Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = wood industry economics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

36 pages, 7410 KiB  
Review
The Influence of Hydrogen Bonding in Wood and Its Modification Methods: A Review
by Ting Zhang, Yudong Hu, Yanyan Dong, Shaohua Jiang and Xiaoshuai Han
Polymers 2025, 17(15), 2064; https://doi.org/10.3390/polym17152064 - 29 Jul 2025
Viewed by 337
Abstract
Construction wood has a high economic value, and its construction waste also has multiple consumption values. Natural wood has many advantages, such as thermal, environmental, and esthetic properties; however, wood sourced from artificial fast-growing forests is found to be deficient in mechanical strength. [...] Read more.
Construction wood has a high economic value, and its construction waste also has multiple consumption values. Natural wood has many advantages, such as thermal, environmental, and esthetic properties; however, wood sourced from artificial fast-growing forests is found to be deficient in mechanical strength. This shortcoming makes it less competitive in certain applications, leading many markets to remain dominated by non-renewable materials. To address this issue, various modification methods have been explored, with a focus on enhancing the plasticity and strength of wood. Studies have shown that hydrogen bonds in the internal structure of wood have a significant impact on its operational performance. Whether it is organic modification, inorganic modification, or a combination thereof, these methods will lead to a change in the shape of the hydrogen bond network between the components of the wood or will affect the process of its breaking and recombination, while increasing the formation of hydrogen bonds and related molecular synergistic effects and improving the overall operational performance of the wood. These modification methods not only increase productivity and meet the needs of efficient use and sustainable environmental protection but also elevate the wood industry to a higher level of technological advancement. This paper reviews the role of hydrogen bonding in wood modification, summarizes the mechanisms by which organic, inorganic, and composite modification methods regulate hydrogen bond networks, discusses their impacts on wood mechanical properties, dimensional stability, and environmental sustainability, and provides an important resource for future research and development. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Figure 1

18 pages, 2786 KiB  
Article
Performance of Oriented Strand Boards Made with Jack Pine Strands Produced by an Innovative Strander-Canter
by Rosilei Garcia, Alain Cloutier, Irsan Alipraja, Roger E. Hernández and Ahmed Koubaa
Forests 2025, 16(8), 1227; https://doi.org/10.3390/f16081227 - 25 Jul 2025
Viewed by 178
Abstract
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To [...] Read more.
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To address this issue, a strander-canter capable of producing both softwood cants and strands for oriented strand board (OSB) presents a promising alternative. This study evaluates the feasibility of using jack pine strands generated by a novel strander-canter equipped with a cutterhead for OSB strand production. Strands were generated from frozen and unfrozen logs under varying cutting parameters and incorporated in the core layer of the panels. Industrial aspen strands were used for the surface layers. OSB panels were assessed for mechanical and physical properties following the CSA O325:21 standard. Strand size distribution and vertical density profiles were also analyzed. The results indicated that panels made from jack pine strands demonstrated bending and internal bond properties that were either comparable to or superior to those of the control panels. However, including jack pine strands in the core layer increased the thickness swelling of the panels. Full article
(This article belongs to the Special Issue Properties and Uses of Value-Added Wood-Based Products and Composites)
Show Figures

Graphical abstract

24 pages, 2758 KiB  
Article
A Techno-Economic Analysis of Integrating an Urban Biorefinery Process Within a Wastewater Treatment Plant to Produce Sustainable Wood Adhesives
by Blake Foret, William M. Chirdon, Rafael Hernandez, Dhan Lord B. Fortela, Emmanuel Revellame, Daniel Gang, Jalel Ben Hmida, William E. Holmes and Mark E. Zappi
Sustainability 2025, 17(15), 6679; https://doi.org/10.3390/su17156679 - 22 Jul 2025
Viewed by 404
Abstract
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal [...] Read more.
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal wastewater treatment works. The utilization of biosolids (particularly microbial proteins) from wastewater treatment operations could generate a sustainable bio-adhesive for the wood industry, reduce carbon footprint, mitigate health concerns related to the use of carcinogenic components, and support a more circular economic option for wastewater treatment. A techno-economic analysis for three 10 MGD wastewater treatment operations producing roughly 11,300 dry pounds of biosolids per day, in conjunction with co-feedstock defatted soy flour protein at varying ratios (i.e., 0%, 15%, and 50% wet weight), was conducted. Aspen Capital Cost Estimator V12 was used to design and estimate installed equipment additions for wastewater treatment plant integration into an urban biorefinery process. Due to the mechanical attributes and market competition, the chosen selling prices of each adhesive per pound were set for analysis as USD 0.75 for Plant Option P1, USD 0.85 for Plant Option P2, and USD 1.00 for Plant Option P3. Over a 20-year life, each plant option demonstrated economic viability with high NPVs of USD 107.9M, USD 178.7M, and USD 502.2M and internal rates of return (IRRs) of 24.0%, 29.0%, and 44.2% respectively. The options examined have low production costs of USD 0.14 and USD 0.19 per pound, minimum selling prices of USD 0.42–USD 0.51 per pound, resulting in between 2- and 4-year payback periods. Sensitivity analysis shows the effects biosolid production fluctuations, raw material market price, and adhesive selling price have on economics. The results proved profitable even with large variations in the feedstock and raw material prices, requiring low market selling prices to reach the hurdle rate of examination. This technology is economically enticing, and the positive environmental impact of waste utilization encourages further development and analysis of the bio-adhesive process. Full article
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Experimental Evaluation of Pet Food Waste as Biomass Fuel: Corrosion, Emissions, and Energy Potential
by Harald Puratich-Fernández, Joaquin Aburto-Hole, Joaquin Díaz, Francisca Angerstein, Fernanda de Groote, Héctor Quinteros-Lama, Johan González and Diógenes Hernández
Appl. Sci. 2025, 15(14), 7792; https://doi.org/10.3390/app15147792 - 11 Jul 2025
Viewed by 389
Abstract
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food [...] Read more.
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food as biomass for boiler combustion. It analyzed its chemical composition, energy impact, and emissions of volatile organic compounds (VOCs) through TD-GC/MS, as well as the corrosion effects on boiler metals. An energy assessment of the production process and a combustion characterization of the waste were conducted to identify opportunities for improving energy efficiency and sustainability. The results demonstrated that the chemical composition of the waste and other biomass-related parameters were within acceptable economic and environmental ranges. A reduction of 0.015 Mg of CO2eq per Mg of produced pet food was achieved. Regarding VOCs, their environmental impact was minimal due to the molecular structure of the compounds. Additionally, the corrosion rate caused by waste incineration was comparable to that of domestic gas in the case of cat food, with a rate of 214.74 mpy, while the dog food yielded 55.42 mpy, which is near that of other types of biomass, such as wood chips and pellets. The use of residual biomass in pet food production is a viable alternative for reducing carbon footprint, promoting a circular economy, and improving the industry’s sustainability. Full article
Show Figures

Figure 1

21 pages, 7490 KiB  
Article
Exploring the Biocultural Nexus of Gastrodia elata in Zhaotong: A Pathway to Ecological Conservation and Economic Growth
by Yanxiao Fan, Menghua Tian, Defen Hu and Yong Xiong
Biology 2025, 14(7), 846; https://doi.org/10.3390/biology14070846 - 11 Jul 2025
Viewed by 513
Abstract
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate [...] Read more.
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate Tianma as a traditional crop but have also developed a series of traditional knowledge related to its cultivation, processing, medicinal use, and culinary applications. In this study, field surveys employing ethnobotanical methods were conducted in Yiliang County, Zhaotong City, from August 2020 to May 2024, focusing on Tianma. A total of 114 key informants participated in semi-structured interviews. The survey documented 23 species (and forms) from seven families related to Tianma cultivation. Among them, there were five Gastrodia resource taxa, including one original species, and four forms. These 23 species served as either target cultivated species, symbiotic fungi (promoting early-stage Gastrodia germination), or fungus-cultivating wood. The Fagaceae family, with 10 species, was the most dominant, as its dense, starch-rich wood decomposes slowly, providing Armillaria with a long-term, stable nutrient substrate. The cultural importance (CI) statistics revealed that Castanea mollissima, G. elata, G. elata f. flavida, G. elata f. glauca, G. elata f. viridis, and Xuehong Tianma (unknown form) exhibited relatively high CI values, indicating their crucial cultural significance and substantial value within the local community. In local communities, traditionally processed dried Tianma tubers are mainly used to treat cardiovascular diseases and also serve as a culinary ingredient, with its young shoots and tubers incorporated into dishes such as cold salads and stewed chicken. To protect the essential ecological conditions for Tianma, the local government has implemented forest conservation measures. The sustainable development of the Tianma industry has alleviated poverty, protected biodiversity, and promoted local economic growth. As a distinctive plateau specialty of Zhaotong, Tianma exemplifies how biocultural diversity contributes to ecosystem services and human well-being. This study underscores the importance of biocultural diversity in ecological conservation and the promotion of human welfare. Full article
(This article belongs to the Special Issue Young Researchers in Conservation Biology and Biodiversity)
Show Figures

Figure 1

19 pages, 3907 KiB  
Article
Input–Output Analysis of Wood Industry Agglomeration and Industrial Chain Linkages in Heilongjiang Province
by Chenglin Ma, Jiajia Feng, Changjiang Liu, Mengwei Zhou, Wenchao Kang and Xueqi Meng
Forests 2025, 16(7), 1124; https://doi.org/10.3390/f16071124 - 8 Jul 2025
Viewed by 241
Abstract
In the field of the wood industry, the competitive effect caused by interregional resource differences and the linkage effect generated by industrial chain synergy profoundly affects the development direction of the industry in each province. Based on China’s input–output table from 2002 to [...] Read more.
In the field of the wood industry, the competitive effect caused by interregional resource differences and the linkage effect generated by industrial chain synergy profoundly affects the development direction of the industry in each province. Based on China’s input–output table from 2002 to 2017, this paper constructs an industrial comparative advantage measurement model using location entropy and finds that the industrial agglomeration advantage of the wood products industry in Heilongjiang Province is remarkable in the national context, and that it had already caught up with 79% of the provinces in 2017; we analyze the industrial characteristics of the wood products industry in Heilongjiang Province through the upstream and downstream degrees, the backward and forward correlation coefficients. The findings indicate that the average value of the downstream degree is 28.57% higher than the average value of the upstream degree in Heilongjiang Province, and the industry association mode has shifted from “demand-pull” to “supply-led”. Therefore, the timber industry in Heilongjiang Province has the capability to transform its resource advantage into a competitive edge across the entire industrial chain. Meanwhile, its sensitivity to economic fluctuations in various provinces is increasing significantly. However, there are still notable shortcomings: insufficient capacity to expand the terminal market and integrate the downstream segments of the industrial chain. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

20 pages, 6082 KiB  
Article
A Two-Stage Site Selection Model for Wood-Processing Plants in Heilongjiang Province Based on GIS and NSGA-II Integration
by Chenglin Ma, Xinran Wang, Yilong Wang, Yuxin Liu and Wenchao Kang
Forests 2025, 16(7), 1086; https://doi.org/10.3390/f16071086 - 30 Jun 2025
Viewed by 358
Abstract
Heilongjiang Province, as China’s principal gateway for Russian timber imports, faces structural inefficiencies in the localization of wood-processing enterprises—characterized by ecological sensitivity, resource–industry mismatches, and uneven spatial distribution. To address these challenges, this study proposes a two-stage site selection framework that integrates Geographic [...] Read more.
Heilongjiang Province, as China’s principal gateway for Russian timber imports, faces structural inefficiencies in the localization of wood-processing enterprises—characterized by ecological sensitivity, resource–industry mismatches, and uneven spatial distribution. To address these challenges, this study proposes a two-stage site selection framework that integrates Geographic Information Systems (GIS) with an enhanced Non-dominated Sorting Genetic Algorithm II (NSGA-II). The model aims to reconcile ecological protection with industrial efficiency by identifying optimal facility locations that minimize environmental impact, reduce construction and logistics costs, and enhance service coverage. Using spatially resolved multi-source datasets—including forest resource distribution, transportation networks, ecological redlines, and socioeconomic indicators—the GIS-based suitability analysis (Stage I) identified 16 candidate zones. Subsequently, a multi-objective optimization model (Stage II) was applied to minimize carbon intensity and cost while maximizing service accessibility. The improved NSGA-II algorithm achieved convergence within 700 iterations, generating 124 Pareto-optimal solutions and enabling a 23.7% reduction in transport-related CO2 emissions. Beyond carbon mitigation, the model spatializes policy constraints and economic trade-offs into actionable infrastructure plans, contributing to regional sustainability goals and transboundary industrial coordination with Russia. It further demonstrates methodological generalizability for siting logistics-intensive and policy-sensitive facilities in other forestry-based economies. While the model does not yet account for temporal dynamics or agent behaviors, it provides a robust foundation for informed planning under China’s dual-carbon strategy and offers replicable insights for the global forest products supply chain. Full article
Show Figures

Figure 1

23 pages, 745 KiB  
Article
Banking Sector Profits and Export Margins of Wood Forest Products: Evidence from China’s Provincial Data
by Jianling Chen, Xingyuan Yao, Jixing Huang, Weiming Lin and Qingfan Lin
Forests 2025, 16(7), 1071; https://doi.org/10.3390/f16071071 - 27 Jun 2025
Viewed by 297
Abstract
The export expansion of wood forest products (WFPs) generates substantial socio-economic benefits. Unfortunately, the WFP manufacturing industry frequently experiences challenges in accessing finance and high financing costs. Since profit scramble between financial sector and real economy sectors has become a critical global concern, [...] Read more.
The export expansion of wood forest products (WFPs) generates substantial socio-economic benefits. Unfortunately, the WFP manufacturing industry frequently experiences challenges in accessing finance and high financing costs. Since profit scramble between financial sector and real economy sectors has become a critical global concern, it is worth investigating how banking sector profits (BSPs) impact WFPs’ export margins, and whether a “financial concession” policy can mitigate or amplify this effect. Drawing on over four million trade records from China’s Customs Database and the United Nations Trade and Business Database, this study quantifies the WFPs’ export margins of 31 provinces in Mainland China to 184 countries during 2007–2022. Then it assesses the effects of regional BSP on the WFPs’ export margins. The results indicate that the extensive, intensive, and quantity margins of WFPs’ export exhibit an overall upward trend with fluctuations, while the price margin has shown steady growth since 2016. Regional BSP has significant negative effects on the extensive, intensive, and quantity margins. The observed upward trend of WFPs’ export margins implies that low BSP may facilitate export growth of WFPs. Further heterogeneity analysis indicates that the BSPs’ negative impact is more pronounced for labor-intensive WFPs’ exports. China’s “financial concession” policy effectively mitigates the BSPs’ adverse effects. Moderation effect analysis demonstrates that a larger number of bank institution outlets, a higher share of rural bank institution outlets, and the development of digital finance significantly reduce the BSPs’ negative effects. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

20 pages, 2007 KiB  
Review
The Habitats of European Oak (Quercus) in Poland and General Oak Wood Color Issues
by Edmund Smolarek, Jolanta Kowalska, Bartosz Pałubicki and Marek Wieruszewski
Forests 2025, 16(7), 1063; https://doi.org/10.3390/f16071063 - 26 Jun 2025
Viewed by 422
Abstract
Oak wood color plays a critical role in veneer production, where visual consistency directly affects material value. However, production choices are still often based on experience rather than systematic scientific data. Although many studies have examined individual factors affecting wood color, such as [...] Read more.
Oak wood color plays a critical role in veneer production, where visual consistency directly affects material value. However, production choices are still often based on experience rather than systematic scientific data. Although many studies have examined individual factors affecting wood color, such as species or drying conditions, few have brought together ecological and industrial perspectives. This review addresses that gap by examining how habitat, species characteristics, and processing parameters influence color variation in Quercus robur and Quercus petraea. A structured literature review was conducted using Web of Science, Scopus, and Google Scholar, complemented by industry observations. The results show that site-specific factors—such as soil type, forest type, and regional climate—can significantly affect oak wood color, in some cases more than genetic differences. Drying methods, wood age, and log storage also contribute to variations in color and homogeneity. These findings highlight the potential for better raw material selection and processing strategies, leading to improved quality, sustainability, and economic efficiency in veneer production. Remaining knowledge gaps—particularly in predictive modeling and veneer-specific studies—point to important areas for future research. Full article
(This article belongs to the Special Issue Phenomenon of Wood Colour)
Show Figures

Figure 1

18 pages, 1856 KiB  
Article
Evaluating the Wood Quality of Conifer Species in the Greek Forest Sector Using an Integrated Multi-Criteria Decision Analysis (MCDA) Approach
by Marina Chavenetidou, Stefanos Tsiaras, Panagiotis P. Koulelis and Dimitrios I. Raptis
Forests 2025, 16(6), 1028; https://doi.org/10.3390/f16061028 - 19 Jun 2025
Viewed by 418
Abstract
The aim of this study was to evaluate the suitability of eight softwood species most commonly used by Greek timber industries, including furniture manufacturers and companies producing roundwood, sawn timber, and plywood. The analysis was based on integrated Multi-Criteria Decision Analysis (MCDA), using [...] Read more.
The aim of this study was to evaluate the suitability of eight softwood species most commonly used by Greek timber industries, including furniture manufacturers and companies producing roundwood, sawn timber, and plywood. The analysis was based on integrated Multi-Criteria Decision Analysis (MCDA), using a combined approach of the PROMETHEE method and the Analytical Hierarchy Process (AHP), taking into consideration some important criteria that affect timber quality. According to the PROMETHEE complete ranking, Aleppo pine (Pinus halepensis Mill.) achieved the best performance under the selected criteria among the examined softwood species, underlying the importance of Aleppo pine to the Greek timber industry. Our findings could be highly beneficial to the wood industry, promoting the recovery and advancement of the forest sector in general, taking into account that sustainable wood supply is lower than the total biomass available in Europe. Policymakers should prioritize the selection of conifer tree species that can strengthen Greece’s forestry sector, promote sustainable management practices, and increase the economic value derived from the country’s diverse forest resources. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

23 pages, 1108 KiB  
Review
Urban Sustainability in Construction: A Comparative Review of Waste Management Practices in Developed Nations
by Tony Hadibarata and Risky Ayu Kristanti
Urban Sci. 2025, 9(6), 217; https://doi.org/10.3390/urbansci9060217 - 12 Jun 2025
Viewed by 1231
Abstract
The development of the construction industry in Hong Kong and the UK has long played a vital role in economic development, advanced or otherwise, but has also brought formidable environmental challenges, particularly in terms of the huge volume of waste generated. This review [...] Read more.
The development of the construction industry in Hong Kong and the UK has long played a vital role in economic development, advanced or otherwise, but has also brought formidable environmental challenges, particularly in terms of the huge volume of waste generated. This review paper puts under scrutiny the environmental management practices and green materials and technologies adoption in the construction industries of two developed regions, Hong Kong and the UK, the main objective being to compare their approaches to construction waste management and assess the level to which they have adopted sustainable practices. This review recognizes construction waste as a major contributor to environmental degradation and indicates the on-site waste reduction according to waste hierarchy as adopted by both regions. Major findings are that effective environmental management practices, such as resource optimization, waste minimization, and pollution prevention, are also enforced through legislation and fiscal policies. The use of eco-concrete, plastic wood, and recycled steel, together with high-tech roofs and solar panels, shows a move toward sustainable and energy-saving building that is taking root more and more. This paper highlights the need for policies and innovation in promoting sustainable building. Future studies should look into the green techs’ long-term performance, cross-area policy spread, and how digital tools help maximize waste and create sustainably. Full article
Show Figures

Figure 1

30 pages, 3023 KiB  
Article
Integrated Design as a Strategy for Innovating Native Timber Products and Promoting Sustainable Forest Management
by Alejandra Schueftan, Marjorie Martin, Carlos Buchner, Sol García, Mariela Reyes and Michael Arnett
Buildings 2025, 15(11), 1886; https://doi.org/10.3390/buildings15111886 - 29 May 2025
Viewed by 626
Abstract
This study explores how integrating design processes into the native timber industry of southern Chile, specifically in the Araucanía and Los Ríos regions, can improve the value chain and promote sustainability. Chile’s native wood sector is constrained by fragmented value chains, underutilised small-diameter [...] Read more.
This study explores how integrating design processes into the native timber industry of southern Chile, specifically in the Araucanía and Los Ríos regions, can improve the value chain and promote sustainability. Chile’s native wood sector is constrained by fragmented value chains, underutilised small-diameter logs and limited market confidence. These challenges jeopardise forest sustainability and rural livelihoods, underscoring the imperative to find innovative solutions to reinvigorate the sector. A market gap analysis revealed critical limitations in the current industry, including low supply, limited demand, and weak technological development, especially in producing value-added wood products. The research identified over 417,000 hectares of second-growth roble (Nothofagus obliqua)-raulí (Nothofagus alpina)-coigüe (Nothofagus dombeyi) forests suitable for sustainable management. Interviews with woodworking SMEs showed that 66% already use native timber, yet 46% of the projected volume remains underutilised due to the prevalence of short and thin logs. In response to these challenges, the study developed innovative prototypes such as interior claddings and lattices made from smaller, underutilised logs. These designs were evaluated and validated for use in residential and public buildings, demonstrating their potential to meet new market demands while promoting resource efficiency. The results show that, whilst there is a clear need for better infrastructure, workforce training, and commercial planning to support product adoption, design-driven innovation offers a promising path forward enhancing the industry’s competitiveness. Demonstrating how design-led integration can transform under-used native timber into high-value products, simultaneously driving sustainable forest stewardship and local economic growth. Full article
(This article belongs to the Special Issue Research on Timber and Timber–Concrete Buildings)
Show Figures

Figure 1

29 pages, 5625 KiB  
Article
Lower-Carbon Substitutes for Natural Gas for Use in Energy-Intensive Industries: Current Status and Techno-Economic Assessment in Lithuania
by Aurimas Lisauskas, Nerijus Striūgas and Adolfas Jančauskas
Energies 2025, 18(11), 2670; https://doi.org/10.3390/en18112670 - 22 May 2025
Cited by 2 | Viewed by 704
Abstract
Significant shortfalls in meeting the climate mitigation targets and volatile energy markets make evident the need for an urgent transition from fossil fuels to sustainable alternatives. However, the integration of zero-carbon fuels like green hydrogen and ammonia is an immense project and will [...] Read more.
Significant shortfalls in meeting the climate mitigation targets and volatile energy markets make evident the need for an urgent transition from fossil fuels to sustainable alternatives. However, the integration of zero-carbon fuels like green hydrogen and ammonia is an immense project and will take time and the construction of new infrastructure. It is during this transitional period that lower-carbon natural gas alternatives are essential. In this study, the industrial sectors of Lithuania are analysed based on their energy consumption. The industrial sectors that are the most energy-intensive are food, chemical, and wood-product manufacturing. Synthetic natural gas (SNG) has become a viable substitute, and biomethane has also become viable given a feedstock price of 21 EUR/MWh in the twelfth year of operation and 24 EUR/MWh in the eighth year, assuming an electricity price of 140 EUR/MWh and a natural gas price of 50 EUR/MWh. Nevertheless, the scale of investment in hydrogen production is comparable to the scale of investment in the production of other chemical elements; however, hydrogen production is constrained by its high electricity demand—about 3.8 to 4.4 kWh/Nm3—which makes it economically viable only at negative electricity prices. This analysis shows the techno-economic viability of biomethane and the SNG as transition pathways towards a low-carbon energy future. Full article
Show Figures

Graphical abstract

36 pages, 4653 KiB  
Article
Trade-Offs and Synergies of Key Biobased Value Chains and Sustainable Development Goals (SDGs)
by Víctor Fernández Ocamica, Bárbara Palacino, Carmen Bartolomé, Monique Bernardes Figueirêdo and Cristina Lázaro García
Sustainability 2025, 17(7), 3040; https://doi.org/10.3390/su17073040 - 29 Mar 2025
Viewed by 934
Abstract
This work identifies relevant sustainability targets from the UN’s Sustainable Development Goals (SDGs) for main value chains of biobased products, categorized into four dimensions: environment, circularity, social, and economics. Of the 17 Sustainable Development Goals (SDGs), 85 targets were identified as aligning with [...] Read more.
This work identifies relevant sustainability targets from the UN’s Sustainable Development Goals (SDGs) for main value chains of biobased products, categorized into four dimensions: environment, circularity, social, and economics. Of the 17 Sustainable Development Goals (SDGs), 85 targets were identified as aligning with sustainability criteria for industrial biobased systems. Six sectors with biobased activity were analyzed, chemicals, construction, plastics, textiles, woodworking, and pulp and paper, each represented by 3–5 value chains. These value chains were chosen based on certification availability, production scale in Europe, economic importance, and potential to replace fossil-based products. In total, 25 value chains were assessed qualitatively for their positive, negative, or neutral impact on each selected SDG target, using public data like EU reports, life cycle analyses, and expert insights. The results showed that 43 SDG targets were directly applicable to the value chains, with higher synergies for those using waste as feedstock over primary resources like crops or virgin wood. Overall, advances in technology and holistic approaches are paving the way for biobased solutions to replace resource-intensive, petroleum-derived materials and chemicals. These alternatives offer additional advantages, such as enhanced recyclability, biodegradability, and reduced toxicity, making them promising candidates for sustainable development. This study underscores that technological progress and a comprehensive approach can further advance sustainable biobased solutions in industry and have a relevant positive impact on various SDGs. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

Back to TopTop