Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (567)

Search Parameters:
Keywords = wound physiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1505 KiB  
Review
Biological Macromolecule-Based Dressings for Combat Wounds: From Collagen to Growth Factors—A Review
by Wojciech Kamysz and Patrycja Kleczkowska
Med. Sci. 2025, 13(3), 106; https://doi.org/10.3390/medsci13030106 - 1 Aug 2025
Viewed by 335
Abstract
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, [...] Read more.
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, significantly increases the risk of infection, delayed healing, and adverse outcomes. Traditional wound dressings frequently prove inadequate under such extreme conditions, as they have not been designed to address the specific physiological and logistical constraints present during armed conflicts. This review provides a comprehensive overview of recent progress in the development of advanced wound dressings tailored for use in military scenarios. Special attention has been given to multifunctional dressings that go beyond basic wound coverage by incorporating biologically active macromolecules such as collagen, chitosan, thrombin, alginate, therapeutic peptides, and growth factors. These compounds contribute to properties including moisture balance control, exudate absorption, microbial entrapment, and protection against secondary infection. This review highlights the critical role of advanced wound dressings in improving medical outcomes for injured military personnel. The potential of these technologies to reduce complications, enhance healing rates, and ultimately save lives underscores their growing importance in modern battlefield medicine. Full article
(This article belongs to the Collection Advances in Skin Wound Healing)
Show Figures

Figure 1

19 pages, 946 KiB  
Review
The Promotion of Cell Proliferation by Food-Derived Bioactive Peptides: Sources and Mechanisms
by Yuhao Yan, Yinuo Liu, Xinwei Zhang, Liting Zan and Xibi Fang
Metabolites 2025, 15(8), 505; https://doi.org/10.3390/metabo15080505 - 29 Jul 2025
Viewed by 370
Abstract
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological [...] Read more.
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological processes related to cell proliferation. This work summarizes peptides derived from animals and plants that stimulate cell proliferation, focusing on their amino acid composition, physicochemical properties, and preparation techniques. Furthermore, we highlight the major signaling pathways—such as the PI3K/Akt, MAPK/ERK, and Wnt/β-catenin pathways—that have been implicated in the mechanistic studies of food-derived peptides. Through the analysis and summary of previous studies, we observe a notable lack of in vivo animal models and clinical trials, indicating that these may represent promising directions for future research on food-derived bioactive peptides. Meanwhile, the potential safety concerns of proliferation-enhancing peptides—such as immunogenicity, appropriate dosage, and gastrointestinal stability—warrant greater attention. In summary, this review provides a comprehensive overview of the sources and mechanisms of cell proliferation-promoting peptides and addresses the challenges in industrializing bioactive peptide-based functional foods; therefore, further research in this area is encouraged. Full article
Show Figures

Graphical abstract

13 pages, 1775 KiB  
Review
Integrating Physical Activity and Artificial Intelligence in Burn Rehabilitation: Muscle Recovery and Body Image Restoration
by Vasiliki J. Malliou, George Pafis, Christos Katsikas and Spyridon Plakias
Appl. Sci. 2025, 15(15), 8323; https://doi.org/10.3390/app15158323 - 26 Jul 2025
Viewed by 272
Abstract
Burn injuries result in complex physiological and psychological sequelae, including hypermetabolism, muscle wasting, mobility impairment, scarring, and disrupted body image. While advances in acute care have improved survival, comprehensive rehabilitation strategies are critical for restoring function, appearance, and psychosocial well-being. Structured physical activity, [...] Read more.
Burn injuries result in complex physiological and psychological sequelae, including hypermetabolism, muscle wasting, mobility impairment, scarring, and disrupted body image. While advances in acute care have improved survival, comprehensive rehabilitation strategies are critical for restoring function, appearance, and psychosocial well-being. Structured physical activity, including resistance and aerobic training, plays a central role in counteracting muscle atrophy, improving cardiovascular function, enhancing scar quality, and promoting psychological resilience and body image restoration. This narrative review synthesizes the current evidence on the effects of exercise-based interventions on post-burn recovery, highlighting their therapeutic mechanisms, clinical applications, and implementation challenges. In addition to physical training, emerging technologies such as virtual reality, aquatic therapy, and compression garments offer promising adjunctive benefits. Notably, artificial intelligence (AI) is gaining traction in burn rehabilitation through its integration into wearable biosensors and telehealth platforms that enable real-time monitoring, individualized feedback, and predictive modeling of recovery outcomes. These AI-driven tools have the potential to personalize exercise regimens, support remote care, and enhance scar assessment and wound tracking. Overall, the integration of exercise-based interventions with digital technologies represents a promising, multimodal approach to burn recovery. Future research should focus on optimizing exercise prescriptions, improving access to personalized rehabilitation tools, and advancing AI-enabled systems to support long-term recovery, functional independence, and positive self-perception among burn survivors. Full article
Show Figures

Figure 1

72 pages, 6900 KiB  
Review
Multifunctional Fibers for Wound Dressings: A Review
by Ghazaleh Chizari Fard, Mazeyar Parvinzadeh Gashti, Ram K. Gupta, Seyed Ahmad Dehdast, Mohammad Shabani and Alessandro Francisco Martins
Fibers 2025, 13(8), 100; https://doi.org/10.3390/fib13080100 - 24 Jul 2025
Viewed by 312
Abstract
Wound dressings prevent complications such as infections and potentially severe outcomes, including death, if wounds are left untreated. Wound dressings have evolved from rudimentary coverings made from natural materials to sophisticated, functionalized dressings designed to enhance wound healing and support tissue repair more [...] Read more.
Wound dressings prevent complications such as infections and potentially severe outcomes, including death, if wounds are left untreated. Wound dressings have evolved from rudimentary coverings made from natural materials to sophisticated, functionalized dressings designed to enhance wound healing and support tissue repair more effectively. These materials are often referred to as scaffolds in the literature, with wound dressing scaffolds intended to interact with native skin tissue and support tissue regeneration, whereas conventional wound dressings are designed primarily to protect the wound without directly interacting with the underlying tissue. However, there is a functional overlap between these categories, and the boundary is often blurred due to the increasing multifunctionality of modern wound dressings. This review will focus on developing wound dressings (scaffolds or not) based on fibers, their properties, and applications. Advances in nanomedicine have highlighted significant improvements in wound care by applying electrospun nanofibers that mimic the natural extracellular matrix. Therefore, this review explores recent advances in wound healing physiology, highlights nanofiber-based wound dressing materials developed through electrospinning, and distinguishes conventional dressings from multifunctional wound dressing scaffolds. Full article
(This article belongs to the Special Issue Electrospinning Nanofibers)
Show Figures

Figure 1

33 pages, 8117 KiB  
Article
Induced Microglial-like Cells Derived from Familial and Sporadic Alzheimer’s Disease Peripheral Blood Monocytes Show Abnormal Phagocytosis and Inflammatory Response to PSEN1 E280A Cholinergic-like Neurons
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2025, 26(15), 7162; https://doi.org/10.3390/ijms26157162 - 24 Jul 2025
Viewed by 399
Abstract
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in [...] Read more.
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in a 15-day differentiation process to investigate the effect of bolus addition of Aβ42, PSEN1 E280A cholinergic-like neuron (ChLN)-derived culture supernatants, and PSEN1 E280A ChLNs on wild type (WT) iMG, PSEN1 E280A iMG, and sporadic Alzheimer’s disease (SAD) iMG. We found that WT iMG cells, when challenged with non-cellular (e.g., lipopolysaccharide, LPS) or cellular (e.g., Aβ42, PSEN1 E280A ChLN-derived culture supernatants) microenvironments, closely resemble primary human microglia in terms of morphology (resembling an “amoeboid-like phenotype”), expression of surface markers (Ionized calcium-binding adapter molecule 1, IBA-1; transmembrane protein 119, TMEM119), phagocytic ability (high pHrodo™ Red E. coli BioParticles™ phagocytic activity), immune metabolism (i.e., high generation of reactive oxygen species, ROS), increase in mitochondrial membrane potential (ΔΨm), response to ATP-induced transient intracellular Ca2+ influx, cell polarization (cluster of differentiation 68 (CD68)/CD206 ratio: M1 phenotype), cell migration activity according to the scratch wound assay, and especially in their inflammatory response (secretion of cytokine interleukin-6, IL-6; Tumor necrosis factor alpha, TNF-α). We also found that PSEN1 E280A and SAD iMG are physiologically unresponsive to ATP-induced Ca2+ influx, have reduced phagocytic activity, and diminished expression of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) protein, but when co-cultured with PSEN1 E280A ChLNs, iMG shows an increase in pro-inflammatory phenotype (M1) and secretes high levels of cytokines IL-6 and TNF-α. As a result, PSEN1 E280A and SAD iMG induce apoptosis in PSEN1 E280A ChLNs as evidenced by abnormal phosphorylation of protein TAU at residue T205 and cleaved caspase 3 (CC3). Taken together, these results suggest that PSEN1 E280A ChLNs initiate a vicious cycle between damaged neurons and M1 phenotype microglia, resulting in excessive ChLN death. Our findings provide a suitable platform for the exploration of novel therapeutic approaches for the fight against FAD. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

20 pages, 1063 KiB  
Review
ANGPTL4: A Comprehensive Review of 25 Years of Research
by Pedro Ramos, Qiongyu Shi, Jeremy Kleberg, Chandra K. Maharjan, Weizhou Zhang and Ryan Kolb
Cancers 2025, 17(14), 2364; https://doi.org/10.3390/cancers17142364 - 16 Jul 2025
Viewed by 646
Abstract
Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that was discovered in 2000 by three independent laboratories. In the ensuing two and a half decades, extensive work has been conducted to determine its physiological and pathological functions. ANGPTL4 has been shown to be involved [...] Read more.
Angiopoietin-like 4 (ANGPTL4) is a secreted glycoprotein that was discovered in 2000 by three independent laboratories. In the ensuing two and a half decades, extensive work has been conducted to determine its physiological and pathological functions. ANGPTL4 has been shown to be involved in many biological processes, including glucose and lipid metabolism, angiogenesis, and wound healing, with implications in diseases such as type 2 diabetes, cardiovascular (e.g., atherosclerosis) and renal diseases, and cancer. For instance, ANGPTL4 is upregulated in several cancers, including renal cell carcinoma, breast cancer, and colorectal cancer. Interestingly, ANGPTL4 has been shown to exhibit both pro-tumor—promoting tumor growth, cell survival, angiogenesis and metastasis—as well as anti-tumor activities, underscoring its complex roles in cancer biology. This review examines the comprehensive biological functions of ANGPTL4 and its contributions to disease mechanisms with a specific emphasis on cancer, as well as its potential as a therapeutic target across different types of human cancers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

26 pages, 6855 KiB  
Article
Hydrogel Microarray for Bioanalytical Applications: Preliminary Study on Material Properties
by Weronika Kieres, Sonia Kudłacik-Kramarczyk, Joanna Marczyk, Celina Ziejewska, Anna Drabczyk, Robert P. Socha and Marcel Krzan
Materials 2025, 18(13), 3118; https://doi.org/10.3390/ma18133118 - 1 Jul 2025
Viewed by 412
Abstract
The aim of this study was to develop and characterize UV-crosslinked hydrogel matrices based on polyethylene glycol diacrylate (PEGDA), gum arabic, betaine, and sodium alginate for potential bioanalytical applications. Various physicochemical analyses were performed, including pre-polymerization emulsion stability (Multiscan), FT-IR spectroscopy, swelling behavior [...] Read more.
The aim of this study was to develop and characterize UV-crosslinked hydrogel matrices based on polyethylene glycol diacrylate (PEGDA), gum arabic, betaine, and sodium alginate for potential bioanalytical applications. Various physicochemical analyses were performed, including pre-polymerization emulsion stability (Multiscan), FT-IR spectroscopy, swelling behavior in physiological buffers, pH monitoring, contact angle measurements, and morphological assessment via SEM and optical microscopy. The results demonstrated that both alginate content and UV exposure time significantly influence the structural and functional properties of the hydrogels. The highest swelling ratio (2.32 g/g) was observed for the formulation containing 5% sodium alginate polymerized for 5 min (5SA_5), though this sample showed mechanical fragmentation during incubation. In contrast, the most balanced performance was achieved for the 10SA_15 formulation, which maintained structural integrity and exhibited a swelling ratio of 1.92 g/g after 9 days. The contact angle analysis revealed a surface hydrophilicity range from 50° to 100°, with the lowest angle (50°) recorded for 10SA_5, indicating high surface wettability. These findings confirm the suitability of such hydrogels for biomedical applications, particularly as absorbent, stable platforms for drug delivery or wound healing. Full article
Show Figures

Figure 1

12 pages, 2397 KiB  
Review
Plastic Reconstruction of Upper Extremity Defects in Necrotizing Soft Tissue Infections
by Karren M. Takamura and Jason J. Yoo
Bioengineering 2025, 12(7), 718; https://doi.org/10.3390/bioengineering12070718 - 30 Jun 2025
Viewed by 290
Abstract
Soft tissue reconstruction in patients with upper extremity necrotizing soft tissue infections (NSTIs) can be challenging; these defects can be large with exposed critical structures. Following appropriate source control and debridement, soft tissue reconstruction is based on size, exposed structures, medical co-morbidities and [...] Read more.
Soft tissue reconstruction in patients with upper extremity necrotizing soft tissue infections (NSTIs) can be challenging; these defects can be large with exposed critical structures. Following appropriate source control and debridement, soft tissue reconstruction is based on size, exposed structures, medical co-morbidities and the physiologic status of the patient. There are multiple options for soft tissue coverage from local wound care to free tissue transfer. Dermal substitutes can help prepare a healthy wound bed that can later accept a skin graft. Local rotational flaps, distant pedicled flaps and free flaps are also options depending on the patient and the defect. Patients can have good functional outcomes after soft tissue reconstruction after upper extremity NSTI. Full article
(This article belongs to the Special Issue Surgical Wound Infections and Management)
Show Figures

Figure 1

14 pages, 2452 KiB  
Article
Fructose-Induced Glycation End Products Promote Skin-Aging Phenotypes and Senescence Marker Expression in Human Dermal Fibroblasts
by Antonella Rella, Dawn Layman, Rong Dang, Miriam Rafailovich, Robert Maidhof and Nadine Pernodet
Int. J. Mol. Sci. 2025, 26(13), 6162; https://doi.org/10.3390/ijms26136162 - 26 Jun 2025
Viewed by 566
Abstract
Skin aging is a multi-factorial process characterized by the progressive deterioration of biomechanical properties and cellular functionality. One such factor is the formation of advanced glycation end products (AGEs), which are known to have detrimental effects on the skin, including stiffening of the [...] Read more.
Skin aging is a multi-factorial process characterized by the progressive deterioration of biomechanical properties and cellular functionality. One such factor is the formation of advanced glycation end products (AGEs), which are known to have detrimental effects on the skin, including stiffening of the extracellular matrix (ECM) and reduction of cellular proliferation. AGEs accumulate because of sugar metabolism dysfunction; however, the direct impact of elevated sugar levels on cellular physiology requires further investigation. Here, we elucidated the effects of elevated fructose levels on skin cell function using in vitro models and hypothesized that high fructose levels adversely impact cell function. By fluorescence microscopy, we observed that high fructose induced different cellularity, cell morphology, and stress fiber appearance than the controls. Skin cells exposed to high fructose levels showed impaired growth and delayed closure in an artificial wound model. Mechanistically, high fructose conditions induce inflammatory cytokines and activate the NFκB pathway. Furthermore, we observed for the first time an increase in the senescence markers p16, p21, and p53 in response to high fructose levels. Taken together, we show that high fructose levels affect many critical skin functions that contribute to the aging process and recapitulate several aspects of aging related to AGEs. Full article
(This article belongs to the Special Issue Advanced Research of Skin Inflammation and Related Diseases)
Show Figures

Figure 1

26 pages, 6136 KiB  
Review
Exosomes as Future Therapeutic Tools and Targets for Corneal Diseases
by Joshua Gamez, Daxian Zha, Shaghaiegh M. Ebrahimi, Seok White, Alexander V. Ljubimov and Mehrnoosh Saghizadeh
Cells 2025, 14(13), 959; https://doi.org/10.3390/cells14130959 - 23 Jun 2025
Viewed by 748
Abstract
The therapeutic potential of exosomes (Exos), a subpopulation of extracellular vesicles (EVs) secreted by various cell types, has been broadly emphasized. Exos are endosome-derived membrane-bound vesicles 50–150 nm in size. Exos can be general or cell type-specific. Their contents enable them to function [...] Read more.
The therapeutic potential of exosomes (Exos), a subpopulation of extracellular vesicles (EVs) secreted by various cell types, has been broadly emphasized. Exos are endosome-derived membrane-bound vesicles 50–150 nm in size. Exos can be general or cell type-specific. Their contents enable them to function as multi-signaling and vectorized vehicles. Exos are important for maintaining cellular homeostasis. They are released into extracellular spaces, leading to uptake by neighboring or distant cells and delivering their contents to modulate cell signaling. Exos influence tissue responses to injury, infection, and disease by fusion with the target cells and transferring their cargo, including cytokines, growth and angiogenic factors, signaling molecules, lipids, DNA, mRNAs, and non-coding RNAs. They are implicated in various physiological and pathological conditions, including ocular surface events, such as corneal scarring, wound healing, and inflammation. Their biocompatibility, stability, low immunogenicity, and easy detectability in bodily fluids (blood, tears, saliva, and urine) make them promising tools for diagnosing and treating ocular diseases. The potential to engineer specific Exo cargos makes them outstanding therapeutic delivery vehicles. The objective of this review is to provide novel insights into the functions of Exo cargos and their applications as biomarkers and therapeutics, or targets in the cornea. Full article
Show Figures

Figure 1

26 pages, 11510 KiB  
Article
Beyond Color: Phenomic and Physiological Tomato Harvest Maturity Assessment in an NFT Hydroponic Growing System
by Dugan Um, Chandana Koram, Prasad Nethala, Prashant Reddy Kasu, Shawana Tabassum, A. K. M. Sarwar Inam and Elvis D. Sangmen
Agronomy 2025, 15(7), 1524; https://doi.org/10.3390/agronomy15071524 - 23 Jun 2025
Viewed by 536
Abstract
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture [...] Read more.
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture (CEA) systems, where maximizing fruit quality and nutrient density is essential for both the yield and consumer health. To address that challenge, this study introduces a novel, multimodal harvest readiness framework tailored to nutrient film technology (NFT)-based smart farms. The proposed approach integrates plant-level stress diagnostics and fruit-level phenotyping using wearable biosensors, AI-assisted computer vision, and non-invasive physiological sensing. Key physiological markers—including the volatile organic compound (VOC) methanol, phytohormones salicylic acid (SA) and indole-3-acetic acid (IAA), and nutrients nitrate and ammonium concentrations—are combined with phenomic traits such as fruit color (a*), size, chlorophyll index (rGb), and water status. The innovation lies in a four-stage decision-making pipeline that filters physiologically stressed plants before selecting ripened fruits based on internal and external quality indicators. Experimental validation across four plant conditions (control, water-stressed, light-stressed, and wounded) demonstrated the efficacy of VOC and hormone sensors in identifying optimal harvest candidates. Additionally, the integration of low-cost electrochemical ion sensors provides scalable nutrient monitoring within NFT systems. This research delivers a robust, sensor-driven framework for autonomous, data-informed harvesting decisions in smart indoor agriculture. By fusing real-time physiological feedback with AI-enhanced phenotyping, the system advances precision harvest timing, improves fruit nutritional quality, and sets the foundation for resilient, feedback-controlled farming platforms suited to meeting global food security and sustainability demands. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

23 pages, 3343 KiB  
Article
Mucoadhesive PVA Film for Sustained Resveratrol Delivery: Formulation, Characterization, and Release Profile
by Arleta Dołowacka-Jóźwiak, Izabela Nawrot-Hadzik, Adam Matkowski, Tomasz Ciecieląg, Agnieszka Gawin-Mikołajewicz, Ruth Dudek-Wicher, Mirosława Prochoń, Dorota Markowska, Robert Adamski, Adrian Wiater and Bożena Lucyna Karolewicz
Molecules 2025, 30(12), 2642; https://doi.org/10.3390/molecules30122642 - 18 Jun 2025
Cited by 1 | Viewed by 521
Abstract
This study aimed to develop and optimize polyvinyl alcohol (PVA)-based polymeric films containing resveratrol (RSV) and to evaluate their applicability as oral mucosal wound dressings. Given the dynamic and complex nature of the oral environment, physicochemical parameters such as elasticity, mucoadhesive strength, and [...] Read more.
This study aimed to develop and optimize polyvinyl alcohol (PVA)-based polymeric films containing resveratrol (RSV) and to evaluate their applicability as oral mucosal wound dressings. Given the dynamic and complex nature of the oral environment, physicochemical parameters such as elasticity, mucoadhesive strength, and the release profile of the RSV were systematically investigated. The therapeutic performance of pure resveratrol was compared with that of an extract derived from Reynoutria japonica. Films were fabricated using a solvent casting method and characterized in terms of thickness uniformity, weight, color consistency, and flexibility, all of which met the required pharmaceutical criteria. Two tested formulations, FR2 (RSV/PVA/PVP/MCA15C/NaCMC/W/PGE), FE2 (extract/PVA/PVP/MCA15C/NaCMC/W/PGE), showed the best mucoadhesive properties (261.11 ± 0.5 g for FR2 and 299.43 ± 0.38 g for FE2) and a favorable release profile both in water (72.42% for FR2, 77.23% for FE2) and in saliva (49.74% for FR2, 49.70% for FE2). Moreover, the optimized films are characterized by hydrophilicity (contact angle < 90°) and the pH value of the extract after their blurring is close to physiological, which promotes better tolerance and reduces the risk of irritation. Obtained results for polymeric films with resveratrol and R. japonica extract confirmed their great potential for use in dentistry as modern, mucoadhesive dressings, improving the effectiveness of local therapies. Full article
Show Figures

Figure 1

23 pages, 2579 KiB  
Review
Role of C-Jun N-Terminal Kinases on a Stressed Epithelium: Time for Testing Isoform Specificity
by Nitesh Shashikanth, Osama Alaidi, Lohitha Basa, Shreya Taank, RadhaKrishna Rao and Jayaraman Seetharaman
Biology 2025, 14(6), 649; https://doi.org/10.3390/biology14060649 - 3 Jun 2025
Viewed by 692
Abstract
Biological, physiological, and psychological stressors cause a “stress response” in our bodies. Stressors that are sensorily perceived (either acute or chronic) trigger hormonal responses from the sympathetic nervous system—the SAM and HPA axis—that effect intended organs to alert the individual. Other stressors have [...] Read more.
Biological, physiological, and psychological stressors cause a “stress response” in our bodies. Stressors that are sensorily perceived (either acute or chronic) trigger hormonal responses from the sympathetic nervous system—the SAM and HPA axis—that effect intended organs to alert the individual. Other stressors have a direct effect on the target organ(s) of the body—e.g., physical injury and wounds, toxins, ionizing, and UV radiation. Both kinds of stressors change cell equilibrium, often leading to reactive oxygen species (ROS) accumulation and cellular damage. Among the signaling pathways involved in fighting these stressors, the c-Jun-N-terminal kinases (JNK) respond to diverse kinds of stressors. This review focuses on JNK1 and JNK2, both of which are ubiquitously present in all cell types, and attention is paid to gastrointestinal tract epithelial cells and their response—including tight junction disruption and cytoskeletal changes. We discuss the seemingly opposite roles of JNK1 and JNK2 in helping cells choose pro-survival and pro-apoptotic pathways. We examine the common features of the JNK protein structure and the possibilities of discovering JNK-isoform-specific inhibitors since, although JNK1 and JNK2 are involved in multiple diseases, including cancer, obesity, diabetes, musculoskeletal and liver disease, no cell-specific or isoform-specific inhibitors are available. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

23 pages, 10598 KiB  
Article
Robotic Wound Closure: Detection and Control of Patient Motion
by Edward H. Currie, Yimin Zhao, Louis Kavoussi and Sina Y. Rabbany
Actuators 2025, 14(6), 274; https://doi.org/10.3390/act14060274 - 31 May 2025
Viewed by 886
Abstract
Physiological organ motion, such as breathing movement, presents a challenge in the development of medical robots for autonomous wound closure. The robot’s task is to determine the wound’s pose and relay magnetic fixtures near the wound edge with pre-specified accuracy. To address this [...] Read more.
Physiological organ motion, such as breathing movement, presents a challenge in the development of medical robots for autonomous wound closure. The robot’s task is to determine the wound’s pose and relay magnetic fixtures near the wound edge with pre-specified accuracy. To address this problem, a visual motion detection system (VMDS) is designed to determine the pose of a wound. To ensure precise tracking of the wound, a varying target sliding mode control (VT-SMC) scheme was developed to follow the wound movement. Experiments demonstrate excellent agreement, with less than 0.67 mm variance between the VMDS measurements, real motion for three translations, and 0.26 degrees for three rotations. The relay error is 0.86 mm under the patient motion (position: 15 mm, orientation: 5 deg) in the autonomous robotic wound closure system. The developed robot successfully achieves the necessary motion tracking, which proves sufficient for the accuracy of wound closure in clinical applicability. Full article
(This article belongs to the Special Issue Actuators in Robotic Control—3rd Edition)
Show Figures

Figure 1

17 pages, 2829 KiB  
Article
Hybrid Adhesive Hydrogel Patch Containing Genipin-Crosslinked Gelatin–Hyaluronic Acid for Future Use in Atopic Dermatitis
by Nurul Ain Zawawi, Manira Maarof, Nur Izzah Md Fadilah, Daniel Looi Qi Hao, Yasuhiko Tabata and Mh Busra Fauzi
J. Funct. Biomater. 2025, 16(6), 195; https://doi.org/10.3390/jfb16060195 - 26 May 2025
Cited by 2 | Viewed by 996
Abstract
Hydrogel patches have gained significant attention in wound healing applications as they are similar to hydrogel dressings due to their moisture-retentive properties, biocompatibility, and ability to promote tissue regeneration. In this study, gelatin-based hydrogels crosslinked with genipin and incorporated with hyaluronic acid (HA) [...] Read more.
Hydrogel patches have gained significant attention in wound healing applications as they are similar to hydrogel dressings due to their moisture-retentive properties, biocompatibility, and ability to promote tissue regeneration. In this study, gelatin-based hydrogels crosslinked with genipin and incorporated with hyaluronic acid (HA) were developed to enhance mechanical stability, swelling behavior, and structural integrity. Fourier transform infrared (FTIR), thermogravimetric (TGA), and energy-dispersive X-ray (EDX) analyses were conducted and confirmed successful crosslinking and good thermal stability, ensuring hydrogel durability under physiological conditions. The optimized hydrogel (GE_HA_GNP) exhibited a sufficient water vapor transmission rate (WVTR), swelling ratio, and contact angle, allowing for effective wound exudate absorption and hydration maintenance, which is essential for accelerated healing. The findings demonstrate that the crosslinked hydrogels were able to maintain a WVTR of 500 to 1500 gm−2 day−1, a contact angle of >40°, and a swelling ratio of 700–1000%. The combination of genipin as a crosslinker and the addition of HA significantly improved the mechanical properties and biocompatibility of the hydrogels, making them promising candidates for an alternative treatment for atopic dermatitis and a potential wound dress-ing. Furthermore, the hydrogel patches show potential for future drug delivery appli-cations, with further studies required to evaluate their antimicrobial properties and long-term clinical performance. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

Back to TopTop