Integrating Physical Activity and Artificial Intelligence in Burn Rehabilitation: Muscle Recovery and Body Image Restoration
Abstract
1. Introduction
2. Pathophysiology of Muscle Loss After Burn Injury
3. Physical Activity Interventions for Muscle Recovery
3.1. Resistance Training
3.2. Aerobic Exercise
3.3. Combined Modalities and Early Initiation
4. Physical Activity and Body Image Restoration
4.1. Scar Management and Aesthetic Improvement
4.2. Microvascular and Tissue Recovery
4.3. Psychological and Emotional Resilience
4.4. Aesthetic Rehabilitation and Holistic Wellbeing
5. Challenges and Barriers to Exercise in Burn Survivors
6. Clinical Implications and Future Directions
6.1. Best Practices in Exercise Rehabilitation
6.2. Emerging Therapeutic Strategies
7. AI-Driven and Digital Technologies in Burn Rehabilitation
7.1. Wearables and Biosensors
7.2. Virtual Reality and Serious Games in Rehabilitation
7.3. Research Gaps and Future Directions
- Long-term randomized controlled trials are needed to assess the sustained effects of various exercise modalities on scar quality, muscular recovery, psychological well-being, and quality of life.
- The development of standardized exercise prescription guidelines specific to burn injury populations is essential to ensure safety, efficacy, and reproducibility across rehabilitation settings.
- Greater emphasis must be placed on individualized, culturally sensitive, and resource-adapted physical activity programs to address disparities in access to high-quality burn rehabilitation services globally.
7.4. Priority Areas for Future Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeschke, M.G.; van Baar, M.E.; Choudhry, M.A.; Chung, K.K.; Gibran, N.S.; Logsetty, S. Burn injury. Nat. Rev. Dis. Primers 2020, 6, 11. [Google Scholar] [CrossRef]
- Ferrari, A.J.; Santomauro, D.F.; Aali, A.; Abate, Y.H.; Abbafati, C.; Abbastabar, H.; Abd ElHafeez, S.; Abdelmasseh, M.; Abd-Elsalam, S.; Abdollahi, A. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- Knuth, C.M.; Auger, C.; Jeschke, M.G. Burn-induced hypermetabolism and skeletal muscle dysfunction. Am. J. Physiol. Cell Physiol. 2021, 321, C58–C71. [Google Scholar] [CrossRef]
- Osborne, T.; Wall, B.; Edgar, D.W.; Fairchild, T.; Wood, F. Current understanding of the chronic stress response to burn injury from human studies. Burn. Trauma 2023, 11, tkad007. [Google Scholar] [CrossRef]
- Klein, M.B.; Lezotte, D.L.; Fauerbach, J.A.; Herndon, D.N.; Kowalske, K.J.; Carrougher, G.J.; DeLateur, B.J.; Holavanahalli, R.; Esselman, P.C.; Agustin, T.B.S. The National Institute on Disability and Rehabilitation Research burn model system database: A tool for the multicenter study of the outcome of burn injury. J. Burn Care Res. 2007, 28, 84–96. [Google Scholar] [CrossRef]
- Bogart, L.M.; Ojikutu, B.O.; Tyagi, K.; Klein, D.J.; Mutchler, M.G.; Dong, L.; Lawrence, S.J.; Thomas, D.R.; Kellman, S. COVID-19 related medical mistrust, health impacts, and potential vaccine hesitancy among Black Americans living with HIV. JAIDS J. Acquir. Immune Defic. Syndr. 2021, 86, 200–207. [Google Scholar] [CrossRef]
- Palackic, A.; Suman, O.E.; Porter, C.; Murton, A.J.; Crandall, C.G.; Rivas, E. Rehabilitative exercise training for burn injury. Sports Med. 2021, 51, 2469–2482. [Google Scholar] [CrossRef]
- Deflorin, C.; Hohenauer, E.; Stoop, R.; Van Daele, U.; Clijsen, R.; Taeymans, J. Physical management of scar tissue: A systematic review and meta-analysis. J. Altern. Complement. Med. 2020, 26, 854–865. [Google Scholar] [CrossRef]
- Romero, S.A.; Moralez, G.; Jaffery, M.F.; Huang, M.; Engelland, R.E.; Cramer, M.N.; Crandall, C.G. Exercise training improves microvascular function in burn injury survivors. Med. Sci. Sports Exerc. 2020, 52, 2430. [Google Scholar] [CrossRef]
- Pearce, L.; Costa, N.; Sherrington, C.; Hassett, L. Implementation of digital health interventions in rehabilitation: A scoping review. Clin. Rehabil. 2023, 37, 1533–1551. [Google Scholar] [CrossRef]
- Guelmami, N.; Fekih-Romdhane, F.; Mechraoui, O.; Bragazzi, N.L. Injury prevention, optimized training and rehabilitation: How is AI reshaping the field of sports medicine. New Asian J. Med. 2023, 1, 30–34. [Google Scholar] [CrossRef]
- Musat, C.L.; Mereuta, C.; Nechita, A.; Tutunaru, D.; Voipan, A.E.; Voipan, D.; Mereuta, E.; Gurau, T.V.; Gurău, G.; Nechita, L.C. Diagnostic Applications of AI in Sports: A Comprehensive Review of Injury Risk Prediction Methods. Diagnostics 2024, 14, 2516. [Google Scholar] [CrossRef]
- Ryan, C.M.; Parry, I.; Richard, R. Functional outcomes following burn injury. J. Burn Care Res. 2017, 38, e614–e617. [Google Scholar] [CrossRef]
- Shah, M.K.; Couper, A.L.; Sandanasamy, S.; McFarlane, P. Challenges and opportunities of applying artificial intelligence to burn wound management: A narrative review. J. Nurs. Rep. Clin. Pract. 2024, 3, 78–88. [Google Scholar] [CrossRef]
- Dabas, M.; Schwartz, D.; Beeckman, D.; Gefen, A. Application of artificial intelligence methodologies to chronic wound care and management: A scoping review. Adv. Wound Care 2023, 12, 205–240. [Google Scholar] [CrossRef]
- Hart, D.; Wolf, S.; Mlcak, R.; Chinkes, D.; Ramzy, P.; Obeng, M.; Ferrando, A.; Wolfe, R.; Herndon, D. Persistence of muscle catabolism after severe burn. Surgery 2000, 128, 312–319. [Google Scholar] [CrossRef]
- Williams, F.N.; Herndon, D.N.; Jeschke, M.G. The hypermetabolic response to burn injury and interventions to modify this response. Clin. Plast. Surg. 2009, 36, 583. [Google Scholar] [CrossRef]
- Dombrecht, D.; Van Daele, U.; Van Asbroeck, B.; Schieffelers, D.; Guns, P.J.; Gebruers, N.; Meirte, J.; van Breda, E. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise. J. Cachexia Sarcopenia Muscle 2023, 14, 758–770. [Google Scholar] [CrossRef]
- Damanti, S.; Senini, E.; De Lorenzo, R.; Merolla, A.; Santoro, S.; Festorazzi, C.; Messina, M.; Vitali, G.; Sciorati, C.; Rovere-Querini, P. Acute Sarcopenia: Mechanisms and Management. Nutrients 2024, 16, 3428. [Google Scholar] [CrossRef]
- Porter, C.; Hardee, J.P.; Herndon, D.N.; Suman, O.E. The role of exercise in the rehabilitation of patients with severe burns. Exerc. Sport Sci. Rev. 2015, 43, 34–40. [Google Scholar] [CrossRef]
- Graham, Z.A.; Lavin, K.M.; O’Bryan, S.M.; Thalacker-Mercer, A.E.; Buford, T.W.; Ford, K.M.; Broderick, T.J.; Bamman, M.M. Mechanisms of exercise as a preventative measure to muscle wasting. Am. J. Physiol. Cell Physiol. 2021, 321, C40–C57. [Google Scholar] [CrossRef]
- Hesselink, M.K.; Schrauwen-Hinderling, V.; Schrauwen, P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2016, 12, 633–645. [Google Scholar] [CrossRef]
- Romanello, V.; Sandri, M. Mitochondrial quality control and muscle mass maintenance. Front. Physiol. 2016, 6, 422. [Google Scholar] [CrossRef]
- Gittings, P.M.; Wand, B.M.; Hince, D.A.; Grisbrook, T.L.; Wood, F.M.; Edgar, D.W. The efficacy of resistance training in addition to usual care for adults with acute burn injury: A randomised controlled trial. Burns 2021, 47, 84–100. [Google Scholar] [CrossRef]
- Habib, Z.; Kausar, R.; Kamran, F. Handling traumatic experiences in facially disfigured female burn survivors. Burns 2021, 47, 1161–1168. [Google Scholar] [CrossRef]
- Nichols, J.F.; Hitzelberger, L.M.; Sherman, J.G.; Patterson, P. Effects of resistance training on muscular strength and functional abilities of community-dwelling older adults. J. Aging Phys. Act. 1995, 3, 238–250. [Google Scholar] [CrossRef]
- Wilmore, J.H.; Knuttgen, H.G. Aerobic exercise and endurance: Improving fitness for health benefits. Physician Sportsmed. 2003, 31, 45–51. [Google Scholar] [CrossRef]
- Rivas, E.; Kleinhapl, J.; Suman-Vejas, O.E. Inter-individual variability of aerobic capacity after rehabilitation exercise training in children with severe burn injury. Burns 2024, 50, 107178. [Google Scholar] [CrossRef]
- Palackic, A.; Abazie, S.; Parry, I.; Sen, S.; Mlcak, R.P.; Lee, J.O.; Herndon, D.N.; Branski, L.K.; Wolf, S.E.; Spratt, H. Comparison of six-minute walk test and modified Bruce treadmill test in paediatric patients with severe burns: A cross-over study. J. Rehabil. Med. 2022, 54, 1064. [Google Scholar] [CrossRef]
- Papagianni, G.; Panayiotou, C.; Vardas, M.; Balaskas, N.; Antonopoulos, C.; Tachmatzidis, D.; Didangelos, T.; Lambadiari, V.; Kadoglou, N.P. The anti-inflammatory effects of aerobic exercise training in patients with type 2 diabetes: A systematic review and meta-analysis. Cytokine 2023, 164, 156157. [Google Scholar] [CrossRef]
- Song, Y.; Jia, H.; Hua, Y.; Wu, C.; Li, S.; Li, K.; Liang, Z.; Wang, Y. The molecular mechanism of aerobic exercise improving vascular remodeling in hypertension. Front. Physiol. 2022, 13, 792292. [Google Scholar] [CrossRef]
- Schieffelers, D.R.; Ru, T.; Dai, H.; Ye, Z.; van Breda, E.; Van Daele, U.; Xie, W.; Wu, J. Effects of early exercise training following severe burn injury: A randomized controlled trial. Burn. Trauma 2024, 12, tkae005. [Google Scholar] [CrossRef]
- Lippi, L.; Ferrillo, M.; Losco, L.; Folli, A.; Marcasciano, M.; Curci, C.; Moalli, S.; Ammendolia, A.; de Sire, A.; Invernizzi, M. Aesthetic rehabilitation medicine: Enhancing wellbeing beyond functional recovery. Medicina 2024, 60, 603. [Google Scholar] [CrossRef]
- Rowe, G.; Edgar, D.W.; Osborne, T.; Fear, M.; Wood, F.M.; Kenworthy, P. Does exercise influence burn-induced inflammation: A cross-over randomised controlled feasibility trial. PLoS ONE 2022, 17, e0266400. [Google Scholar] [CrossRef]
- Van den Kerckhove, E.; Anthonissen, M. Compression therapy and conservative strategies in scar management after burn injury. In Textbook on Scar Management: State of the Art Management and Emerging Technologies; Springer: Cham, Switzerland, 2020; pp. 227–231. [Google Scholar] [CrossRef]
- McDougall, S.; Dallon, J.; Sherratt, J.; Maini, P. Fibroblast migration and collagen deposition during dermal wound healing: Mathematical modelling and clinical implications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 1385–1405. [Google Scholar] [CrossRef]
- Osborne, M.T.; Rowe, G.; Edgar, D.; Fear, M.; Fairchild, T.; Galna, B.; Wall, B.; Kenworthy, P. Does exercise influence chronic inflammation in burns> 1 year after injury? J. Clin. Exerc. Physiol. 2024, 13, 484. [Google Scholar] [CrossRef]
- Karakitsiou, G.; Plakias, S.; Vlotinou, P.; Tsiakiri, A. Assessing the impact of sports and team sports participation on mental health and empowerment at the individual and societal levels: Insights from a Scopus bibliometric analysis. J. Phys. Educ. Sport 2025, 25, 227–240. [Google Scholar] [CrossRef]
- Belval, L.N.; Cramer, M.N.; Moralez, G.; Huang DPT, M.; Watso, J.C.; Fischer, M.; Crandall, C.G. Burn size and environmental conditions modify thermoregulatory responses to exercise in burn survivors. J. Burn Care Res. 2024, 45, 227–233. [Google Scholar] [CrossRef]
- Fischer, M.; Cramer, M.N.; Huang, M.; Belval, L.N.; Watso, J.C.; Cimino, F.A.; Crandall, C.G. Burn injury does not exacerbate heat strain during exercise while wearing body armor. Med. Sci. Sports Exerc. 2020, 52, 2235. [Google Scholar] [CrossRef]
- McKenna, Z.J.; Atkins, W.C.; Gideon, E.A.; Foster, J.; Farooqi, I.A.; Crandall, C.G. Effect of burn injury size on cardiovascular responses to exercise in the heat. Eur. J. Appl. Physiol. 2025, 125, 1997–2005. [Google Scholar] [CrossRef]
- Kohmura, Y. Importance of vision and sun protection in outdoor sports: A narrative review. J. Phys. Educ. Sport 2021, 21, 3187–3194. [Google Scholar] [CrossRef]
- Basha, M.A.; Azab, A.R.; Elnaggar, R.K.; Aboelnour, N.H.; Kamel, N.M.; Aloraini, S.M.; Kamel, F.H. Inspiratory muscle training impact on respiratory muscle strength, pulmonary function, and quality of life in children with chest burn: A randomized controlled trial. Burns 2024, 50, 1916–1924. [Google Scholar] [CrossRef]
- Sibbett, S.H.; Carrougher, G.J.; Orton, C.M.; Sabel, J.I.; Terken, T.; Humbert, A.; Bunnell, A.; Gibran, N.S.; Pham, T.N.; Stewart, B.T. A Randomized Controlled Trial of Home-based Virtual Rehabilitation to Improve Adherence to Prescribed Home Therapy After Burn Injury: A Northwest Regional Burn Model System Trial. J. Burn Care Res. 2025, 46, 197–207. [Google Scholar] [CrossRef]
- Fernandes, A.D.A.; Amorim, P.R.S.; Brito, C.J.; Costa, C.M.A.; Moreira, D.G.; Quintana, M.S.; Marins, J.C.B. Skin temperature behavior after a progressive exercise measured by infrared thermography. J. Phys. Educ. Sport 2018, 18, 1592–1600. [Google Scholar] [CrossRef]
- Jain, A.; Way, D.; Gupta, V.; Gao, Y.; de Oliveira Marinho, G.; Hartford, J.; Sayres, R.; Kanada, K.; Eng, C.; Nagpal, K. Development and assessment of an artificial intelligence–based tool for skin condition diagnosis by primary care physicians and nurse practitioners in teledermatology practices. JAMA Netw. Open 2021, 4, e217249. [Google Scholar] [CrossRef]
- Tabasum, H.; Gill, N.; Mishra, R.; Lone, S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv. 2022, 12, 8691–8707. [Google Scholar] [CrossRef]
- Gregoor, A.M.S.; Sangers, T.E.; Eekhof, J.A.; Howe, S.; Revelman, J.; Litjens, R.J.; Sarac, M.; Bindels, P.J.; Bonten, T.; Wehrens, R. Artificial intelligence in mobile health for skin cancer diagnostics at home (AIM HIGH): A pilot feasibility study. EClinicalMedicine 2023, 60, 102019. [Google Scholar] [CrossRef]
- Pafis, M.; Ispirlidis, M.-P.; Ispirlidis, I.; Malliou, V.J. Defensive behavior against crosses: An analysis of leading Spanish, English, and German elite football teams during the 2022–2023 season. J. Phys. Educ. Sport 2025, 25, 1011–1021. [Google Scholar] [CrossRef]
Technology | Functionality | Benefits | Limitations | Readiness Level |
---|---|---|---|---|
Wearable sensors | Track movement, temp, hydration | Real-time monitoring | Cost, limited burn-specific data | Moderate |
AI wound assessment | Predict scar/wound healing via imaging | Objective scar tracking | Skin tone bias, limited validation | Low–Moderate |
VR therapy | Pain distraction, movement training | Improved adherence, motivation | Equipment access | Moderate |
Serious games | Gamified rehab, especially for children | Engagement, motor/cognitive gain | Few burn-specific tools | Low–Moderate |
Compression garments with sensors | Monitor pressure and response | Personalization, scar optimization | Cost, experimental stage | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malliou, V.J.; Pafis, G.; Katsikas, C.; Plakias, S. Integrating Physical Activity and Artificial Intelligence in Burn Rehabilitation: Muscle Recovery and Body Image Restoration. Appl. Sci. 2025, 15, 8323. https://doi.org/10.3390/app15158323
Malliou VJ, Pafis G, Katsikas C, Plakias S. Integrating Physical Activity and Artificial Intelligence in Burn Rehabilitation: Muscle Recovery and Body Image Restoration. Applied Sciences. 2025; 15(15):8323. https://doi.org/10.3390/app15158323
Chicago/Turabian StyleMalliou, Vasiliki J., George Pafis, Christos Katsikas, and Spyridon Plakias. 2025. "Integrating Physical Activity and Artificial Intelligence in Burn Rehabilitation: Muscle Recovery and Body Image Restoration" Applied Sciences 15, no. 15: 8323. https://doi.org/10.3390/app15158323
APA StyleMalliou, V. J., Pafis, G., Katsikas, C., & Plakias, S. (2025). Integrating Physical Activity and Artificial Intelligence in Burn Rehabilitation: Muscle Recovery and Body Image Restoration. Applied Sciences, 15(15), 8323. https://doi.org/10.3390/app15158323