Sulfide, Sulfoxide, and Sulfone Derivatives of Usnic Acid as Inhibitors of Human TDP1 and TDP2 Enzymes
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Procedure for Synthesis of Sulfides 8a-m
2.1.2. General Procedure for Synthesis of Sulfoxides 9b-f, j, k and m
2.1.3. General Procedure for Synthesis of Sulfones 12a-e, g, h, k and m
2.2. Biology
2.2.1. Real-Time Detection of TDP1 Activity
2.2.2. Gel-Based TDP2 Activity Assay
2.2.3. MTT Test
2.2.4. Alkaline Comet Assay
2.3. Molecular Modeling and Chemical Space
3. Results and Discussion
3.1. Chemistry
3.1.1. Sulfides
3.1.2. Sulfoxides
3.1.3. Sulfones
3.2. Biology
3.2.1. TDP1 and TDP2 Activity Inhibition
3.2.2. Cell Viability and Synergy with Topotecan
3.2.3. Comet Assay Results
3.3. Molecular Modelling
3.4. Chemical Space
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pommier, Y.; Huang, S.Y.; Gao, R.; Das, B.B.; Murai, J.; Marchand, C. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair 2014, 19, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Alagoz, M.; Gilbert, D.C.; El-Khamisy, S.; Chalmers, A.J. DNA repair and resistance to topoisomerase I inhibitors: Mechanisms, biomarkers and therapeutic targets. Curr. Med. Chem. 2012, 19, 3874–3885. [Google Scholar] [CrossRef] [PubMed]
- Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr.; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA 2002, 99, 15387–15392. [Google Scholar] [CrossRef] [PubMed]
- Fam, H.K.; Walton, C.; Mitra, S.A.; Chowdhury, M.; Osborne, N.; Choi, K.; Sun, G.; Wong, P.C.; O’Sullivan, M.J.; Turashvili, G.; et al. TDP1 and PARP1 deficiency are cytotoxic to rhabdomyosarcoma cells. Mol. Cancer Res. 2013, 11, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Cortés-Ledesma, F.; El Khamisy, S.F.; Caldecott, K.W. TDP2/TTRAP is the major 5′-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage. J. Biol. Chem. 2011, 286, 403–409. [Google Scholar] [CrossRef]
- Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 2009, 9, 338–350. [Google Scholar] [CrossRef]
- Kont, Y.S.; Dutta, A.; Mallisetty, A.; Mathew, J.; Minas, T.; Kraus, C.; Dhopeshwarkar, P.; Kallakury, B.; Mitra, S.; Üren, A.; et al. Depletion of tyrosyl DNA phosphodiesterase 2 activity enhances etoposide-mediated double-strand break formation and cell killing. DNA Repair 2016, 43, 38–47. [Google Scholar] [CrossRef]
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef]
- Talukdar, A.; Kundu, B.; Sarkar, D.; Goon, S.; Mondal, M.A. Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur. J. Med. Chem. 2022, 236, 114304. [Google Scholar] [CrossRef]
- Vann, K.R.; Oviatt, A.A.; Osheroff, N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021, 60, 1630–1641. [Google Scholar] [CrossRef]
- Kawale, A.S.; Povirk, L.F. Tyrosyl-DNA phosphodiesterases: Rescuing the genome from the risks of relaxation. Nucleic Acids Res. 2018, 46, 520–537. [Google Scholar] [CrossRef] [PubMed]
- Zakharenko, A.L.; Luzina, O.A.; Chepanova, A.A.; Dyrkheeva, N.S.; Salakhutdinov, N.F.; Lavrik, O.I. Natural Products and Their Derivatives as Inhibitors of the DNA Repair Enzyme Tyrosyl-DNA Phosphodiesterase 1. Int. J. Mol. Sci. 2023, 24, 5781. [Google Scholar] [CrossRef] [PubMed]
- Comeaux, E.Q.; VanWaardenburg, R.C.A.M. Tyrosyl-DNA Phosphodiesterase I Resolves Both Naturally and Chemically Induced DNA Adducts and Its Potential as a Therapeutic Target. Drug Metab. Rev. 2014, 46, 494–507. [Google Scholar] [CrossRef]
- Murai, J.; Huang, S.Y.; Das, B.B.; Dexheimer, T.S.; Takeda, S.; Pommier, Y. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylation in vertebrate cells. J. Biol. Chem. 2012, 287, 12848–12857. [Google Scholar] [CrossRef]
- Zeng, Z.; Sharma, A.; Ju, L.; Murai, J.; Umans, L.; Vermeire, L.; Pommier, Y.; Takeda, S.; Huylebroeck, D.; Caldecott, K.W.; et al. TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1. Nucleic Acids Res. 2012, 40, 8371–8380. [Google Scholar] [CrossRef]
- Maede, Y.; Shimizu, H.; Fukushima, T.; Kogame, T.; Nakamura, T.; Miki, T.; Takeda, S.; Pommier, Y.; Murai, J. Differential and common DNA repair pathways for topoisomerase I- and II-targeted drugs in a genetic DT40 repair cell screen panel. Mol. Cancer Ther. 2014, 13, 214–220. [Google Scholar] [CrossRef]
- Conda-Sheridan, M.; Reddy, P.V.; Morrell, A.; Cobb, B.T.; Marchand, C.; Agama, K.; Chergui, A.; Renaud, A.; Stephen, A.G.; Bindu, L.K.; et al. Synthesis and biological evaluation of indenoisoquinolines that inhibit both tyrosyl-DNA phosphodiesterase I (TDP1) and topoisomerase I (TOP1). J. Med. Chem. 2013, 56, 182–200. [Google Scholar] [CrossRef]
- Lv, P.C.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. Design, synthesis, and biological evaluation of O-2-modified indenoisoquinolines as dual topoisomerase I-tyrosyl-DNA phosphodiesterase I inhibitors. J. Med. Chem. 2014, 57, 4324–4336. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Abdelmalak, M.; Marchand, C.; Agama, K.; Pommier, Y.; Cushman, M. Synthesis and biological evaluation of nitrated 7-, 8-, 9-, and 10-hydroxyindenoisoquinolines as potential dual topoisomerase I (Top1)-tyrosyl-DNA phosphodiesterase I (TDP1) inhibitors. J. Med. Chem. 2015, 58, 3188–3208. [Google Scholar] [CrossRef]
- Wang, P.; Elsayed, M.S.A.; Plescia, C.B.; Ravji, A.; Redon, C.E.; Kiselev, E.; Marchand, C.; Zeleznik, O.; Agama, K.; Pommier, Y.; et al. Synthesis and Biological Evaluation of the First Triple Inhibitors of Human Topoisomerase 1, Tyrosyl-DNA Phosphodiesterase 1 (TDP1), and Tyrosyl-DNA Phosphodiesterase 2 (TDP2). J. Med. Chem. 2017, 60, 3275–3288. [Google Scholar] [CrossRef]
- Sirivolu, V.R.; Vernekar, S.K.; Marchand, C.; Naumova, A.; Chergui, A.; Renaud, A.; Stephen, A.G.; Chen, F.; Sham, Y.Y.; Pommier, Y.; et al. 5-Arylidenethioxothiazolidinones as inhibitors of tyrosyl-DNA phosphodiesterase I. J. Med. Chem. 2012, 55, 8671–8684. [Google Scholar] [CrossRef] [PubMed]
- Filimonov, A.S.; Chepanova, A.A.; Mikhailova, M.A.; Luzina, O.A.; Zakharenko, A.L.; Salakhutdinov, N.S.; Lavrik, O.I. Synthesis of the new derivatives of usnic acid and study of their inhibiting activity against tyrosyl-DNA-phosphodiesterases 1 and 2. Chem. Sustain. Dev. 2023, 31, 698–706. [Google Scholar] [CrossRef]
- Dyrkheeva, N.S.; Filimonov, A.S.; Luzina, O.A.; Orlova, K.A.; Chernyshova, I.A.; Kornienko, T.E.; Malakhova, A.A.; Medvedev, S.P.; Zakharenko, A.L.; Ilina, E.S.; et al. New Hybrid Compounds Combining Fragments of Usnic Acid and Thioether Are Inhibitors of Human Enzymes TDP1, TDP2 and PARP1. Int. J. Mol. Sci. 2021, 22, 11336. [Google Scholar] [CrossRef]
- Sokolov, D.N.; Luzina, O.A.; Salakhutdinov, N.F. Synthesis of Sulfones and Sulfoxides Based on (+)-usnic Acid. Chem. Nat. Comp. 2018, 54, 46–49. [Google Scholar] [CrossRef]
- Mosmann, T.J. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Zhao, X.Z.; Kiselev, E.; Lountos, G.T.; Wang, W.; Tropea, J.E.; Needle, D.; Hilimire, T.A.; Schneekloth, J.S.; Waugh, D.S.; Pommier, Y.; et al. Small Molecule Microarray Identifies Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 that Simultaneously Access the Catalytic Pocket and Two Substrate Binding Sites. Chem. Sci. 2021, 12, 3876–3884. [Google Scholar] [CrossRef]
- Hornyak, P.; Askwith, T.; Walker, S.; Komulainen, E.; Paradowski, M.; Pennicott, L.E.; Bartlett, E.J.; Brissett, N.C.; Raoof, A.; Watson, M.; et al. Mode of Action of DNA-Competitive Small Molecule Inhibitors of Tyrosyl DNA Phosphodiesterase 2. Biochem. J. 2016, 473, 1869–1879. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nuc. Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the Worldwide Protein Data Bank. Nat. Struct. Biol. 2003, 10, 980. [Google Scholar] [CrossRef]
- Scigress. Vers. F.Q 3.4.4, Kyushu Systems Ltd., 2008–2023.
- Lii, J.H.; Allinger, N.L. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2. Vibrational Frequencies and Thermodynamics. J. Am. Chem. Soc. 1989, 111, 8566–8575. [Google Scholar] [CrossRef]
- Lii, J.H.; Allinger, N.L. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The Van Der Waals’ Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons. J. Am. Chem. Soc. 1989, 111, 8576–8582. [Google Scholar] [CrossRef]
- Gotō, H.; Ōsawa, E. An Efficient Algorithm for Searching Low-Energy Conformers of Cyclic and Acyclic Molecules. J. Chem. Soc. Perkin Trans. 2 1993, 2, 187–198. [Google Scholar] [CrossRef]
- Jones, G.; Willet, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef]
- Eldridge, M.D.; Murray, C.; Auton, T.R.; Paolini, G.V.; Mee, P.M. Empirical Scoring Functions: I. The Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes. J. Comp. Aid. Mol. Des. 1997, 11, 425–445. [Google Scholar] [CrossRef]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved Protein-Ligand Docking using GOLD. Proteins 2003, 52, 609–623. [Google Scholar] [CrossRef]
- Korb, O.; Stützle, T.; Exner, T.E. Empirical Scoring Functions for Advanced Protein−Ligand Docking with PLANTS. J. Chem. Inf. Model. 2009, 49, 84–96. [Google Scholar] [CrossRef]
- Mooij, W.T.M.; Verdonk, M.L. General and Targeted Statistical Potentials for Protein–ligand Interactions. Proteins 2005, 61, 272–287. [Google Scholar] [CrossRef]
- QikProp, version 6.2; Schrödinger: New York, NY, USA, 2021.
- Ioakimidis, L.; Thoukydidis, L.; Naeem, S.; Mirza, A.; Reynisson, J. Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values. QSAR Comb. Sci. 2008, 27, 445–456. [Google Scholar] [CrossRef]
- Eurtivong, C.; Reynisson, J. The Development of a Weighted Index to Optimise Compound Libraries for High Throughput Screening. Mol. Inf. 2018, 37, 1800068. [Google Scholar] [CrossRef]
- Filimonov, A.S.; Zakharenko, A.L.; Chepanova, A.A.; Luzina, O.A.; Dyrkheeva, N.S.; Salakhutdinov, N.F.; Lavrik, O.I. Study of the ability of a new usnic acid derivative to inhibit TDP1 and TDP2, and sensitise the effect of antitumour drugs. Chem. Sustain. Dev. 2023, 31, 707–714. [Google Scholar] [CrossRef]
- Chernyshova, I.A.; Zakharenko, A.L.; Kurochkin, N.N.; Dyrkheeva, N.S.; Kornienko, T.E.; Popova, N.A.; Nikolin, V.P.; Ilina, E.S.; Zharkov, T.D.; Kupryushkin, M.S.; et al. The Lipophilic Purine Nucleoside-Tdp1 Inhibitor-Enhances DNA Damage Induced by Topotecan In Vitro and Potentiates the Antitumor Effect of Topotecan In Vivo. Molecules 2022, 28, 323. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-C. The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy 2018, 7, 49–50. [Google Scholar] [CrossRef]
- Speit, G.; Hartmann, A. The comet assay: A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol. Biol. 2006, 314, 275–286. [Google Scholar] [CrossRef]
- Dyrkheeva, N.S.; Filimonov, A.S.; Luzina, O.A.; Zakharenko, A.L.; Ilina, E.S.; Malakhova, A.A.; Medvedev, S.P.; Reynisson, J.; Volcho, K.P.; Zakian, S.M.; et al. New Hybrid Compounds Combining Fragments of Usnic Acid and Monoterpenoids for Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibition. Biomolecules 2021, 11, 973. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive Evaluation of Ten Docking Programs on a Diverse Set of Protein–ligand Complexes: The Prediction Accuracy of Sampling Power and Scoring Power. Phys. Chem. Chem. Phys. 2016, 18, 12964–12975. [Google Scholar] [CrossRef]
- Bissantz, C.; Folkers, G.; Rognan, D. Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different Docking/Scoring Combinations. J. Med. Chem. 2000, 43, 4759–4767. [Google Scholar] [CrossRef]
- Zakharenko, A.; Luzina, O.; Koval, O.; Nilov, D.; Gushchina, I.; Dyrkheeva, N.; Švedas, V.; Salakhutdinov, N.; Lavrik, O. Tyrosyl-DNA Phosphodiesterase 1 Inhibitors: Usnic Acid Enamines Enhance the Cytotoxic Effect of Camptothecin. J. Nat. Prod. 2016, 79, 2961–2967. [Google Scholar] [CrossRef]
- Zhu, F.; Logan, G.; Reynisson, J. Wine Compounds as a Source for HTS Screening Collections. A Feasibility Study. Mol. Inf. 2012, 31, 847–855. [Google Scholar] [CrossRef]
- Munkuev, A.A.; Zakharenko, A.L.; Kornienko, T.E.; Dyrkheeva, N.S.; Ilina, E.S.; Suslov, E.V.; Issa, F.; Achara, C.; Reynisson, J.; Volcho, K.P.; et al. Synthesis of Adamantane-Monoterpene Conjugates with 1,3,4-Thiadiazol-2(3H)-Imine Linker and Evaluation of their Inhibitory Activity Against TDP1. Med. Chem. Res. 2024, 33, 324–335. [Google Scholar] [CrossRef]
9b | 9c | 9d | 9e | 9f | 9j | 9k | 9m | |
---|---|---|---|---|---|---|---|---|
Yield | 40% | 65% | 50% | 0% | 0% | 29% | 48% | 53% |
de | 50% | 0% | 10% | - | - | 0% | 5% | 6% |
Group | Element of structure (R) | Sulfide (8) | Sulfoxide (9) | Sulfone (12) |
---|---|---|---|---|
a | 6.6 ± 0.8 >1000 | not obtained | >50 >1000 | |
b | 2.2 ± 0.5 165 ± 5 | 1.4 ± 0.2 159 ± 41 | 20 ± 4 >1000 | |
c | 1.8 ± 0.5 380 ± 60 | 15 ± 4 150 ± 10 | >50 421 ± 62 | |
d | 1.7 ± 0.6 >1000 | 2.1 ± 0.2 >1000 | 21 ± 5 >1000 | |
e | 2.4 ± 1.0 370 ± 30 | 4 ± 2 >1000 | not obtained | |
f | 0.33 ± 0.09 138 ± 25 | 5.0 ± 2.1 >1000 | not obtained | |
g | 0.4 ± 0.1 313 ± 8 | not obtained | 3.7 ± 1.9 332 ± 35 | |
h | 21 ± 5 >1000 | not obtained | 24 ± 3 >1000 | |
i | 25.2 ± 6.5 Nd * | not obtained | not obtained | |
j | 4.3 ± 0.5 245 ± 40 | 21 + 5 >1000 | not obtained | |
k | 11.9 ± 0.4 >1000 | 25 + 4 >1000 | 2 ± 2 228 ± 43 | |
l | 1.5 ± 0.2 348 ± 74 | not obtained | not obtained | |
m | 16.9 ± 2.4 >1000 | 14.8 + 0.9 >1000 | >50 >1000 |
Group (R) | Cell Lines | Sulfide (8) | Sulfoxide (9) | Sulfone (12) |
---|---|---|---|---|
b | HEK293A | 10 ± 2 | >100 | >100 |
MRC5 | 13.4 ± 0.2 | >100 | >100 | |
HeLa | 2.5 ± 0.5 | 27 ± 2 | >100 | |
A549 | 27.1 ± 9.9 | 11.7 ± 3.6 | 5.3 ± 0.1 | |
c | HEK293A | 10 ± 2 | 6.8 ± 1.5 | 5.1 ± 0.1 |
MRC5 | 8 ± 4 | 17.3 ± 5.1 | 8.8 ± 2.1 | |
HeLa | 7 ± 1 | 14.5 ± 2.7 | 11.9 ± 1.5 | |
A549 | 40.5 ± 4.9 | 19.4 ± 4.4 | 5.8 ± 0.7 | |
f | HEK293A | >100 | >100 | Not obtained |
MRC5 | >100 | >100 | ||
HeLa | >100 | >100 | ||
A549 | >100 | >100 | ||
g | HEK293A | >100 | Not obtained | >100 |
MRC5 | >100 | >100 | ||
HeLa | >100 | 36.5 ± 5.7 | ||
A549 | 10.8 ± 2.6 | 30.1 ± 4.4 | ||
k | HEK293A | >100 | >100 | >100 |
MRC5 | >100 | >100 | >100 | |
HeLa | 10.1 ± 0.2 | 32.1 ± 0.1 | >100 | |
A549 | 12.1 ± 0.3 | 42.3 ± 2.9 | 62.1 ± 0.4 |
Group | Sulfide (8) | Sulfoxide (9) | Sulfone (12) |
---|---|---|---|
b | 0.6 ± 0.3 | 1.9 ± 1.3 | 0.6 ± 0.2 |
f | 0.8 ± 0.1 | 0.6 ± 0.1 | Not obtained |
g | 1.5 ± 0.3 | Not obtained | 0.6 ± 0.2 |
k | 0.6 ± 0.1 | 0.6 ± 0.2 | 1.0 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filimonov, A.S.; Mikhailova, M.A.; Dyrkheeva, N.S.; Chernyshova, I.A.; Kornienko, T.E.; Naumenko, K.A.; Anarbaev, R.O.; Nefedov, A.A.; Achara, C.; Curtis, A.D.M.; et al. Sulfide, Sulfoxide, and Sulfone Derivatives of Usnic Acid as Inhibitors of Human TDP1 and TDP2 Enzymes. Chemistry 2024, 6, 1658-1679. https://doi.org/10.3390/chemistry6060101
Filimonov AS, Mikhailova MA, Dyrkheeva NS, Chernyshova IA, Kornienko TE, Naumenko KA, Anarbaev RO, Nefedov AA, Achara C, Curtis ADM, et al. Sulfide, Sulfoxide, and Sulfone Derivatives of Usnic Acid as Inhibitors of Human TDP1 and TDP2 Enzymes. Chemistry. 2024; 6(6):1658-1679. https://doi.org/10.3390/chemistry6060101
Chicago/Turabian StyleFilimonov, Aleksandr S., Marina A. Mikhailova, Nadezhda S. Dyrkheeva, Irina A. Chernyshova, Tatyana E. Kornienko, Konstantin A. Naumenko, Rashid O. Anarbaev, Andrey A. Nefedov, Chigozie Achara, Anthony D. M. Curtis, and et al. 2024. "Sulfide, Sulfoxide, and Sulfone Derivatives of Usnic Acid as Inhibitors of Human TDP1 and TDP2 Enzymes" Chemistry 6, no. 6: 1658-1679. https://doi.org/10.3390/chemistry6060101
APA StyleFilimonov, A. S., Mikhailova, M. A., Dyrkheeva, N. S., Chernyshova, I. A., Kornienko, T. E., Naumenko, K. A., Anarbaev, R. O., Nefedov, A. A., Achara, C., Curtis, A. D. M., Luzina, O. A., Volcho, K. P., Salakhutdinov, N. F., Lavrik, O. I., & Reynisson, J. (2024). Sulfide, Sulfoxide, and Sulfone Derivatives of Usnic Acid as Inhibitors of Human TDP1 and TDP2 Enzymes. Chemistry, 6(6), 1658-1679. https://doi.org/10.3390/chemistry6060101