Late Pleistocene Climate–Weathering Dynamics in Bohai Bay: High-Resolution Sedimentary Proxies and Their Global Paleoclimatic Synchronicity
Abstract
:1. Introduction
2. Regional Background
3. Material and Methods
3.1. Bore Hole
3.2. Age Analysis
3.3. Major Element Analysis
4. Results
4.1. Dating Results
4.2. Sedimentary Facies and Sedimentary Units
4.3. Content Characteristics of Major Elements
4.4. Major Element Analysis Mass Transfer Characteristics
4.5. Chemical Weathering Intensity
5. Discussion
5.1. Chemical Weathering Trends
5.2. Regional Weathering and Climate Change
6. Conclusions
- (1)
- The oxides, SiO2 and Na2O, that indicate an arid condition and the proxies, Al2O3, MgO, and Fe2O3, for humid environments, were inversely correlated throughout the sedimentary sequence, which indicate alternating wet and dry climatic phases in the Bohai Bay area: wet conditions from mid-MIS3 to ~37.5 cal kyr BP, followed by dry conditions during late MIS3 to early–mid-MIS2 (37.5–14.8 cal kyr BP), then wet conditions from mid-MIS2 to early MIS1 (14.8–3.345 cal kyr BP), and finally dry conditions during the MIS1 period (3340 cal yr BP to present). Comparative analysis with upper continental crust (UCC) values and element mass transfer rate revealed the mobility sequence of the major elements in Bohai Bay sediments since the Late Pleistocene in the order of K > Na > Ca > Fe > Mg > Al > Si.
- (2)
- There was significant Ca and Na leaching in lacustrine and marsh facies, yielding lower residual concentrations and indicating relatively intense chemical weathering as evidenced by the analysis of A-CN-K and A-CNK-FM weathering trends. Conversely, fluvial facies showed significant K retention and moderate Ca and Na leaching, suggesting weaker chemical weathering. These observations are consistent with both the CIA values and Na/K ratios.
- (3)
- The CIA values ranged ~50–65, demonstrating limited chemical weathering in the Bohai Bay region. This low weathering intensity reflects cold, arid climatic conditions. There were warmer, more humid conditions evidenced by relatively stronger chemical weathering in DU6, cooling and drying conditions in DU 5, while there was the least geochemical alteration in the unit of DU4, collectively indicating climatic cooling and drying. DU3 manifested slightly enhanced weathering compared to fluvial facies, with further intensification in DU2, marking a return to warmer, wetter conditions. Finally, there was another gradual shift toward colder, drier weathering intensity in the unit DU1 evidenced by the persistent low weathering intensity in this unit.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hessler, A.M.; Zhang, J.; Covault, J.; Ambrose, W. Continental weathering coupled to Paleogene climate changes in North America. Geology 2017, 45, 911–914. [Google Scholar] [CrossRef]
- Deng, K.; Yang, S.; Guo, Y. A global temperature control of silicate weathering intensity. Nat. Commun. 2022, 13, 1781. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, S.; Breecker, D.O.; Ramos, E.J.; Huang, X.; Duan, Z.; Guo, Y.; Li, C.; Mei, X. Responses of silicate weathering intensity to the Pliocene-Quaternary cooling in East and Southeast Asia. Earth Planet. Sci. Lett. 2022, 578, 117301. [Google Scholar] [CrossRef]
- Jin, Z.; Yu, J.; Zhang, F.; Qiang, X. Glacial-interglacial variation in catchment weathering and erosion paces the Indian summer monsoon during the Pleistocene. Quat. Sci. Rev. 2020, 248, 106619. [Google Scholar] [CrossRef]
- Wan, S.; Qin, L.; Yang, S.; Zhao, D.; Zhang, J.; Jiao, D.; Cai, G.; Pei, W.; Gong, H.; Xu, Z.; et al. South China Sea shelf weathering in glacial periods and its link to carbon cycle. Quat. Sci. 2020, 40, 1531–1549. [Google Scholar]
- Clark, P.U.; Archer, D.; Pollard, D.; Blum, J.D.; Rial, J.A.; Brovkin, V.; Mix, A.C.; Pisias, N.G.; Roy, M. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 2006, 25, 3150–3184. [Google Scholar] [CrossRef]
- Torres, M.A.; Moosdorf, N.; Hartmann, J.; Adkins, J.F.; West, A.J. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. Proc. Natl. Acad. Sci. USA 2017, 114, 8716–8721. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allegre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Buggle, B.; Glaser, B.; Hambach, U.; Gerasimenko, N.; Marković, S. An evaluation of geochemical weathering indices in loess–paleosol studies. Quat. Int. 2011, 240, 12–21. [Google Scholar] [CrossRef]
- Shao, J.; Yang, S.; Li, C. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sediment. Geol. 2012, 265–266, 110–120. [Google Scholar] [CrossRef]
- Clift, P.D.; Betzler, C.; Clemens, S.C.; Christensen, B.; Eberli, G.P.; France-Lanord, C.; Gallagher, S.; Holbourn, A.; Kuhnt, W.; Murray, R.W.; et al. A synthesis of monsoon exploration in the Asian marginal seas. Sci. Drill. 2022, 31, 1–29. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Wang, J.; Li, Q.; Wu, L.; Chen, F.; Li, C. Global CO2 consumption by silicate rock chemical weathering: Its past and future. Earth’s Future 2021, 9, e2020EF001938. [Google Scholar] [CrossRef]
- Institute of Oceanography. Chinese Academy of Sciences. Geology of Bohai Sea; Science Press: Beijing, China, 1985. [Google Scholar]
- Zhao, B.; Zhuang, G.; Cao, D.; Lei, F. The circulation and tidal residual current of Bohai Sea and their influence on sediment disribution. Oceanol. Limnol. Sinica 1995, 26, 466. [Google Scholar]
- Gao, R.; Zhao, W.; Kong, F. The Young Explorers Discussed Ptroleum Geology of Bohai Bay Basin. Master’s Thesis, Ptroleum Industy Press, Beijing, China, 2004. [Google Scholar]
- Fu, Z.; Chen, F.; Li, M.; Shi, P.; Min, F. Sedimentary characteristics of the Xinbei oilfield and their controls on hydrocarbon accumulation. Geol. China 2008, 35, 691–698. [Google Scholar]
- Li, J.; Li, R.; Yang, S.; Chen, X.; Chen, S. Pollenspore assemblages and induced palaeoenvironmental changes in the western Bohai Seasince Late Pleistoene. Mar. Geol. Quat. Geol. 2018, 38, 115–128. [Google Scholar]
- Zhao, S.; Yang, G.; Cang, S.; Zhang, H.; Huang, Q.; Xia, D.; Wang, Y.; Liu, F.; Liu, C. On the Marine stratigraphy and coastlines of the western coast of the gulf of Bohai. Oceanol. Limnol. Sinica 1978, 9, 15. [Google Scholar]
- Dong, L.; Su, J.; Wang, K. Tide current in the Yellow Sea and its relationship with sediment transport. Acta Oceanol. Sin. 1989, 11, 102–114. [Google Scholar]
- Southon, J.; Kashgarian, M.; Fontugne, M. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 2002, 44, 167–180. [Google Scholar] [CrossRef]
- Reimer, P.; Bard, E.; Bayliss, A. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50000 Years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]
- Wintle, A. Luminescence dating: Laboratory procedures and protocols. Radiat. Meas. 1997, 27, 769–817. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, J.; Saito, Y. Sedimentary evolution ofthe Holocene subaqueous clinoform off the Southern Shandong Peninsula in theWestern South Yellow Sea. J. Ocean Univ. China 2014, 13, 747–760. [Google Scholar] [CrossRef]
- Galloway, W.E.; Hobday, D.K. Terrigenous Clastic Depositional Systems: Applications to Petroleum, Coal, and Uranium Exploration; Springer: New York, NY, USA, 1983; p. 51. [Google Scholar]
- Liu, J.; Wang, H.; Wang, F.; Qiu, J.; Saito, Y.; Lu, J.; Zhou, L.; Xu, G.; Du, X.; Chen, Q. Sedimentary Evolution During the Last ~ 1.9 Ma near the Western Margin of the Modern Bohai Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 451, 84–96. [Google Scholar] [CrossRef]
- Miall, A.D. Alluvial Deposits. In Facies Models: Response to Sea Level Change; Walker, R.G., James, N.P., Eds.; Geological Association of Canada: Waterloo, ON, Canada, 1992; p. 119. [Google Scholar]
- He, L.; Xue, C.; Ye, S.; Laws, E.A.; Yuan, H.; Yang, S.; Du, X. Holocene evolution of the Liaohe Delta, a tide-dominated delta formed by multiple rivers in Northeast China. J. Asian Earth Sci. 2018, 152, 52–68. [Google Scholar] [CrossRef]
- Liu, J.; John, D.M.; Gao, S. Holocene development of the Yellow River’s subaqueous delta, north Yellow Sea. Mar. Geol. 2004, 209, 45–67. [Google Scholar] [CrossRef]
- Hori, K.; Saito, Y. An early Holocene sea-level jump and delta initiation. Geophys. Res. Lett. 2007, 34, L18401. [Google Scholar] [CrossRef]
- Zhang, S. Atlas of Marine Mollusks in China; China Ocean Press: Beijing, China, 2008. [Google Scholar]
- Xu, F.; Zhang, S. An Illustrated Bivalvia Mollusca Fauna of China Seas; Science Press: Beijing, China, 2008. [Google Scholar]
- Coleman, J.M.; Wright, L.D. Modern River Deltas: Variability of Processes and Sand Bodies. In Deltas: Models for Exploration; Broussard, M.L., Ed.; Houston Geological Society: Houston, TX, USA, 1975; p. 99. [Google Scholar]
- Hu, M.; Zuo, H.; Pan, N. Evolution of chemical weathering processes since the middle-late Holocene in the Maqu Plateau. J. Desert Res. 2016, 36, 623–635. [Google Scholar]
- Wang, X.; Ye, S.; Han, Z. The sedimentary cnvironment evolution and biogenic silica records of the Liaohe Estuary since 33 ka BP. Geol. China 2015, 42, 1092–1102. [Google Scholar]
- Taylor, S.; McLennan, S. The Continental Crust: Its Composition and Evolution; Blackwell: London, UK, 1985; Volume 57. [Google Scholar]
- Yang, S.; Li, C. Characteristic element compositions of the yangtze and the yellow river sediments and their geological background. Mar. Geol. Quat Ernary Geol. 1999, 2, 19. [Google Scholar]
- Guo, R.; Ye, S.; He, L. Chemical weathering and its implications regarding climate changes in the Liaohe Delta since the Holocene. Mar. Sci. 2018, 42, 38. [Google Scholar]
- Nesbitt, H.; Young, G. Early Proterozoic climates and plate motions inferred from major element chemistryoflutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Fedo, C.; Nesbitt, H.; Young, G. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo-weathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Kautz, C.; Martin, C. Chemical and physical weathering in New Zealand’s Southern Alps monitored by bedload sediment major element composition. Appl. Geochem. 2007, 22, 1715–1735. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Nesbitt, H.; Markovics, G.; Price, R. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta 1980, 44, 1659–1666. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.; Levrard, B. A longterm numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 1988, 29, 142–152. [Google Scholar] [CrossRef]
- Hemming, S.R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 2004, 42. [Google Scholar] [CrossRef]
- Rasmussen, T.L.; Oppo, D.W.; Thomsen, E.; Lehman, S.J. Deep sea records from the southeast Labrador Sea: Ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 2003, 18. [Google Scholar] [CrossRef]
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- Dykoski, C.A.; Edwards, R.L.; Cheng, H.; Yuan, D.; Cai, Y.; Zhang, M.; Lin, Y.; Qing, J.; An, Z.; Revenaugh, J. A highresolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 2005, 233, 71–86. [Google Scholar] [CrossRef]
Bore Hole | Sample Number | Hole Depth (m) | Beta Number | Material | δ13C (Per Mil) | Habitual Age | Corrected Age (Cal a BP) | Reliability Analysis | |
---|---|---|---|---|---|---|---|---|---|
(a BP) | Intercept | Range (1σ) | |||||||
BHZK2017-2 | B1702-1 | 1.74 | 498278 | Arcasubcrenata | −0.7 | 540 ± 30 | 365 | 301–419 | reliable |
B1702-2 | 3.65 | 498279 | Sinonovacula sp. | −5.1 | 1090 ± 30 | 815 | 753–885 | reliable | |
B1702-3 | 7.38 | 498280 | shell fragment | −3.1 | 3290 ± 30 | 3345 | 3268–3420 | reliable | |
B1702-4 | 9.21 | 498281 | plant material | −26.9 | 8850 ± 30 | 9995 | 9887–10,146 | reliable | |
B1702-5 | 17 | 498282 | organic sediment | −22 | 33,770 ± 220 | 38,245 | 37,977–38,568 | too old, unreliable | |
B1702-6 | 19.87 | 498283 | shell fragments | −1 | >43,500 | exceed the limit, unreliable |
Sample Number | Hole Depth (m) | U (μg/g) | Th (μg/g) | K (%) | Equiefective Dose (Gy) | Age (Ka) | Error (Ka) | Reliability Analysis |
---|---|---|---|---|---|---|---|---|
BHX25 | 10.31 | 24.03 | 28.24 | 519.7 | 96.74 | 34.2 | 3.4 | too old, unreliable |
BHX26 | 16.2 | 16.52 | 27.08 | 521.4 | 86.54 | 33.2 | 3.3 | reliable |
BHX27 | 18.9 | 16.37 | 26.49 | 519.9 | 101.23 | 39.4 | 3.9 | reliable |
BHX28 | 25.1 | 20.92 | 29.83 | 433.1 | 87.64 | 34.6 | 3.5 | too young, unreliable |
Sedimentary Facies | Sand/% | Silt/% | Clay/% | Average Particle Size/Φ | Standard Deviation | |
---|---|---|---|---|---|---|
DU6 | average | 11.94 | 55.06 | 34.60 | 7.13 | 1.98 |
maximum | 42.49 | 63.09 | 42.66 | 7.84 | 2.77 | |
minimum | 0.03 | 36.77 | 18.81 | 5.48 | 1.54 | |
DU5 | average | 11.50 | 63.73 | 24.76 | 6.43 | 1.89 |
maximum | 70.02 | 75.95 | 45.92 | 7.92 | 2.42 | |
minimum | 0.17 | 25.52 | 4.14 | 3.70 | 1.12 | |
DU4 | average | 22.69 | 53.35 | 28.48 | 4.93 | 1.84 |
maximum | 70.02 | 75.95 | 45.92 | 6.30 | 2.24 | |
minimum | 0.03 | 25.52 | 4.14 | 3.84 | 1.52 | |
DU3 | average | 20.88 | 54.14 | 24.98 | 6.22 | 1.93 |
maximum | 53.23 | 68.50 | 58.63 | 8.36 | 2.37 | |
minimum | 0.56 | 37.65 | 9.13 | 4.57 | 1.47 | |
DU2 | average | 3.76 | 65.14 | 31.79 | 7.16 | 1.84 |
maximum | 23.96 | 73.37 | 45.20 | 7.95 | 2.84 | |
minimum | 0.26 | 47.82 | 15.90 | 5.59 | 1.43 | |
DU1 | average | 1.36 | 66.82 | 31.94 | 7.25 | 1.77 |
maximum | 11.74 | 80.98 | 41.81 | 7.80 | 2.05 | |
minimum | 0.02 | 58.19 | 13.13 | 5.87 | 1.48 |
Sedimentary Facies | Number Range | SiO2/% | Al2O3/% | CaO/% | MgO/% | K2O/% | Na2O/% | Fe2O3/% |
---|---|---|---|---|---|---|---|---|
DU6 | Average | 50.18 | 17.17 | 5.60 | 3.23 | 2.91 | 2.39 | 6.07 |
Maximum | 60.21 | 17.80 | 7.66 | 3.49 | 3.07 | 2.84 | 6.90 | |
Minimum | 45.30 | 15.66 | 3.68 | 2.40 | 2.71 | 2.13 | 4.02 | |
DU5 | Average | 52.18 | 15.63 | 6.44 | 2.65 | 2.42 | 2.65 | 5.01 |
Maximum | 64.78 | 17.31 | 10.58 | 3.19 | 2.79 | 3.44 | 6.65 | |
Minimum | 44.40 | 13.94 | 0.85 | 1.85 | 1.97 | 2.23 | 2.91 | |
DU4 | Average | 55.31 | 14.38 | 5.95 | 2.14 | 2.06 | 3.28 | 3.30 |
Maximum | 59.26 | 15.07 | 10.12 | 2.63 | 2.18 | 3.61 | 4.90 | |
Minimum | 46.04 | 13.66 | 4.50 | 1.84 | 1.90 | 2.72 | 2.75 | |
DU3 | Average | 51.53 | 15.34 | 6.91 | 2.51 | 2.31 | 2.88 | 4.26 |
Maximum | 58.26 | 18.84 | 11.58 | 3.30 | 3.28 | 3.40 | 6.40 | |
Minimum | 41.50 | 14.01 | 4.86 | 2.08 | 1.88 | 2.28 | 3.24 | |
DU2 | Average | 49.17 | 16.13 | 6.90 | 2.96 | 2.64 | 2.58 | 5.58 |
Maximum | 54.34 | 17.05 | 8.13 | 3.31 | 2.89 | 2.89 | 5.94 | |
Minimum | 45.09 | 14.70 | 6.15 | 2.45 | 2.29 | 2.35 | 4.50 | |
DU1 | Average | 49.01 | 16.43 | 6.50 | 2.98 | 2.70 | 2.69 | 5.83 |
Maximum | 55.70 | 17.19 | 7.08 | 3.24 | 2.86 | 3.10 | 6.46 | |
Minimum | 46.39 | 14.83 | 5.66 | 2.38 | 2.32 | 2.51 | 4.62 |
SiO2 | Al2O3 | CaO | MgO | K2O | Na2O | Fe2O3 | |
---|---|---|---|---|---|---|---|
SiO2 | 1 | 0.563 ** | −0.793 ** | −0.804 ** | −0.551 ** | 0.753 ** | −0.716 ** |
Al2O3 | 1 | −0.013 | 0.916 ** | 0.962 ** | −0.772 ** | 0.890 ** | |
CaO | 1 | 0.320 ** | −0.018 | −0.432 ** | 0.222 * | ||
MgO | 1 | 0.910 ** | −0.876 ** | 0.942 ** | |||
K2O | 1 | −0.759 ** | 0.892 ** | ||||
Na2O | 1 | −0.876 ** | |||||
Fe2O3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Liu, X.; Zhang, Y.; He, L.; Zhao, Z.; Xie, L.; Ye, S. Late Pleistocene Climate–Weathering Dynamics in Bohai Bay: High-Resolution Sedimentary Proxies and Their Global Paleoclimatic Synchronicity. J. Mar. Sci. Eng. 2025, 13, 881. https://doi.org/10.3390/jmse13050881
Lei Y, Liu X, Zhang Y, He L, Zhao Z, Xie L, Ye S. Late Pleistocene Climate–Weathering Dynamics in Bohai Bay: High-Resolution Sedimentary Proxies and Their Global Paleoclimatic Synchronicity. Journal of Marine Science and Engineering. 2025; 13(5):881. https://doi.org/10.3390/jmse13050881
Chicago/Turabian StyleLei, Yanxiang, Xinyi Liu, Yanhui Zhang, Lei He, Zengcai Zhao, Liujuan Xie, and Siyuan Ye. 2025. "Late Pleistocene Climate–Weathering Dynamics in Bohai Bay: High-Resolution Sedimentary Proxies and Their Global Paleoclimatic Synchronicity" Journal of Marine Science and Engineering 13, no. 5: 881. https://doi.org/10.3390/jmse13050881
APA StyleLei, Y., Liu, X., Zhang, Y., He, L., Zhao, Z., Xie, L., & Ye, S. (2025). Late Pleistocene Climate–Weathering Dynamics in Bohai Bay: High-Resolution Sedimentary Proxies and Their Global Paleoclimatic Synchronicity. Journal of Marine Science and Engineering, 13(5), 881. https://doi.org/10.3390/jmse13050881