Nanotherapy for Cancer and Biological Activities of Green Synthesized AgNPs Using Aqueous Saussurea costus Leaves and Roots Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructural and Optical Studies
2.2. Biological Studies
2.2.1. Antioxidant Activity of AgNPs
2.2.2. Enzyme Inhibition of AgNPs
2.2.3. Anti-Tumoral Effect of AgNPs
2.2.4. Antimicrobial Effect of AgNPs
3. Material and Methods
3.1. Green Synthesis and Characterization of AgNPs
3.2. Antioxidant Activity
3.3. Antimicrobial Activity
3.4. Cell Culture
3.5. Cyclooxygenase and Lipoxygenase Inhibition Assays
3.6. Inhibition of sPLA2 Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Microbial nanoparticle production. In Nanobiotechnology; Niemeyer, C.M., Mirkin, C.A., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp. 126–135. [Google Scholar]
- Bhattacharya, D.; Rajinder, G. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 2005, 25, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart Res. 2008, 10, 507–517. [Google Scholar] [CrossRef]
- Divya, T.; RAJ Yamuna, K.; Ayisha, S.; Joseph, P. Synthesis of silver phyto nanoparticles and their antibacterial efficacy. Dig. J. Nanomat. Biostruct. 2010, 5, 185–189. [Google Scholar]
- Karim, N.; Liu, S.; Rashwan, A.K.; Xie, J.; Mo, J.; Osman, A.I.; Rooney, D.W.; Chen, W. Green synthesis of nanolipo-fbersomes using Nutriose® FB 06 for delphinidin-3-O-sambubioside delivery: Characterization, physicochemical properties, and application. Int. J. Biol. Macromol. 2023, 247, 125839. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Rashwan, A.K.; Osman, A.I.; Abd El-Monaem, E.M.; Elgarahy, A.M.; Eltaweil, A.S.; Omar, M.; Li, Y.; Mehanni, A.-H.E.; Chen, W.; et al. Synthesis and potential applications of cyclodextrinbased metal-organic frameworks: A review. Environ. Chem. Lett. 2023, 21, 447–477. [Google Scholar] [CrossRef] [PubMed]
- Monga, Y.; Kumar, P.; Sharma, R.K.; Filip, J.; Varma, R.S.; Zbořil, R.; Gawande, M.B. Sustainable synthesis of nanoscale zerovalent iron particles for environmental remediation. ChemSusChem 2020, 13, 3288–3305. [Google Scholar] [CrossRef] [PubMed]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Hanafy, N.A.N.; Li, B.; Mehanni, A.-H.E.; Taha, E.M.; Chen, W. An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Crit. Rev. Food Sci. Nutr. 2023, 63, 9731–9751. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Zhang, Y.; Farghali, M.; Rashwan, A.K.; Eltaweil, A.S.; Abd El-Monaem, E.M.; Mohamed, I.M.A.; Badr, M.M.; Ihara, I.; Rooney, D.W.; et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ. Chem. Lett. 2024, 22, 841–887. [Google Scholar] [CrossRef]
- Abd El-Aziz, A.R.M.; Gurusamy, A.; Alothman, M.R.; Shehata, S.M.; Hisham, S.M.; Alobathani, A.A. Silver nanoparticles biosynthesis using Saussurea costus root aqueous extract and catalytic degradation efficacy of safranin dye. Saudi J. Biol. Sci. 2021, 28, 1093–1099. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Bai, H.; Osman, A.I.; Eltohamy, K.M.; Chen, Z.; Younis, H.A.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.-S. Recycling food and agriculture by-products to mitigate climate change: A review. Environ. Chem. Lett. 2023, 21, 3351–3375. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Xie, J.; Cui, H.; Mozafari, M.R.; Chen, W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit. Rev. Food. Sci. Nutr. 2023, 63, 3362–3385. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Ma, Z.; Chen, L.; Li, H.; Jiang, C.; Zhang, W. Biosynthesis of gold nanoparticles, characterization and their loading with zonisamide as a novel drug delivery system for the treatment of acute spinal cord injury. J. Photochem. Photobiol. B 2019, 190, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Owoseni-Fagbenro, K.A.; Saifullahm, S.; Imran, M.; Perveen, S.; Rao, K.; Fasina, T.M.; Olasupo, I.A.; Adams, L.A.; Ali, I.; Shah, M.R. Egg proteins stabilized green silver nanoparticles as delivery system for hesperidin enhanced bactericidal potential against resistant S. aureus. J. Drug. Deliv. Sci. Technol. 2019, 50, 347–354. [Google Scholar] [CrossRef]
- Devanesan, S.; AlSalhi, M.S. Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. Int. J. Nanomed. 2021, 16, 3343–3356. [Google Scholar] [CrossRef]
- Yusefi, M.; Shameli, K.; Yee, O.S.; Teow, S.-Y.; Hedayatnasab, Z.; Jahangirian, H.; Webster, T.J.; Kuča, K. Green synthesis of Fe3O4 nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. Int. J. Nanomed. 2021, 16, 2515–2532. [Google Scholar] [CrossRef]
- Al-Olayan, E.; Almushawah, J.; Alrsheed, H.; Dawoud, T.M.; Abdel-Gaber, R. Potential role of biosynthesized silver nanoparticles from Aaronsohnia factorovskyi on Hymenolepis nana in BALB/c mice. Arq. Bras. Med. Vet. Zootec. 2023, 75, 849–856. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Ashkar, M.A.; Babu, A.; Joseph, R.; Kutti Rani, S.; Vasimalai, N. Ecofriendly synthesis of silver nanoparticles using Radish microgreens extract and their potential photocatalytic degradation of toxic crystal violet and pyronin Y dyes and antibacterial studies Inorg. Chem. Commun. 2023, 156, 111225. [Google Scholar] [CrossRef]
- Eswaran, S.G.; Narayan, H.; Vasimalai, N. Reductive photocatalytic degradation of toxic aniline blue dye using green synthesized banyan aerial root extract derived silver nanoparticles. Biocatal. Agric. Biotechnol. 2021, 36, 102140. [Google Scholar] [CrossRef]
- Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 2016, 45, 1272–1291. [Google Scholar] [CrossRef]
- Jain, A.S.; Pawar, P.S.; Sarkar, A.; Junnuthula, V.; Dyawanapelly, S. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. Int. J. Mol. Sci. 2021, 22, 11993. [Google Scholar] [CrossRef] [PubMed]
- Ankita, M.; Ashish, T.; Srikanta, M.; Subhendu, C.; Susnata, S.M.; Arijit, M.; Suddhasattya, D.; Prakash, C. Silver nanoparticle for biomedical applications: A review. Hybrid. Adv. 2024, 6, 100184–100199. [Google Scholar]
- AlMasoud, N.; Alomar, T.S.; Awad, M.A.; El-Tohamy, M.F.; Soliman, D.A. Multifunctional green silver nanoparticles in pharmaceutical and biomedical applications. Green Chem. Lett. Rev. 2020, 13, 316–327. [Google Scholar] [CrossRef]
- Abdallah, E.M.; Qureshi, K.A.; Ali, A.M.H.; Elhassan, G.O. Evaluation of some biological properties of Saussurea costus crude root extract. Biosci. Biotech. Res. Comm. 2017, 10, 601–611. [Google Scholar] [CrossRef]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K. Saussurea costus: Botanical, chemical and pharmacological review of an ayurvedic medicinal plant. J. Ethnopharmacol. 2007, 110, 379–390. [Google Scholar] [CrossRef]
- Amina, M.; Al Musayeib, N.M.; Alarfaj, N.A.; El-Tohamy, M.F.; Oraby, H.F.; Al Hamoud, G.A.; Bukhari, S.I.; Moubayed, N.M.S. Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. PLoS ONE 2020, 15, e0237567. [Google Scholar] [CrossRef]
- Taha, A. Microwave Sample Preparation System Assisted Biogenic Synthesis of Copper Oxide Nanoplates Using Saussurea costus Root Aqueous Extract and Its Environmental Catalytic Activity. Catalysts 2022, 12, 1115. [Google Scholar] [CrossRef]
- Byambaragchaa, M.; de la Cruz, J.; Yang, S.H.; Hwang, S.G. Anti-metastatic potential of ethanol extract of Saussurea involucrata against hepatic cancer in vitro. Asian Pac. J. Cancer Prev. APJCP 2013, 14, 5397–5402. [Google Scholar] [CrossRef]
- Mujammami, M. Clinical significance of Saussurea costus in thyroid treatment. Saudi Med. J. 2020, 41, 1047–1053. [Google Scholar] [CrossRef]
- Al-Saggaf, M.S.; Tayel, A.A.; Ghobashy, M.O.; Alotaibi, M.A.; Alghuthaymi, M.A.; Moussa, S.H. Phytosynthesis of selenium nanoparticles using the costus extract for bactericidal application against foodbore pathogens. Green Process. Synth. 2020, 9, 477–487. [Google Scholar] [CrossRef]
- Singh, R.; Chahal, K.K.; Singla, N. Chemical composition and pharmacological activities of Saussurea lappa: A review. J. Pharmacogn. Phytochem. 2017, 6, 1298–1308. [Google Scholar]
- Mahapatra, D.K.; Tijare, L.K.; Gundimeda, V.; Nilesh, M.M. Rapid Biosynthesis of Silver Nanoparticles of Flower-like Morphology from the root extract of Saussurea lappa. Res. Rev. A J. Pharmacogn. 2018, 5, 20–24. [Google Scholar]
- Aljohny, B.O.; Almaliki, A.A.A.; Anwar, Y.; Ul-Islam, M.; Kamal, T. Antibacterial and Catalytic Performance of Green Synthesized Silver Nanoparticles Embedded in Crosslinked PVA Sheet. J. Polym. Environ. 2021, 29, 3252–3262. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Prasad, K.R.S.; Murali Krishna, P.; Supraja, N. Saussurea lappa plant rhizome extract-based zinc oxide nanoparticles: Synthesis, characterization and its antibacterial, antifungal activities and cytotoxic studies against Chinese Hamster Ovary (CHO) cell lines. Heliyon 2021, 7, E07265. [Google Scholar] [CrossRef]
- Awad, A.; Alkhulaifi, M.; Aldosari, S.; Alzahly, N.S.; Aldalbahi, A. Novel eco-synthesis of PD silver nanoparticles: Characterization, assessment of its antimicrobial and cytotoxicity properties. Materials 2019, 12, 3890. [Google Scholar] [CrossRef] [PubMed]
- Dashora, A.; Rathore, K.; Raj, S.; Sharma, K. Synthesis of silver nanoparticles employing Polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen. Biochem. Biophys. Rep. 2022, 31, 101320. [Google Scholar] [CrossRef]
- Manimaran, K.; Yanto, D.H.Y.; Anita, S.H.; Nurhayat, O.D.; Selvaraj, K.; Basavarajappa, S.; Kumarasamy, K. Synthesis and characterization of Hypsizygus ulmarius extract-mediated silver nanoparticles (AgNPs) and test their potentiality on antimicrobial and anticancer effects. Environ. Res. 2023, 235, 116671. [Google Scholar] [CrossRef]
- Paosen, S.; Saising, J.; Septama, A.W.; Voravuthikunchai, S.P. Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Mater. Lett. 2017, 209, 201–206. [Google Scholar] [CrossRef]
- Sharmin, S.; Islam, M.B.; Saha, B.K.; Ahmed, F.; Maitra, B.; Rasel, M.Z.U.; Rabbi, M.A. Evaluation of antibacterial activity, in-vitro cytotoxicity, and catalytic activity of biologically synthesized silver nanoparticles using leaf extracts of Leea macrophylla. Heliyon 2023, 9, e20810. [Google Scholar] [CrossRef]
- Malik, M.; Iqbal, M.A.; Malik, M.; Raza, M.A.; Shahid, W.; Choi, J.R.; Pham, P.V. Biosynthesis and characterizations of silver nanoparticles from Annona squamosa leaf and fruit extracts for size-dependent biomedical applications. Nanomaterials 2022, 12, 616. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Jazayeri, S.D.; Shabanzadeh, P.; Sangpour, P.; Jahangirian, H.; Gharayebi, Y. Investigation of antibacterial properties of silver nanoparticles prepared via green method. Chem. Cent. J. 2012, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Alaraidh, I.A.; Ibrahim, M.M.; El-Gaaly, G.A. Evaluation of green synthesis of Ag nanoparticles using Eruca sativa and Spinacia oleracea leaf extracts and their antimicrobial activity. Iran. J. Biotechnol. 2014, 12, 50–55. [Google Scholar] [CrossRef]
- Savithramma, N.; Rao, M.L.; Rukmini, K.; Devi, P.S. Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int. J. ChemTech Res. 2011, 3, 1394–1402. [Google Scholar]
- Kulikouskaya, V.; Nikalaichuk, V.; Hileuskaya, K.; Ladutska, A.; Grigoryan, K.; Kozerozhets, I.; Sidarenka, A. Alginate-coated biogenic silver nanoparticles for the treatment of Pseudomonas infections in rainbow trout. Int. J. Biol. Macromol. 2023, 251, 126302. [Google Scholar] [CrossRef]
- Ashraf, J.M.; Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Choi, I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep. 2016, 6, 20414. [Google Scholar] [CrossRef]
- Saion, E.; Gharibshahi, E. On the theory of metal nanoparticles based on quantum mechanical calculation. Malays. J. Fundam. Appl. Sci. 2011, 7, 6–11. [Google Scholar] [CrossRef]
- Paranga, Z.; Keshavarz, A.; Farahi, S.; Elahi, S.M.; Ghoranneviss, M.; Parhoodeh, S. Fluorescence emission spectra of silver and silver/cobalt nanoparticles. Sci. Iran. Trans. F Nanotechnol. 2012, 19, 943–947. [Google Scholar] [CrossRef]
- Ho, N.T.; Tien, H.N.; Jang, S.J.; Senthilkumar, V.; Park, Y.C.; Cho, S.; Kim, Y.S. Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells. Sci. Rep. 2016, 6, 30327. [Google Scholar] [CrossRef]
- Awad, M.A.; Hendi, A.A.; Ortashi, K.M.; Alzahrani, B.; Soliman, D.; Alanazi, A.; Alomar, T.S. Biogenic synthesis of silver nanoparticles using Trigonella foenum-graecum seed extract: Characterization, photocatalytic and antibacterial activities. Sens. Actuators A Phys. 2021, 323, 112670. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Xie, J.; Wu, S.; Wu, Z. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Mater. Sci. Eng. C 2018, 86, 1–8. [Google Scholar] [CrossRef]
- Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Shandiz, S.A.S.; Ahmadi, F.; Batooli, H. Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluation of the antioxidant activities of the extract. Nat. Prod. Res. 2014, 28, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
- Labulo, A.H.; David, O.A.; Terna, A.D. Green synthesis and characterization of silver nanoparticles using Morinda lucida leaf extract and evaluating its antioxidant and antimicrobial activity. Chem. Pap. 2022, 76, 7313–7325. [Google Scholar] [CrossRef] [PubMed]
- Hendi, A.A.; Awad, M.A.; Alanazi, M.M.; Virk, P.; Alrowaily, A.W.; Bahlool, T.; Hagmusa, B. Phytomediated synthesis of bimetallic Ag/Au nanoparticles using orange peel extract and assessing their antibacterial and anticancer potential. J. King Saud. Univ.-Sci. 2023, 35, 102510. [Google Scholar] [CrossRef]
- Khanal, L.N.; Sharma, K.R.; Paudyal, H.; Parajuli, K.; Dahal, B.; Ganga, G.C.; Kalauni, S.K. Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus sm. and comparison of antioxidant and antibacterial activity. J. Nanomater. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Annamalai, J.; Nallamuthu, T. Green synthesis of silver nanoparticles: Characterization determination of antibacterial potency. Appl. Nanosci. 2016, 6, 259–265. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, R.M.; Zafar, F.; Singh, P. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. 2012, 67, 91–94. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Mulgund, G.S.; Meti, N.T.; Nataraja, K.; Kumar, S.V. Antibacterial activity of silver nanoparticles synthesized by using whole plant extracts of Clitoriaternatea. Res. Pharm. 2015, 2, 10–21. [Google Scholar]
- Eltarahony, M.; Zaki, S.; ElKady, M.; Abd-El-Haleem, D. Biosynthesis, characterization of some combined nanoparticles, and its biocide potency against a broad spectrum of pathogens. J. Nanomater. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Wang, M.; Shen, J.; Thomas, J.C.; Mu, T.; Liu, W.; Wang, Y.; Liu, K. Particle size measurement using dynamic light scattering at ultra-low concentration accounting for particle number fluctuations. Materials 2021, 14, 5683. [Google Scholar] [CrossRef]
- Passos, M.L.; Costa, D.; Lima, J.L.; Saraiva, M.L.M. Sequential injection technique as a tool for the automatic synthesis of silver nanoparticles in a greener way. Talanta 2015, 133, 45–51. [Google Scholar] [CrossRef]
- Abdullah, A.; Annapoorni, S. Fluorescent silver nanoparticles via exploding wire technique. Pramana 2005, 65, 815–819. [Google Scholar] [CrossRef]
- Jian, Z.; Xiang, Z.; Yongchang, W. Electrochemical synthesis and fluorescence spectrum properties of silver nanospheres. Microelectron. Eng. 2005, 77, 58–62. [Google Scholar] [CrossRef]
- Ahmad, N.; Seema, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Anjum, F. Rapid Synthesis of Silver Nanoparticles Using Dried Medicinal Plant of Basil. Colloids Surf. B Biointerfaces 2010, 1, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Negi, M.; Thakur, P.; Mahajan, H.; Raina, K.; Sharma, R.; Singh, R.; Anand, V.; Ming, L.C.; Goh, K.W.; et al. Saussurea costus (Falc.) Lipsch.: A comprehensive review of its pharmacology, phytochemicals, ethnobotanical uses, and therapeutic potential. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 1505–1524. [Google Scholar] [CrossRef] [PubMed]
- Yilma, H.G.; Fekade, B.T.; Archana, B.; Nishant, R.; Mesfin, G.; Tadesse, A.; Nasser, S.; Kundan, K.C.; Rakesh, K.B. Anti-inflammatory activity of phytochemicals from medicinal plants and their nanoparticles: A review. Curr. Res. Biotechnol. 2023, 6, 100152. [Google Scholar]
- Islam, M.E.; Islam, K.M.D.; Billah, M.M.; Biswas, R.; Sohrab, M.H.; Rahman, S.M. Antioxidant and anti-inflammatory activity of Heritiera fomes (Buch.-Ham), a mangrove plant of the Sundarbans. Adv. Tradit. Med. 2020, 20, 189–197. [Google Scholar] [CrossRef]
- Mutuma, G.G.; Ngeranwa, J.; King’ori, M.A.; Kiruki, S. Phytochemical and Anti-Inflammatory Analysis of Prunus africana Bark Extract. Res. J. Pharmacogn. 2020, 7, 31–38. [Google Scholar]
- Abdelhafez, O.H.; AliM, T.F.S.; Fahim, J.R.; Desoukey, S.Y.; Ahmed, S.; Behery, F.A.; Kamel, M.S.; Gulder, T.A.M.; Abdelmohsen, U.R. Anti-Inflammatory Potential of Green Synthesized Silver Nanoparticles of the Soft Coral Nephthea Sp. Supported by Metabolomics Analysis and Docking Studies. Int. J. Nanomed. 2020, 15, 5345–5360. [Google Scholar] [CrossRef]
- Gautam, H.; Asrani, R.K. Phytochemical and Pharmacological Review of an Ethno Medicinal Plant: Saussurea Lappa. Vet. Res. Int. 2018, 6, 1–9. [Google Scholar]
- Gowda, R.; Dinavahi, S.S.; Iyer, S.; Banerjee, S.; Neves, R.I.; Pameijer, C.R.; Robertson, G.P. Nanoliposomal delivery of cytosolic phospholipase A2 inhibitor arachidonyl trimethyl ketone for melanoma treatment. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Sig. Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Cho, S.G.; Woo, S.M.; Yun, Y.J.; Jo, J.; Kim, W.; Shin, Y.C.; Ko, S.G. Saussurea lappa Clarke-Derived Costunolide Prevents TNF α -Induced Breast Cancer Cell Migration and Invasion by Inhibiting NF- κ B Activity. Evid.-Based Complement. Altern. Med. eCAM 2013, 2013, 936257. [Google Scholar] [CrossRef]
- Al-Radadi, N.S. Saussurea costus for Sustainable and Eco-Friendly Synthesis of Palladium Nanoparticles and Their Biological Activities. Arab. J. Chem. 2022, 15, 104294. [Google Scholar] [CrossRef]
- Groach, R.; Yadav, K.; Sharma, J.; Singh, N. Biosynthesis and Characterization of Silver Nanoparticles Using Root Extract of Saussurea Lappa (Decne.) Clarke and Their Antibacterial Activity. J. Environ. Biol. 2019, 40, 1060–1066. [Google Scholar]
- Alshubaily, F.A. Enhanced Antimycotic Activity of Nanoconjugates from Fungal Chitosan and Saussurea costus Extract against Resistant Pathogenic Candida Strains. Int. J. Biol. Macromol. 2019, 141, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Bersuder, P.; Hole, M.; Smith, G. Antioxidants from a Heated Histidine-Glucose Model System. I: Investigation of the Antioxidant Role of Histidine and Isolation of Antioxidants by High-Performance Liquid Chromatography. J. Am. Oil Chem. Soc. 1998, 75, 181–187. [Google Scholar]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19. [Google Scholar] [CrossRef]
- De, A.; Albetiza, L.; François, R. Determination of Phospholipase A2 Activity by a Colorimetric Assay Using a Ph Indicator. Toxicon 1987, 25, 1181–1188. [Google Scholar]
IC50 (µg/mL) | |||
---|---|---|---|
HCT-116 | LoVo | MDA-MB-231 | |
R extract | 82 | 74 | 120 |
L extract | 86 | ||
R-AgNPs | 60 | 42 | 60 |
L-AgNPs | 56 | 50 | 56 |
Pathogens | IC50 (μg/mL) | ||||
---|---|---|---|---|---|
Bacteria | R Extract | L Extract | R-AgNPs | L-AgNPs | Ampicillin |
B. fragilis (ATCC 25285) | 24.5 ± 0.98 | 29.25 ± 1.76 | 17.85 ± 1.2 | 17.55 ± 2.19 | 16.15 ± 1.2 |
E. coli (ATCC 25922) | 29.7 ± 1.83 | 26.9 ± 2.26 | 20.65 ± 2.33 | 14.3 ± 0.98 | 20.25 ± 1.76 |
E. faecalis (ATCC 29122) | 21.65 ± 0.91 | 24.45 ± 1.34 | 14.8 ± 0.98 | 14.3 ± 1.83 | 12.75 ± 1.06 |
S. aureus (ATCC 25923) | 21 ± 2.82 | 23.5 ± 2.12 | 16 ± 1.41 | 16.25 ± 1.06 | 17 ± 1.41 |
Fungi | R Extract | L Extract | R-AgNPs | L-AgNPs | Cycloheximide |
A. niger | 10.25 ± 0.63 | 11.5 ± 0.42 | 5.3 ± 0.28 | 5.85 ± 0.63 | 2.65 ± 0.21 |
P. digitatum | 12.8 ± 0.98 | 9.35 ± 0.21 | 7.2 ± 0.56 | 4.9 ± 0.42 | 3.15 ± 0.21 |
A. oryzae | 3.75 ± 0.35 | 4.625 ± 0.53 | 2.5 ± 0.70 | 3.25 ± 0.35 | 2.5 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almayouf, M.A.; Charguia, R.; Awad, M.A.; Ben Bacha, A.; Ben Abdelmalek, I. Nanotherapy for Cancer and Biological Activities of Green Synthesized AgNPs Using Aqueous Saussurea costus Leaves and Roots Extracts. Pharmaceuticals 2024, 17, 1371. https://doi.org/10.3390/ph17101371
Almayouf MA, Charguia R, Awad MA, Ben Bacha A, Ben Abdelmalek I. Nanotherapy for Cancer and Biological Activities of Green Synthesized AgNPs Using Aqueous Saussurea costus Leaves and Roots Extracts. Pharmaceuticals. 2024; 17(10):1371. https://doi.org/10.3390/ph17101371
Chicago/Turabian StyleAlmayouf, Mina A., Raihane Charguia, Manal A. Awad, Abir Ben Bacha, and Imen Ben Abdelmalek. 2024. "Nanotherapy for Cancer and Biological Activities of Green Synthesized AgNPs Using Aqueous Saussurea costus Leaves and Roots Extracts" Pharmaceuticals 17, no. 10: 1371. https://doi.org/10.3390/ph17101371
APA StyleAlmayouf, M. A., Charguia, R., Awad, M. A., Ben Bacha, A., & Ben Abdelmalek, I. (2024). Nanotherapy for Cancer and Biological Activities of Green Synthesized AgNPs Using Aqueous Saussurea costus Leaves and Roots Extracts. Pharmaceuticals, 17(10), 1371. https://doi.org/10.3390/ph17101371