Topic Editors

College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China

Human Impact on Groundwater Environment

Abstract submission deadline
15 September 2023
Manuscript submission deadline
15 November 2023
Viewed by
4044

Topic Information

Dear Colleagues,

This Topic aims to gather novel and innovative works of general interest for the broad audience of the journal related to the environmental implications of ever-growing human activities, with a particular emphasis on the changes these are inducing on groundwater. Global demand for water is projected to outstrip supply by 40% in 2030 and 55% in 2050 as a result of climate change, a rising population, economic growth, rapid urbanization, and increased water–energy–food nexus pressures. Humans are thus now facing the critical challenge of preserving our groundwater resources from biological and chemical contamination induced by its own point and diffuse sources. Addressing this challenge will require a holistic system approach by addressing new issues and emerging contaminants, as well as multiple embedded exposures to ultimately be able to achieve a comprehensive environmental and human health risk assessment.

Consequently, the contributions to this Topic will encompass a broad spectrum of topics in human impact on groundwater resources, including but not limited to: Emerging topics dealing with water resource vulnerability and human impact, including emerging and chemical contaminants; Advances in analytical techniques to monitor and identify sources and processes controlling the budget of human contaminants in water resources; Advances in hydrological processes and hydrodynamic models for investigating water vulnerability to human impact; Analysis of urban growth consequences for water resources and water management; Remote sensing applications for water vulnerability assessment; Linkage between water vulnerability, scarcity, security, and sustainability.

In this Topic, we aim to fill gaps on the application of hydrochemistry (including measurements of radioactive and stable isotope ratios, nutrients, trace elements, and organic components) on environmental research by asking for manuscripts which constitute original contributions on studies developing applications in hydrogeology, nutrient balances, pollution, environmental changes, as well as modeling or empirical studies aimed at improving our mechanistic understanding of short- and long-term chemical variations in global hydrological systems. The submission of inter- and multidisciplinary original research and review papers is particularly encouraged.

Prof. Dr. Zongjun Gao
Dr. Jiutan Liu
Topic Editors

Keywords

  • groundwater resources
  • human impact
  • contaminants
  • vulnerability
  • hydrogeology
  • environmental health

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Energies
energies
3.252 5.0 2008 15.5 Days 2200 CHF Submit
Hydrology
hydrology
- 3.6 2014 14 Days 1600 CHF Submit
Remote Sensing
remotesensing
5.349 7.4 2009 19.7 Days 2500 CHF Submit
Sustainability
sustainability
3.889 5.0 2009 17.7 Days 2200 CHF Submit
Water
water
3.530 4.8 2009 17.6 Days 2200 CHF Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (5 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
Estimation of Nitrate Background Value in Groundwater under the Long-Term Human Impact
Hydrology 2023, 10(3), 63; https://doi.org/10.3390/hydrology10030063 - 04 Mar 2023
Viewed by 605
Abstract
This study demonstrates an approach to estimate the background value of nitrate as a basis for better groundwater management and protection in areas under long-term human impact. The aim was to determine the ambient background value (ABV) of nitrate in the catchment area [...] Read more.
This study demonstrates an approach to estimate the background value of nitrate as a basis for better groundwater management and protection in areas under long-term human impact. The aim was to determine the ambient background value (ABV) of nitrate in the catchment area of the Velika Gorica well field, a hydrogeologically homogeneous area within the Zagreb aquifer. ABVs are determined using four well-known model-based objective methods (the iterative 2-σ technique, IT; the calculated distribution function, CDF; the cumulative frequency curve, CFC; and the probability plot, PP), while simultaneously testing the reliability of the results of each method. If the results are not statistically significant, data selection is performed. The results show that using data without selection can lead to statistically non-significant ABVs, but with the additional selection of data, a statistically non-significant result became a statistically significant one. In summary, all final ABVs must be statistically significant and determined using as large a data set as possible. Reducing the size of the data set is acceptable only in the case of a statistically non-significant result. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

Article
Hydrogeochemical Characteristics, Water Quality, and Human Health Risks of Groundwater in Wulian, North China
Water 2023, 15(2), 359; https://doi.org/10.3390/w15020359 - 15 Jan 2023
Viewed by 708
Abstract
Groundwater shortage and pollution are critical issues of global concern. In Wulian County, a typical hilly area, groundwater is the main source of water supply. This study investigates the current situation of groundwater pollution in Wulian City through the analysis of groundwater water [...] Read more.
Groundwater shortage and pollution are critical issues of global concern. In Wulian County, a typical hilly area, groundwater is the main source of water supply. This study investigates the current situation of groundwater pollution in Wulian City through the analysis of groundwater water chemistry characteristics, water quality evaluation, and health risk evaluation. After the analysis of the controlling factors of chemical components in groundwater and the analysis of ion sources, the main ion sources in groundwater were determined. The results showed that the major cations in groundwater were Ca2+ and Na+ and the major anions were HCO3 and SO42−. Nevertheless, NO3 exceeded the standard to different degrees in pore water (PW), fissure pore water (FPW), and fissure water (FW). The minimum NO3 concentration exceeded the standard in FW. Under the influence of rock weathering and salt rock dissolution, the main hydrochemical types of groundwater were the HCO3-Ca, HCO3-Ca·Mg, and SO4·Cl-Ca·Mg types. According to the water quality evaluation and health risk assessment, the FW area in the south had the highest water quality, where Class I water appeared and potable water was more widely distributed. The PW and FPW areas in the north had lower water quality, with higher health risks. Category V water gradually appeared in the FPW area, which is not suitable as a water supply source. Factor analysis and ion ratio analysis showed that the study area is strongly affected by anthropogenic factors. These research methods have important reference value to the research of groundwater pollution status. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

Article
Numerical Simulation of the Wormhole Propagation in Fractured Carbonate Rocks during Acidization Using a Thermal-Hydrologic-Mechanics-Chemical Coupled Model
Water 2022, 14(24), 4117; https://doi.org/10.3390/w14244117 - 16 Dec 2022
Viewed by 679
Abstract
Acidizing is a widely adopted approach for stimulating carbonate reservoirs. The two-scale continuum (TSC) model is the most widely used model for simulating the reactive process in a carbonate reservoir during acidizing. In realistic cases, there are overburden pressure and pore pressure at [...] Read more.
Acidizing is a widely adopted approach for stimulating carbonate reservoirs. The two-scale continuum (TSC) model is the most widely used model for simulating the reactive process in a carbonate reservoir during acidizing. In realistic cases, there are overburden pressure and pore pressure at present. When the injected acid reacts with the rock, the dissolution of the rock and the consumption of the acid in the pore will break the mechanical balance of the rock. Many experimental studies show that cores after acidizing have lower strength. However, it is still not clear how the deformation of rocks by the change of ground stress influences the acidizing dynamics. For fractured carbonate reservoirs, fractures play a leading role in the flow of injected acid, which preferentially flows into the fractures and dissolves the fracture walls. The effect of the combined action of rock mechanical balance broken and fracture wall dissolution on the formation of wormholes in fractured carbonate reservoirs remains to be studied. To address the above-mentioned issues, a thermal-hydrologic-mechanical-chemical coupled model is presented based on the TSC model for studying the wormhole propagation in fractured carbonate reservoirs under practical conditions. Linear and radial flow cases are simulated to investigate the influences of fracture distribution, reaction temperature, and effective stress on acidizing dynamics. The simulation results show that more wormhole branches are formed by acidizing if the fractures are perpendicular to the flow direction of acid. Temperature is a key parameter affecting the acidification dissolution patterns, so the influence of temperature cannot be ignored during the acidification design. As the effective stress of the formation increases, the diameter of the wormhole gradually decreases, and the branching decreases. More acid is needed for the same stimulation result under higher effective stress. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

Article
Study of Single Fracture Seepage Characteristics of Fault-Filled Materials Based on CT Technology
Water 2022, 14(22), 3679; https://doi.org/10.3390/w14223679 - 14 Nov 2022
Viewed by 614
Abstract
In order to study the matrix loss process and skeleton seepage law in the fracture of the fault rock, the three-dimensional model of the skeletal rock sample of the fault rock was obtained by CT scan, and the porous media seepage model was [...] Read more.
In order to study the matrix loss process and skeleton seepage law in the fracture of the fault rock, the three-dimensional model of the skeletal rock sample of the fault rock was obtained by CT scan, and the porous media seepage model was established with different structural types of natural fractures, and the flow rate and pressure distribution law of the seepage in the fracture was obtained by FLUENT software simulation. The results show that: the seepage under different pressure conditions is approximately the same, and the velocity increases continuously with the increase in pressure; The water seepage in different directions of the fracture channels under the same pressure conditions is not exactly the same, which is caused by the different microstructures of the pores. For the pressure distribution, it gradually decreases along the direction of water seepage, and for the speed distribution, it shows the law of changing from large to small and then increasing. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

Article
Characteristics and Controlling Factors of Groundwater Hydrochemistry in Dongzhi Tableland Area of the Loess Plateau of Eastern Gansu—A Case Study of Ning County Area, North China
Water 2022, 14(22), 3601; https://doi.org/10.3390/w14223601 - 08 Nov 2022
Cited by 1 | Viewed by 608
Abstract
Groundwater plays an irreplaceable role in all aspects of the Loess Plateau. In this study, the loess phreatic water (LPW) and bedrock phreatic water (BPW) in the Ning County area (NCA) were sampled and analyzed, and the characteristics and controlling factors of groundwater [...] Read more.
Groundwater plays an irreplaceable role in all aspects of the Loess Plateau. In this study, the loess phreatic water (LPW) and bedrock phreatic water (BPW) in the Ning County area (NCA) were sampled and analyzed, and the characteristics and controlling factors of groundwater were determined by using statistical analysis, hydrochemical methods, and hydrogeochemical simulation. The results indicated that the groundwater in the NCA was alkaline as a whole, and the average pH values of LPW and BPW were 8.1 and 7.8, respectively. The mean values of TDS concentrations of LPW and BPW were 314.9 mg/L and 675.3 mg/L, and the mean values of TH contents were 194.6 mg/L and 286.6 mg/L, respectively, which were mainly divided into hard fresh water. The Piper diagram illustrated that the hydrochemical type of groundwater in the NCA was mainly the HCO3·Ca type. The main recharge source of groundwater was atmospheric precipitation, and it was affected by evaporation to a certain extent. The linear relationships of δ18O and δ2H of LPW and BPW were δ2H = 6.998δ18O − 3.802 (R2 = 0.98) and δ2H = 6.283δ18O − 10.536 (R2 = 0.96), respectively. Hydrochemical analysis indicated that the groundwater in the NCA was mainly controlled by rock weathering and cation exchange. BPW was affected by the dissolution of gypsum. The possible mineral phases were identified on the basis of the main soluble minerals in the aquifer, and hydrogeochemical reverse simulations were performed. The dissolution of calcite, illite, and hornblende, and the precipitation of dolomite, plagioclase, and microcline occurred on both the LPW and BPW pathways. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

Back to TopTop