDP1 and TDP2 may result in greater antitumor effects, as these enzymes can mimic each other’s functions. We have previously shown that usnic acid-based sulfides can act as dual inhibitors, with TDP1 activity in the low micromolar range and their TDP2 at 1 mM. The oxidation of their sulfide moieties to sulfoxides led to an order of magnitude decrease in their cytotoxicity potential, while their TDP1 and TDP2 activity was preserved. In this work, we synthesized new series of usnic acid-based sulfides and their oxidized analogues, i.e., sulfoxides and sulfones, to systematically study these irregularities. The new compounds inhibit TDP1 with IC50 values (the concentration of inhibitor required to reduce enzyme activity by half) in the 0.33–25 μM range. Most sulfides and some sulfoxides and sulfones inhibit TDP2 with an IC50 = 138−421 μM. In addition, the most active compounds synergized (×4) with topotecan on the HeLa cell line as well as causing dose-dependent DNA damage, as confirmed by Comet assay. Sulfides with the 6-methylbenzoimidazol-2-yl substituent (8f, IC50 = 0.33/138 μM, TDP1/2) and sulfones containing a pyridine-2-yl fragment (12k, IC50 = 2/228 μM, TDP1/2) are the most potent derivatives and, therefore, are promising for further development. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Graphical abstract

17 pages, 2168 KiB  
Article
Unveiling the Anticancer Potential of a New Ciprofloxacin-Chalcone Hybrid as an Inhibitor of Topoisomerases I & II and Apoptotic Inducer
by Doaa Mohamed Elroby Ali, Hossameldin A. Aziz, Stefan Bräse, Areej Al Bahir, Abdullah Alkhammash, Gamal El-Din A. Abuo-Rahma, Ali M. Elshamsy, Hamada Hashem and Walid M. Abdelmagid
Molecules 2024, 29(22), 5382; https://doi.org/10.3390/molecules29225382 - 15 Nov 2024
Cited by 1 | Viewed by 974
Abstract
The current study has yielded promising results in the evaluation of a new ciprofloxacin-chalcone hybrid (CP derivative) for its anticancer activity as potential Topoisomerases (Topo) I and II inhibitors. The in vitro results showed that the CP derivative significantly suppressed the growth of [...] Read more.
The current study has yielded promising results in the evaluation of a new ciprofloxacin-chalcone hybrid (CP derivative) for its anticancer activity as potential Topoisomerases (Topo) I and II inhibitors. The in vitro results showed that the CP derivative significantly suppressed the growth of HCT-116 and LOX IMVI cells, with IC50 values of 5.0 μM and 1.3 μM, respectively, outperforming Staurosporine, which had IC50 values of 8.4 μM and 1.6 μM, respectively. Flow cytometry analysis revealed that the new CP derivative triggered apoptosis and cell cycle arrest at the G2/M phase, associated with the up-regulation of pro-apoptotic genes (Bax and Caspase 9) and downregulation of the anti-apoptotic gene (Bcl-2). Further investigations showed that the CP derivative inhibited Topo I and II enzymes, as expected molecular targets; docking studies further supported its dual inhibitory action on Topo I and II. These findings suggest that the ciprofloxacin-chalcone hybrid could be a promising lead compound for developing new anticancer therapy. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Graphical abstract

21 pages, 7423 KiB  
Article
Nanotherapy for Cancer and Biological Activities of Green Synthesized AgNPs Using Aqueous Saussurea costus Leaves and Roots Extracts
by Mina A. Almayouf, Raihane Charguia, Manal A. Awad, Abir Ben Bacha and Imen Ben Abdelmalek
Pharmaceuticals 2024, 17(10), 1371; https://doi.org/10.3390/ph17101371 - 15 Oct 2024
Viewed by 1023
Abstract
Background/Objectives: Nanoparticles derived from medicinal plants are gaining attention for their diverse biological activities and potential therapeutic applications. Methods: This study explored the antioxidant, anti-inflammatory, anti-tumoral, and antimicrobial properties of green synthesized silver nanoparticles (AgNPs) using the aqueous leaf and root [...] Read more.
Background/Objectives: Nanoparticles derived from medicinal plants are gaining attention for their diverse biological activities and potential therapeutic applications. Methods: This study explored the antioxidant, anti-inflammatory, anti-tumoral, and antimicrobial properties of green synthesized silver nanoparticles (AgNPs) using the aqueous leaf and root extracts of Saussurea costus (S. costus). The physicochemical characterizations of both biosynthesized AgNPs using the aqueous leaf extract (L-AgNPs) and root extract (R-AgNPs) were examined using UV spectroscopy, fluorescence spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, dynamic light scattering, and Fourier-transform infrared spectroscopy. The antioxidant activity measured using ABTS, DPPH, and FRAP assays showed that AgNPs, particularly from roots, had higher activity than aqueous extracts, attributed to phenolic compounds acting as capping and antioxidant agents. Results: Enzyme inhibition studies indicated that AgNPs exhibited remarkable anti-inflammatory effects, inhibiting COX-1, 5-LOX, and secreted PLA2 enzymes by over 99% at 120 µg/mL, comparable to standard drugs. The anti-tumoral effects were evaluated on the human cancer cell lines HCT-116, LoVo, and MDA-MB-231, with AgNPs inhibiting cell proliferation dose-dependently and IC50 values between 42 and 60 µg/mL, demonstrating greater potency than extracts. The AgNPs also showed enhanced antimicrobial activities against various microbial strains, with IC50 values as low as 14 µg/mL, which could be linked to nanoparticle interactions with microbial cell membranes, causing structural damage and cell death. Conclusions: These findings suggest that S. costus-derived AgNPs are promising natural, biodegradable agents for various biological applications and potential new therapeutic agents, necessitating further research to explore their mechanisms and applications. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

10 pages, 2430 KiB  
Article
Identification and Characterization of a Novel Prophage Lysin against Streptococcus dysgalactiae
by Linan Xu, Xingshuai Li, Xiangpeng Yang, Yuzhong Zhao, Jianrui Niu, Shijin Jiang, Junfei Ma and Xinglin Zhang
Molecules 2024, 29(14), 3411; https://doi.org/10.3390/molecules29143411 - 20 Jul 2024
Viewed by 1223
Abstract
Streptococcus dysgalactiae infection can cause bovine mastitis and lead to huge economic losses for the dairy industry. The abuse of antibiotics has resulted in growing drug resistance of S. dysgalactiae, which causes hard-to-treat infections. Bacteriophage lysin, as a novel antibacterial agent, has great [...] Read more.
Streptococcus dysgalactiae infection can cause bovine mastitis and lead to huge economic losses for the dairy industry. The abuse of antibiotics has resulted in growing drug resistance of S. dysgalactiae, which causes hard-to-treat infections. Bacteriophage lysin, as a novel antibacterial agent, has great potential for application against drug-resistant gram-positive bacteria. However, few studies have been conducted on the prophage lysin of S. dysgalactiae. In this study, we mined a novel prophage lysin, named Lys1644, from a clinical S. dysgalactiae isolate by genome sequencing and bioinformatic analysis. Lys1644 was expressed and purified, and the lytic activity, antibacterial spectrum, optimal pH and temperature, lytic activity in milk in vitro, and synergistic bacteriostasis with antibiotics were assessed. The Lys1644 prophage lysin showed high bacteriolysis activity specifically on S. dysgalactiae, which resulted in CFU 100-fold reduction in milk. Moreover, Lys1644 maintained high activity over a wide pH range (pH 5–10) and a wide temperature range (4–42 °C). Synergistic bacteriostatic experiments showed that the combination of low-dose Lys1644 (50 μg/mL) with a subinhibitory concentration of aminoglycoside antibiotics (kanamycin or spectinomycin) can completely inhibit bacterial growth, suggesting that the combination of Lys1644 and antibiotics could be an effective therapeutic strategy against S. dysgalactiae infection. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

9 pages, 543 KiB  
Article
Phytochemistry, Anti-Tyrosinase, and Anti-Diabetes Studies of Extracts and Chemical Constituents of Dicerothamnus rhinocerotis Leaves
by Olusola Ifedolapo Watti, Masande Yalo, Rajan Sharma, Masixole Makhaba, Ahmed A. Hussein and Wilfred T. Mabusela
Chemistry 2024, 6(4), 546-554; https://doi.org/10.3390/chemistry6040032 - 2 Jul 2024
Viewed by 1343
Abstract
Dicerothamnus rhinocerotis (L.f.) Koekemoer, also known as rhinoceros bush and previously called Elytropappus rhinocerotis (L.f.) Less., is from the Asteraceae plant family. The plant is traditionally used to treat indigestion, stomach ulcers, influenza, and diarrhea. This study was aimed at investigating the phytochemistry, [...] Read more.
Dicerothamnus rhinocerotis (L.f.) Koekemoer, also known as rhinoceros bush and previously called Elytropappus rhinocerotis (L.f.) Less., is from the Asteraceae plant family. The plant is traditionally used to treat indigestion, stomach ulcers, influenza, and diarrhea. This study was aimed at investigating the phytochemistry, anti-glucosidase, anti-amylase, and anti-tyrosinase effects of D. rhinocerotis as research in this area is limited. The air-dried plant materials were macerated in 80% methanol (MeOH) and fractionated between hexane, dichloromethane (DCM), ethyl acetate (EtOAc), and butanol (BuOH). Column chromatography on silica gel was employed for the isolation of the compounds. A total of six compounds (16) were isolated from the fractions viz. acacetin (1), 15-hydroxy-cis-clerodan-3-ene-18-oic-acid (2), acacetin-7-glucoside (3), pinitol (4), apigenin (5), and β-sitosterol-3-O-glycoside (6). Compounds 24 and 6 are reported for the first time from this plant. Among the different fractions, the BuOH and EtOAc fractions had strong tyrosinase inhibitory activities with IC50 values of 13.7 ± 1.71 and 11.6 ± 2.68 µg/mL, respectively, while among the isolated compounds, apigenin (5) had the strongest inhibitory activity, with an IC50 of 14.58 µM, which competes favorably with Kojic acid (17.26 µM). The anti-glucosidase assay showed good activity in three of the fractions and compound 5, while the anti-amylase assays did not show significant inhibition activity. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Graphical abstract

31 pages, 3154 KiB  
Review
Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management
by Shehwaz Anwar, Faris Alrumaihi, Tarique Sarwar, Ali Yousif Babiker, Amjad Ali Khan, Sitrarasu Vijaya Prabhu and Arshad Husain Rahmani
Biomolecules 2024, 14(6), 697; https://doi.org/10.3390/biom14060697 - 14 Jun 2024
Cited by 22 | Viewed by 8977
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, [...] Read more.
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme’s stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase’s stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

19 pages, 4015 KiB  
Article
In Vitro and Molecular Docking Evaluation of the Anticholinesterase and Antidiabetic Effects of Compounds from Terminalia macroptera Guill. & Perr. (Combretaceae)
by Romeo Toko Feunaing, Alfred Ngenge Tamfu, Abel Joel Yaya Gbaweng, Selcuk Kucukaydin, Joseph Tchamgoue, Alain Meli Lannang, Bruno Ndjakou Lenta, Simeon Fogue Kouam, Mehmet Emin Duru, El Hassane Anouar, Emmanuel Talla and Rodica Mihaela Dinica
Molecules 2024, 29(11), 2456; https://doi.org/10.3390/molecules29112456 - 23 May 2024
Cited by 2 | Viewed by 1172
Abstract
Alzheimer’s disease (AD) and diabetes are non-communicable diseases with global impacts. Inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are suitable therapies for AD, while α-amylase and α-glucosidase inhibitors are employed as antidiabetic agents. Compounds were isolated from the medicinal plant Terminalia macroptera and [...] Read more.
Alzheimer’s disease (AD) and diabetes are non-communicable diseases with global impacts. Inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are suitable therapies for AD, while α-amylase and α-glucosidase inhibitors are employed as antidiabetic agents. Compounds were isolated from the medicinal plant Terminalia macroptera and evaluated for their AChE, BChE, α-amylase, and α-glucosidase inhibitions. From 1H and 13C NMR data, the compounds were identified as 3,3′-di-O-methyl ellagic acid (1), 3,3′,4′-tri-O-methyl ellagic acid-4-O-β-D-xylopyranoside (2), 3,3′,4′-tri-O-methyl ellagic acid-4-O-β-D-glucopyranoside (3), 3,3′-di-O-methyl ellagic acid-4-O-β-D-glucopyranoside (4), myricetin-3-O-rhamnoside (5), shikimic acid (6), arjungenin (7), terminolic acid (8), 24-deoxysericoside (9), arjunglucoside I (10), and chebuloside II (11). The derivatives of ellagic acid (14) showed moderate to good inhibition of cholinesterases, with the most potent being 3,3′-di-O-methyl ellagic acid, with IC50 values of 46.77 ± 0.90 µg/mL and 50.48 ± 1.10 µg/mL against AChE and BChE, respectively. The compounds exhibited potential inhibition of α-amylase and α-glucosidase, especially the phenolic compounds (15). Myricetin-3-O-rhamnoside had the highest α-amylase inhibition with an IC50 value of 65.17 ± 0.43 µg/mL compared to acarbose with an IC50 value of 32.25 ± 0.36 µg/mL. Two compounds, 3,3′-di-O-methyl ellagic acid (IC50 = 74.18 ± 0.29 µg/mL) and myricetin-3-O-rhamnoside (IC50 = 69.02 ± 0.65 µg/mL), were more active than the standard acarbose (IC50 = 87.70 ± 0.68 µg/mL) in the α-glucosidase assay. For α-glucosidase and α-amylase, the molecular docking results for 1–11 reveal that these compounds may fit well into the binding sites of the target enzymes, establishing stable complexes with negative binding energies in the range of −4.03 to −10.20 kcalmol−1. Though not all the compounds showed binding affinities with cholinesterases, some had negative binding energies, indicating that the inhibition was thermodynamically favorable. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

9 pages, 1517 KiB  
Article
Pre-Steady-State and Steady-State Kinetic Analysis of Butyrylcholinesterase-Catalyzed Hydrolysis of Mirabegron, an Arylacylamide Drug
by Zukhra Shaihutdinova and Patrick Masson
Molecules 2024, 29(10), 2356; https://doi.org/10.3390/molecules29102356 - 16 May 2024
Viewed by 1080
Abstract
The β-adrenergic drug Mirabegron, a drug initially used for the treatment of an overactive bladder, has new potential indications and is hydrolyzed by butyrylcholinesterase (BChE). This compound is one of the only arylacylamide substrates to be catabolized by BChE. A steady-state kinetic analysis [...] Read more.
The β-adrenergic drug Mirabegron, a drug initially used for the treatment of an overactive bladder, has new potential indications and is hydrolyzed by butyrylcholinesterase (BChE). This compound is one of the only arylacylamide substrates to be catabolized by BChE. A steady-state kinetic analysis at 25 °C and pH 7.0 showed that the enzyme behavior is Michaelian with this substrate and displays a long pre-steady-state phase characterized by a burst. The induction time, τ, increased with substrate concentration (τ ≈ 18 min at maximum velocity). The kinetic behavior was interpreted in terms of hysteretic behavior, resulting from a slow equilibrium between two enzyme active forms, E and E′. The pre-steady-state phase with the highest activity corresponds to action of the E form, and the steady state corresponds to action of the E′ form. The catalytic parameters were determined as kcat = 7.3 min−1 and Km = 23.5 μM for the initial (burst) form E, and kcat = 1.6 min−1 and Km = 3.9 μM for the final form E′. Thus, the higher affinity of E′ for Mirabegron triggers the slow enzyme state equilibrium toward a slow steady state. Despite the complexity of the reaction mechanism of Mirabegron with BChE, slow BChE-catalyzed degradation of Mirabegron in blood should have no impact on the pharmacological activities of this drug. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

Back to TopTop