The Influence of Hydrogen Bonding in Wood and Its Modification Methods: A Review
Abstract
1. Introduction
2. The Interaction of Hydrogen Bonds in Wood Components
2.1. Hydrogen Bonds Between Cellulose Molecules
2.2. Hydrogen Bonds Between Cellulose and Hemicellulose
2.3. Hydrogen Bonds Between Cellulose and Lignin
3. Hydrogen Bond Modification
3.1. Organic Modification
3.1.1. Resin Modification
Classification | Performance Characteristics | Raw Materials and Synthesis Conditions |
---|---|---|
Ultrasonic Frequency (UF) | Poisonous [78]; low cost [79]; curing conditions are mild [79]; fast curing speed; pH = 8.5–10.5. | Urea, formaldehyde; alkaline environment; temperature of 95 °C [80,81]. |
Phenol Formaldehyde Resin (PF) | Poisonous; lower cost; wide curing temperature; neutral or weakly alkaline; good electrical insulation, flame retardancy and chemical stability [82]; high char yield [83]. | Phenol, formaldehyde; acid method synthesis [84,85,86,87]. |
Melamine-Formaldehyde Resin (MF) | High porosity and adsorption capacity [88]; cost is high; curing temperature is higher; slow curing speed; poor toughness, brittleness is high [89]; good heat resistance and scratch resistance [90]. | Melamine, formaldehyde; temperature of 80 °C; spray-drying process [91]. |
3.1.2. Furfuryolation Modification
3.1.3. Acetylation Modification
3.2. Inorganic Modification
3.2.1. SiO2 Modification
3.2.2. CaCO3 Modification
3.3. Organic–Inorganic Synergistic Modification
4. Synergistic Enhancement of Hydrogen Bonds and Chemical Bonds
5. The Future of Hydrogen Bonds and Wood Modification
5.1. Deepening and Intelligent Design of Multi-Scale Hydrogen Bond Network Regulation Technology
5.2. Innovation in the Synergistic Bonding Mechanism of Organic–Inorganic Composite Modification Systems
5.3. Multi-Scenario Application Expansion of Functionalized Wood Products
Author Contributions
Funding
Conflicts of Interest
References
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Ritchie, H. Drivers of Deforestation. Our World in Data. 2021. Available online: https://ourworldindata.org/drivers-of-deforestation?utm_source=Rambler&utm_medium=woman&utm_campaign=transition (accessed on 1 October 2024).
- Hill, C.A.S. Modifying the Properties of Wood. In Wood Modification; Wiley: Hoboken, NJ, USA, 2006; pp. 19–44. [Google Scholar]
- Hill, C.A.S. The Use of Timber in the Twenty-first Century. In Wood Modification; Wiley: Hoboken, NJ, USA, 2006; pp. 1–18. [Google Scholar]
- Hill, C.; Hughes, M.; Gudsell, D. Environmental Impact of Wood Modification. Coatings 2021, 11, 366. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Ding, L.; Chen, L.; Wang, F.; Pu, J.; Jiang, S. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chem. Lett. 2021, 32, 3105–3108. [Google Scholar] [CrossRef]
- Chen, C.; Xu, P.; Wang, X. Structure and mechanical properties of windmill palm fiber with different delignification treatments. J. Bioresour. Bioprod. 2024, 9, 102–112. [Google Scholar] [CrossRef]
- Azar, F.-Z.; El Kasmi, A.; Lillo-Ródenas, M.Á.; del Carmen Román-Martínez, M.; Liu, H. Selective biomass conversion over novel designed tandem catalyst. J. Bioresour. Bioprod. 2024, 9, 508–517. [Google Scholar] [CrossRef]
- Giachi, G.; Capretti, C.; Macchioni, N.; Pizzo, B.; Donato, I.D. A methodological approach in the evaluation of the efficacy of treatments for the dimensional stabilisation of waterlogged archaeological wood. J. Cult. Herit. 2010, 11, 91–101. [Google Scholar] [CrossRef]
- Qiu, Y.; Hu, C.; Li, J.; Lai, Q.; Liu, Z.; Lin, X.; Zhang, W. Cell Wall Modification Based on Combination Reagents to Improve Dimensional Stability of Wood with High Efficiency. J. Agric. Food Chem. 2024, 72, 14601–14609. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Kan, L.; Wang, Y.; Wang, K.; Hu, D. Aqueous modification of waterlogged archaeological wood by phenylboronic acid to reduce hygroscopicity and improve the dimensional stability. Wood Sci. Technol. 2024, 58, 941–957. [Google Scholar] [CrossRef]
- Wen, Y.; Ji, Y.; Zhang, S.; Zhang, J.; Cai, G. A Simple Low-Cost Method to Prepare Lignocellulose-Based Composites for Efficient Removal of Cd(II) from Wastewater. Polymers 2019, 11, 711. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Z.; Yan, Q.; Zhang, S. Dual hydrogen-bonding network strategy enables fabrication of robust soy protein adhesive capable of excellent bonding at ambient temperature. Ind. Crops Prod. 2023, 205, 117477. [Google Scholar] [CrossRef]
- Grabowski, S.J. Triel bond and coordination of triel centres—Comparison with hydrogen bond interaction. Coord. Chem. Rev. 2020, 407, 213171. [Google Scholar] [CrossRef]
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1619–1636. [Google Scholar] [CrossRef]
- Desiraju, G.R. IUPAC definition of the hydrogen bond. Terminology and nomenclature. Found. Crystallogr. 2017, 70, C308. [Google Scholar] [CrossRef]
- Grabowski, S.J. Hydrogen bond types which do not fit accepted definitions. Chem. Commun. 2024, 60, 6239–6255. [Google Scholar] [CrossRef]
- Arunan, E.; Metrangolo, P.; Resnati, G.; Scheiner, S. IUPAC Recommendations: (Un)equivocal Understanding of Hydrogen and Halogen Bonds and Their (Un)equivocal Naming! Cryst. Growth Des. 2024, 24, 8153–8158. [Google Scholar] [CrossRef]
- Zheng, S.; Xu, S.; Wang, G.; Tang, Q.; Jiang, X.; Li, Z.; Xu, Y.; Wang, R.; Lin, F. Proposed Hydrogen-Bonding Index of Donor or Acceptor Reflecting Its Intrinsic Contribution to Hydrogen-Bonding Strength. J. Chem. Inf. Model. 2017, 57, 1535–1547. [Google Scholar] [CrossRef]
- Wu, Q.; Kang, X.; Liu, Z.; Liu, H.; Zhao, X.; Liu, T.; Wang, Q. Study on the preparation of tannic acid-enhanced hydrogels and their properties. J. For. Eng. 2024, 9, 4. [Google Scholar]
- Cheng, L.; Wang, S.; Lu, H.; Ye, J.; Xu, J.; Wang, K.; Jiang, J. Selective activation of CC bonds in lignin model compounds and lignin for production of value-added chemicals. J. Bioresour. Bioprod. 2024, 9, 433–464. [Google Scholar]
- Garcia, M.R.; Iribarren, I.; Rozas, I.; Trujillo, C. Simultaneous Hydrogen Bonds with Different Binding Modes: The Acceptor “Rules” but the Donor “Chooses”. Chem. A Eur. J. 2023, 29, e202203577. [Google Scholar] [CrossRef] [PubMed]
- Decato, D.A.; Sun, J.; Boller, M.R.; Berryman, O.B. Pushing the limits of the hydrogen bond enhanced halogen bond—The case of the C–H hydrogen bond. Chem. Sci. 2022, 13, 11156–11162. [Google Scholar] [CrossRef]
- Willems, W.; Altgen, M.; Rautkari, L. A molecular model for reversible and irreversible hygroscopicity changes by thermal wood modification. Holzforschung 2020, 74, 420–425. [Google Scholar] [CrossRef]
- Olsén, P.; Herrera, N.; Berglund, L.A. Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling. Biomacromolecules 2020, 21, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Park, S.; Jung, D.; Oh, K.K.; Lee, S.H. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood. Int. J. Biol. Macromo. 2020, 165, 187–197. [Google Scholar] [CrossRef] [PubMed]
- ÇElİK, A.E.; Can, A. Surface characterization of wood treated with acidic deep eutectic solvents. Eur. J. Wood Wood Prod. 2023, 81, 143–157. [Google Scholar] [CrossRef]
- Jarvis, M.C. Hydrogen bonding and other non-covalent interactions at the surfaces of cellulose microfibrils. Cellulose 2023, 30, 667–687. [Google Scholar] [CrossRef]
- Chen, R.; Tang, H.; Dai, Y.; Zong, W.; Zhang, W.; He, G.; Wang, X. Robust Bioinspired MXene–Hemicellulose Composite Films with Excellent Electrical Conductivity for Multifunctional Electrode Applications. ACS Nano 2022, 16, 19124–19132. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, Z.; Cui, J.; Zhang, X.; Qian, Y.; Liu, W.; Yang, D.; Qiu, X. Wood-inspired strategy to toughen transparent cellulose nanofibril films. Carbohydr. Polym. 2021, 259, 117759. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Song, S.; Xu, K.; Lyu, J.; Li, X. Curing characteristics of low molecular weight melamine-urea–formaldehyde (MUF) resin-impregnated poplar wood. Constr. Build. Mater. 2022, 325, 126814. [Google Scholar] [CrossRef]
- Fei, T.; Yi, H.-J.; Zboray, R.; Yan, X.-Q.; Song, S.-S.; Ren, L.; Guo, H.; Jiang, Y. Bioinspired Enzymatic Mineralization Incorporates CaCO3 Mesocrystals in Wood for Surface Reinforcement and Flame-Retardancy. ACS Sustain. Chem. Eng. 2022, 10, 16118–16124. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, F.; Feng, Q.; Zheng, J.; Chen, C.; Chen, H.; Yang, W. Preparation of SiO2 nanoparticles with adjustable size for fabrication of SiO2/PMHS ORMOSIL superhydrophobic surface on cellulose-based substrates. Prog. Org. Coat. 2020, 138, 105384. [Google Scholar] [CrossRef]
- Dong, X.; Zhuo, X.; Wei, J.; Zhang, G.; Li, Y. Wood-Based Nanocomposite Derived by in Situ Formation of Organic–Inorganic Hybrid Polymer within Wood via a Sol–Gel Method. ACS Appl. Mater. Interfaces 2017, 9, 9070–9078. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Mülhaupt, R. Hermann Staudinger und die Entwicklung der Makromolekularen Chemie. Nach. Chem. Tech. Lab. 1999, 47, 413–418. [Google Scholar] [CrossRef]
- Kannam, S.K.; Oehme, D.P.; Doblin, M.S.; Gidley, M.J.; Bacic, A.; Downton, M.T. Hydrogen bonds and twist in cellulose microfibrils. Carbohydr. Polym. 2017, 175, 433–439. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, W.; Wang, Z.; Wu, M.; Liu, C.; Yu, G.; Li, Q.; Xu, C.; Li, B. A Green Cellulose Dissolution System for Producing Tunable Regenerated Nanocellulose Formate. ACS Nano 2025, 19, 21243–21259. [Google Scholar] [CrossRef]
- Xue, Y.; Li, W.; Yang, G.; Lin, Z.; Qi, L.; Zhu, P.; Yu, J.; Chen, J. Strength Enhancement of Regenerated Cellulose Fibers by Adjustment of Hydrogen Bond Distribution in Ionic Liquid. Polymers 2022, 14, 2030. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Wang, H.; Hu, H.; Li, C.; Liu, Z.; Shen, Y.; Zhou, Y.; Huang, W. Molecular-level insights into ion-regulated hydrogen bond networks: Activating cellulose crystalline domains for enhanced solar-driven water interfacial evaporation. Chem. Eng. J. 2025, 516, 163802. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Y.; Wu, C. Probing the evolutionary mechanism of the hydrogen bond network of cellulose nanofibrils using three DESs. Int. J. Biol. Macromol. 2023, 234, 123694. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Li, Y.; Duan, H.; Wang, Y.; Zhang, X.; Cao, D.; Wang, S.; Yan, X. Interfacial hydrogen bonding reorganization-assisted aqueous assembly of hydroxypropyl cellulose for robust construction of hollow nanocapsules. Int. J. Biol. Macromol. 2025, 318, 145223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Keten, S.; Derome, D.; Carmeliet, J. Hydrogen bonds dominated frictional stick-slip of cellulose nanocrystals. Carbohydr. Polym. 2021, 258, 117682. [Google Scholar] [CrossRef]
- Han, X.; Ye, Y.; Lam, F.; Pu, J.; Jiang, F. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 2019, 7, 27023–27031. [Google Scholar] [CrossRef]
- Peng, J.; Fu, R.; Huang, Y.; Lu, J.; Xie, X.; Xue, Z.; Chen, M.; Wu, X.; Yue, H.; Mai, H. Influence and mechanism of NaOH concentration on the dissolution of cellulose and extraction of CNF in alkaline solvents at 15 °C. Carbohydr. Polym. 2025, 353, 123265. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Xi, L.; Zhao, Z.; Huo, S.; Huang, G.; Fang, Z.; Song, P. Interface nanoengineering of a core-shell structured biobased fire retardant for fire-retarding polylactide with enhanced toughness and UV protection. J. Clean. Prod. 2022, 336, 130372. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, X.; Li, Y.; Wang, Y.; Yu, H.; Li, Z.; Zhou, Y. Regulating and Controlling the Microstructure of Nanocellulose Aerogels by Varying the Intensity of Hydrogen Bonds. ACS Sustain. Chem. Eng. 2023, 11, 1581–1590. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, L.; Liu, X.; Xia, R.; Li, W.; Wang, G.; Zhang, Q. Zeolite firmly anchored regenerated cellulose aerogel for efficient and biosafe hemostasis. Int. J. Biol. Macromol. 2025, 304, 140743. [Google Scholar] [CrossRef] [PubMed]
- Wohlert, M.; Benselfelt, T.; Wågberg, L.; Furó, I.; Berglund, L.A.; Wohlert, J. Cellulose and the role of hydrogen bonds: Not in charge of everything. Cellulose 2022, 29, 1–23. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, W.; Li, H.; Wu, A.-M. Biosynthesis and Transport of Nucleotide Sugars for Plant Hemicellulose. Front. Plant Sci. 2021, 12, 723148. [Google Scholar] [CrossRef] [PubMed]
- Dolan, G.K.; Cartwright, B.; Bonilla, M.R.; Gidley, M.J.; Stokes, J.R.; Yakubov, G.E. Probing adhesion between nanoscale cellulose fibres using AFM lateral force spectroscopy: The effect of hemicelluloses on hydrogen bonding. Carbohydr. Polym. 2019, 208, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yu, D.; Chen, Y.; Wu, C. Effect of Urea/choline chloride treatment on removing hemicellulose during alkali extraction in the preparation of high-purity dissolving pulps. Ind. Crops Prod. 2024, 222, 119709. [Google Scholar] [CrossRef]
- Khodayari, A.; Thielemans, W.; Hirn, U.; Van Vuure, A.W.; Seveno, D. Cellulose-hemicellulose interactions—A nanoscale view. Carbohydr. Polym. 2021, 270, 118364. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Y.; Ge, H.; Wang, S.; Wang, W.; Li, B.; Xu, H. Theoretical study of lactic acid-based deep eutectic solvents dissociation of hemicellulose with different hydrogen bonding acceptors. Ind. Crops Prod. 2023, 244, 125342. [Google Scholar] [CrossRef] [PubMed]
- Chibrikov, V.; Pieczywek, P.M.; Cybulska, J.; Zdunek, A. Evaluation of elasto-plastic properties of bacterial cellulose-hemicellulose composite films. Ind. Crops Prod. 2023, 205, 117578. [Google Scholar] [CrossRef]
- Wu, H.; Li, J.; Wu, Y.; Gao, H.; Guan, Y. High-Performanced Hemicellulose Based Organic-Inorganic Films with Polyethyleneimine. Polymers 2021, 13, 3777. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Fournet, R.; Sirjean, B.; Amsbury, S.; Alfonso, Y.B.; Pontalier, P.-Y.; Bridgwater, A. Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms. Energy Fuels 2020, 34, 14232–14248. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, C.; Ma, H.; Lu, F. Stereo-Recognition of Hydrogen Bond and Its Implications for Lignin Biomimetic Synthesis. Biomacromolecules 2022, 23, 4985–4994. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, Y.J.; Lee, J.K.; Nurika, I.; Suhartini, S.; Choe, D.; Kim, D.H.; Choi, H.; Murphy, N.P.; Kim, H.Y.; et al. Production of chitosan-based composite film reinforced with lignin-rich lignocellulose nanofibers from rice husk. J. Bioresour. Bioprod. 2024, 9, 174–184. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Xie, H.; Yao, Y.; Zhang, X.; Brozena, A.; Li, J.; Ding, Y.; Zhao, X.; Hong, M.; et al. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 2022, 5, 235–244. [Google Scholar] [CrossRef]
- Wei, X.; Jihun, Z. Fundamental research and application progress of transparent wood interface. J. For. Eng. 2023, 8, 2. [Google Scholar]
- Tang, Q.; Yuan, X.; Zou, M.; Zhang, L.; Chang, L.; Chen, X.; Zhang, J.; Zhou, G.; Gao, K.; Guo, W. Mismatched Refractive Index Strategy for Fabricating Laser-Driven Wood Diffusers from Bulk Wood for Illumination Applications. Adv. Mater. 2024, 36, 2306593. [Google Scholar] [CrossRef]
- Zheng, M.-W.; Lang, Y.; Han, X.; Jia, L.; Zeng, H.; Li, C.-J. Hydrogen-bond-promoted native lignin degradation via PCET process enabled by visible light. Cell Rep. Phys. Sci. 2024, 5, 102009. [Google Scholar] [CrossRef]
- Zhu, G.; Shi, S.; Zhao, L.; Liu, M.; Gao, J.; Xu, J. Catalytic Activation of Carbon–Hydrogen Bonds in Lignin Linkages over Strong-Base-Modified Covalent Triazine Frameworks for Lignin Oxidative Cleavage. ACS Catal. 2020, 10, 7526–7534. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, D.; Feng, M.; He, B.; Chen, X.; Wei, L.; Zhai, S.-R.; An, Q.-D.; Sun, J. Hydrogen Bond Promoted Lignin Solubilization and Electrospinning in Low Cost Protic Ionic Liquids. ACS Sustain. Chem. Eng. 2019, 7, 18593–18602. [Google Scholar] [CrossRef]
- Mu, L.; Shi, Y.; Wang, H.; Zhu, J. Lignin in Ethylene Glycol and Poly(ethylene glycol): Fortified Lubricants with Internal Hydrogen Bonding. ACS Sustain. Chem. Eng. 2016, 4, 1840–1849. [Google Scholar] [CrossRef]
- Kumar, N.; Taylor, B.R.; Chourasia, V.; Rodriguez, A.; Gladden, J.M.; Simmons, B.A.; Choudhary, H.; Sale, K.L. Multi-scale computational screening and mechanistic insights of cyclic amines as solvents for improved lignocellulosic biomass processing. Green Chem. 2025, 27, 5482–5497. [Google Scholar] [CrossRef]
- Cao, D.; Gao, Q.; Sun, H.; Feng, X.; Zhu, J.; Lu, X.; Mu, L. Decoding solvent-lignin interactions: The role of hydrogen bonding in enhancing solubility. Chem. Eng. Sci. 2025, 309, 121495. [Google Scholar] [CrossRef]
- Diao, M.; Wang, D.; Wu, H.; Liu, L.; Lipponen, J.; Yao, J. Mechanically robust, waterproof, fast curing lignin-based waterborne polyurethane with hierarchical hydrogen bonding network. Ind. Crops Prod. 2024, 218, 119028. [Google Scholar] [CrossRef]
- Yu, Y.; Tyrikos-Ergas, T.; Zhu, Y.; Fittolani, G.; Bordoni, V.; Singhal, A.; Fair, R.J.; Grafmüller, A.; Seeberger, P.H.; Delbianco, M. Systematic Hydrogen-Bond Manipulations To Establish Polysaccharide Structure–Property Correlations. Angew. Chem. Int. Ed. 2019, 58, 13127–13132. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, Q.; Wang, Q.; Xiao, Z.; Militz, H. Effects of chemical modification on the mechanical properties of wood. Eur. J. Wood Wood Prod. 2013, 71, 401–416. [Google Scholar] [CrossRef]
- Altgen, M.; Awais, M.; Altgen, D.; Klüppel, A.; Mäkelä, M.; Rautkari, L. Distribution and curing reactions of melamine formaldehyde resin in cells of impregnation-modified wood. Sci. Rep. 2020, 10, 3366. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y. Improvement of Eucalyptus urophylla wood permeability via urea treatment. BioResources 2023, 18, 4790–4804. [Google Scholar] [CrossRef]
- Acosta, A.P.; de Avila Delucis, R.; Santos, O.L.; Amico, S.C. A review on wood permeability: Influential factors and measurement technologies. J. Indian Acad. Wood Sci. 2024, 21, 175–191. [Google Scholar] [CrossRef]
- Zhang, M.X.; Huang, J.W.; Wang, N.Y. Modification of pine-wood/formaldehyde-urea resin composites using electron-beam radiation. In Proceedings of the International Conference on Mechanical Engineering, Civil Engineering and Material Engineering (MECEM 2013), Hefei, China, 27–28 October 2013; pp. 187–189. [Google Scholar]
- Gindl, W.; Hansmann, C.; Gierlinger, N.; Schwanninger, M.; Hinterstoisser, B.; Jeronimidis, G. Using a water-soluble melamine-formaldehyde resin to improve the hardness of Norway spruce wood. J. Appl. Polym. Sci. 2004, 93, 1900–1907. [Google Scholar] [CrossRef]
- Xue, X.; Wang, F. Effects of borides on flame retardant and decay resistance properties of resin modified wood. Constr. Build. Mater. 2025, 489, 142279. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Q.; Lei, H.; Zhou, X.; Zhao, D.; Du, G.; Pizzi, A.; Xi, X. A formaldehyde-free amino resin alternative to urea-formaldehyde adhesives: A bio-based oxidized glucose—Urea resin. Ind. Crops Prod. 2024, 218, 119037. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Wu, Y.; Wan, H. Hydrolysis and recycling of urea formaldehyde resin residues. J. Hazard. Mater. 2018, 355, 96–103. [Google Scholar] [CrossRef]
- Liu, M.; Thirumalai, R.V.K.G.; Wu, Y.; Wan, H. Characterization of the crystalline regions of cured urea formaldehyde resin. RSC Adv. 2017, 7, 49536–49541. [Google Scholar] [CrossRef]
- Wei, A.; Ou, M.; Wang, S.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L. Preparation of a Highly Flame-Retardant Urea–Formaldehyde Resin and Flame Retardance Mechanism. Polymers 2024, 16, 1761. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-L.; Gao, Y.-C.; Qin, B.; Ma, Z.-Y.; Yu, S.-H. Revitalizing Traditional Phenolic Resin toward a Versatile Platform for Advanced Materials. Acc. Mater. Res. 2024, 5, 146–159. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Z.; Liu, H.; Ma, Y.; Wang, Y.; Niu, J.; Pang, H.; Wang, X. Fabrication and characterization of pyrolytic carbons from phenolic resin reinforced by SiC nanowires with chain-bead structures. Ceram. Int. 2022, 48, 14491–14498. [Google Scholar] [CrossRef]
- Wang, H.; Lv, R.; Huang, Z.; Liu, P.; Cong, P.; Li, T. Synthesis and Characterization of a Fluorinated Phenolic Resin/phenolic Resin Blend. J. Macromol. Sci. B 2016, 55, 85–98. [Google Scholar] [CrossRef]
- Robert, T.M.; Roshith, K.R.; Unnikrishnan, V.; Thomas, D.; Santhosh Kumar, K.S.; Mathew, D. Linear and branched alkyl chain modification of PF resin: Synthesis, pyrolysis and ablative performance at high heat flux. Polymer 2025, 317, 127926. [Google Scholar] [CrossRef]
- Gao, Z.; Lang, X.; Chen, S.; Zhao, C. Mini-Review on the Synthesis of Lignin-Based Phenolic Resin. Energy Fuels 2021, 35, 18385–18395. [Google Scholar] [CrossRef]
- Özbay, G.; Ayrilmis, N.; Ahmad, M.S. Synthesis and characterization of green phenolic resin with olive oil mill wastewater. Environ. Sci. Eur. 2023, 35, 10. [Google Scholar] [CrossRef]
- Luo, J.; Yang, X.; Tusiime, R.; Chen, H.; Liu, Y.; Zhang, H.; Yu, J. Synergistic effect of multiscale BNs/CNT and 3D melamine foam on the thermal conductive of epoxy resin. Compos. Commun. 2022, 29, 101044. [Google Scholar] [CrossRef]
- Geng, X.; Huang, R.; Zhang, X.; Li, W. Research on long-chain alkanol etherified melamine-formaldehyde resin MicroPCMs for energy storage. Energy 2021, 214, 119029. [Google Scholar] [CrossRef]
- Kim, K.S.; Choi, S.Y.; Kim, T.W.; Kang, M.J. Recycling Waste Melamine-Formaldehyde Resin as a Photocatalytic Enhancer for g-C3N4 Photocatalysts and Application in Photoelectrochemical (PEC) Reactions. ACS Sustain. Chem. Eng. 2024, 12, 7083–7091. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Li, R.; Wang, Z.; Lou, Z.; Li, Y. Facile Synthesis of Ultralight and Porous Melamine-Formaldehyde (MF) Resin-Derived Magnetic Graphite-Like C3N4/Carbon Foam with Electromagnetic Wave Absorption Behavior. Crystals 2020, 10, 656. [Google Scholar] [CrossRef]
- Zhao, L.; Mao, Z.; Xu, H.; Wang, B.; Zhong, Y.; Ji, B.; Feng, X. Preparation of epoxy resin adhesives based on high phenolic nanomodified lignin particles. Int. J. Biol. Macromol. 2025, 309, 142886. [Google Scholar] [CrossRef]
- Liang, J.; Hu, X.; Li, R.; Qiu, Y.; Zhou, S.; Yang, S.; Fan, D. Enhancement of pre-pressing performance of urea formaldehyde resin adhesive. J. For. Eng. 2024, 9, 5. [Google Scholar]
- Zhang, Z.; Zhang, M.; Zhao, X.; Cao, J. High-efficient removal and adsorption mechanism of organic dyes in wastewater by KOH-activated biochar from phenol-formaldehyde resin modified wood. Sep. Purif. Technol. 2024, 330, 125542. [Google Scholar] [CrossRef]
- Kupfernagel, C.; Spear, M.J.; Pitman, A.J.; Ormondroyd, G.A. Wood modification with phenol urea formaldehyde (PUF) resin: The influence of wood species selection on the dimensional stability. Eur. J. Wood Wood Prod. 2023, 81, 5–19. [Google Scholar] [CrossRef]
- Lande, S.; Westin, M.; Schneider, M. Properties of furfurylated wood. Scand. J. For. Res. 2004, 19, 22–30. [Google Scholar] [CrossRef]
- Hadi, Y.S.; Mulyosari, D.; Herliyana, E.N.; Pari, G.; Arsyad, W.O.M.; Abdillah, I.B.; Gérardin, P. Furfurylation of wood from fast-growing tropical species to enhance their resistance to subterranean termite. Eur. J. Wood Wood Prod. 2021, 79, 1007–1015. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Wang, H.; Yu, Y. Fabrication of highly stable and durable furfurylated wood materials. Part II: The multi-scale distribution of furfuryl alcohol (FA) resin in wood. Holzforschung 2020, 74, 1147–1155. [Google Scholar] [CrossRef]
- Esteves, B.; Nunes, L.; Pereira, H. Properties of furfurylated wood (Pinus pinaster). Eur. J. Wood Wood Prod. 2011, 69, 521–525. [Google Scholar] [CrossRef]
- Ehmcke, G.; Pilgård, A.; Koch, G.; Richter, K. Topochemical analyses of furfuryl alcohol-modified radiata pine (Pinus radiata) by UMSP, light microscopy and SEM. Holzforschung 2017, 71, 821–831. [Google Scholar] [CrossRef]
- Yang, T.; Cao, J.; Ma, E. How does delignification influence the furfurylation of wood? Ind. Crops Prod. 2019, 135, 91–98. [Google Scholar] [CrossRef]
- Tang, Y.; Smith, R.L.; Yang, B.; Guo, H.; Su, Y.; Qi, X. Efficient hydrogenolysis of furfuryl alcohol to 1,5-pentanediol over NiLa@ZrO2 catalyst. Chem. Eng. J. 2025, 508, 160968. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, P.; Cui, K.; Chen, J.; Wu, P.; Li, X. Highly selective hydrogenolysis of furfuryl alcohol to 1,5-pentanediol over an efficient Ni/PrOx catalyst. Fuel 2025, 398, 135516. [Google Scholar] [CrossRef]
- Coan, P.D.; Farberow, C.A.; Griffin, M.B.; Medlin, J.W. Organic Modifiers Promote Furfuryl Alcohol Ring Hydrogenation via Surface Hydrogen-Bonding Interactions. ACS Catal. 2021, 11, 3730–3739. [Google Scholar] [CrossRef]
- Wang, J.; Yang, T.; Zhang, S.; Cao, J. Application of polyvinyl alcohol (PVA) as a toughening agent in wood furfurylation. Holzforschung 2022, 76, 380–390. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Yan, Q.; Lyu, J.; Lei, Y.; Lyu, S.; Yan, L. Green bio-derived epoxidized linseed-oil plasticizer improves the toughness, strength, and dimensional stability of furfuryl alcohol-modified wood. Ind. Crops Prod. 2024, 217, 118886. [Google Scholar] [CrossRef]
- de Jong, E.; Mascal, M.; Constant, S.; Claessen, T.; Tosi, P.; Mija, A. The origin, composition, and applications of industrial humins—A review. Green Chem. 2025, 27, 3136–3166. [Google Scholar] [CrossRef]
- Sangregorio, A.; Muralidhara, A.; Guigo, N.; Thygesen, L.G.; Marlair, G.; Angelici, C.; de Jong, E.; Sbirrazzuoli, N. Humin based resin for wood modification and property improvement. Green Chem. 2020, 22, 2786–2798. [Google Scholar] [CrossRef]
- Ghavidel, A.; Hosseinpourpia, R. Photodegradation stability of huminated European pine (Pinus sylvestris L.) microveneers. Holzforschung 2024, 78, 283–292. [Google Scholar] [CrossRef]
- Zhao, T.; Xing, T.; Cao, X.; Sun, S. Rapid surface acetylation of cellulosic materials at room temperature by immersion method. Carbohydr. Polym. 2025, 348, 122932. [Google Scholar] [CrossRef]
- Fredriksson, M. On Wood–Water Interactions in the Over-Hygroscopic Moisture Range—Mechanisms, Methods, and Influence of Wood Modification. Forests 2019, 10, 779. [Google Scholar] [CrossRef]
- Digaitis, R.; Thybring, E.E.; Thygesen, L.G.; Fredriksson, M. Targeted acetylation of wood: A tool for tuning wood-water interactions. Cellulose 2021, 28, 8009–8025. [Google Scholar] [CrossRef]
- Beck, G.; Thybring, E.E.; Thygesen, L.G. Brown-rot fungal degradation and de-acetylation of acetylated wood. Int. J. Biol. Macromol. 2018, 135, 62–70. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Li, C.; Liu, Y. Effect of Acetylation on the Physical and Mechanical Performances of Mechanical Densified Spruce Wood. Forests 2022, 13, 1620. [Google Scholar] [CrossRef]
- Qiu, Y.; Hu, C.; Li, J.; Lin, X.; Zhang, W. In situ polymerization-hydrolysis-condensation of γ-methacryloxypropyltrimethoxysilane in cell wall for improved physical properties of wood. Ind. Crops Prod. 2023, 202, 117051. [Google Scholar] [CrossRef]
- Wang, F.; Wu, N.; Wang, M.; Deng, S.; Jia, H. Synthesis of phenylphosphorylated microcrystal cellulose biobased flame retardants and its flame-retardant modification on PLA biomaterials. Polym. Degrad. Stab. 2024, 227, 110843. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Q.; Chen, C.; Hao, X.; Ou, R.; Wang, Q. Mechanical and flame-retardant properties of surface-densified poplar wood impregnated by waterborne acrylic resin doped with N/P/B. J. For. Eng. 2023, 8, 6. [Google Scholar]
- Lemaire-Paul, M.; Foruzanmehr, M.R. The study of physico-mechanical properties of SiO2-impregnated wood under dry and saturated conditions. Wood Sci. Technol. 2023, 57, 1039–1059. [Google Scholar] [CrossRef]
- Lemaire-Paul, M.; Beuthe, C.A.; Riahinezhad, M.; Reza Foruzanmehr, M. The impact of vacuum pressure on the effectiveness of SiO2 impregnation of spruce wood. Wood Sci. Technol. 2023, 57, 147–171. [Google Scholar] [CrossRef]
- Choi, H.; Dalton, L.E.; Peszlen, I.; Pourghaz, M. The impacts of CaCO3 deposition in natural wood on its viscoelastic properties. Compos. Part B Eng. 2024, 275, 111324. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, M.; Li, P.; Xu, B.; Zhang, Y.; Zou, Y. Influence of coating technology on performance of coated wood surface. J. For. Eng. 2024, 9, 5. [Google Scholar]
- Garskaite, E.; Karlsson, O.; Stankeviciute, Z.; Kareiva, A.; Jones, D.; Sandberg, D. Surface hardness and flammability of Na2SiO3 and nano-TiO2 reinforced wood composites. RSC Adv. 2019, 9, 27973–27986. [Google Scholar] [CrossRef]
- Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quispe, N.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228. [Google Scholar] [CrossRef]
- Gao, X.; Gong, R.; Hu, X.; Gu, Y.; Srinivasan, V.; Dong, X.; Li, Y. Highly strong, fire-retardant and water-resistant wooden structural material enabled by organic-inorganic nanohybridization In-Situ coupled with cell densification. Chem. Eng. J. 2025, 515, 163527. [Google Scholar] [CrossRef]
- Zou, W.; Deng, J.; Wang, Z.; Sun, D.; Zou, N. Encapsulation of thermochromic tetradecyl myristate/methyl red composite via full poplar-based cellulose/lignin/SiO2 framework for preparation of thermochromic wood with thermal response and storage. Int. J. Biol. Macromol. 2024, 276, 133881. [Google Scholar] [CrossRef]
- Jia, S.; Chen, H.; Luo, S.; Qing, Y.; Deng, S.; Yan, N.; Wu, Y. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali. Appl. Surf. Sci. 2018, 455, 115–122. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Q.; Ding, X.; Shen, Q.; Wu, C.; Zhang, L.; Yang, H. Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: A review. J. Sol-Gel Sci. Technol. 2016, 79, 328–358. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, H.; Hess, D.W.; Chai, X.; Xu, K.; Yang, X.; Xie, L. A fluorine-free approach for fabricating superhydrophobic coatings on bamboo using methyltrimethoxysilane (MTMS) under alkaline conditions. Prog. Org. Coat. 2025, 203, 109170. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Z.; Zhang, H.; Kang, B.; Yan, D.; Ye, Y.N.; Zhu, S.; Yu, W.; Zhu, F. Modifying ethyl cellulose based coatings with PDMS and TiO2 for wood protection. Colloid Surf. A 2025, 724, 137508. [Google Scholar] [CrossRef]
- Girardi, F.; Cappelletto, E.; Sandak, J.; Bochicchio, G.; Tessadri, B.; Palanti, S.; Feci, E.; Di Maggio, R. Hybrid organic–inorganic materials as coatings for protecting wood. Prog. Org. Coat. 2014, 77, 449–457. [Google Scholar] [CrossRef]
- Xu, J.; Yang, T.; Xu, X.; Guo, X.; Cao, J. Processing solid wood into a composite phase change material for thermal energy storage by introducing silica-stabilized polyethylene glycol. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106098. [Google Scholar] [CrossRef]
- Liu, X.; Bian, Y.; Zhang, X.; Liu, Z.; Weng, T.; Wang, G.; Li, J.; Chen, H.; Gao, Q. Preparation of strong and mildew-resistant soybean meal adhesives with self-assembled core-shell structured nanospheres. Ind. Crops Prod. 2023, 205, 117446. [Google Scholar] [CrossRef]
- Sun, H.; Ren, Z.; Ji, T.; Bi, H.; Xu, M. Mechanically strong, cost-efficiency, and sustainable fully wood-derived structural materials by micro/nanoscale design. J. Mater. Res. Technol. 2021, 14, 3043–3050. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, X.; Gao, S.; Lai, C.; Lu, C.; Huang, Y.; Zhang, D.; Nie, S.; Xu, F.; Chu, F. Biomimicking natural wood to fabricate isotropically super-strong, tough, and transparent hydrogels for strain sensor and triboelectric nanogenerator applications. J. Mater. Chem. A 2024, 12, 5124–5132. [Google Scholar] [CrossRef]
- Kuai, B.; Xu, Q.; Zhan, T.; Lv, J.; Cai, L.; Gong, M.; Zhang, Y. Development of super dimensional stable poplar structure with fire and mildew resistance by delignification/densification of wood with highly aligned cellulose molecules. Int. J. Biol. Macromol. 2024, 257, 128572. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Sun, G.; Wang, Y.; Shu, X.; Chen, J.; Sun, M.; Liu, X.; Liu, C.; Xiao, H.; Xu, T.; et al. Metal ion and hydrogen bonding synergistically mediated carboxylated lignin/cellulose nanofibrils composite film. Carbohydr. Polym. 2024, 323, 121456. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Liang, Z.; Yan, Q.; Zhang, S.; Kang, H. Fabrication of an Ultrastrong Formaldehyde-Free Wood Adhesive with an Organic–Inorganic Cross-Linking Network. Nano Lett. 2024, 24, 3290–3297. [Google Scholar] [CrossRef]
- Ren, Z.; Sun, H.; Zhou, X.; Chi, X.; Bi, H.; Ji, T.; Xu, M.; Cai, L. Insights from molecular dynamics simulations for interfacial effects between polylactic acid and wood cell wall constituents. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107310. [Google Scholar] [CrossRef]
- Bonollo, G.; Trèves, G.; Komarov, D.; Mansoor, S.; Moroni, E.; Colombo, G. Advancing Molecular Simulations: Merging Physical Models, Experiments, and AI to Tackle Multiscale Complexity. J. Phys. Chem. Lett. 2025, 16, 3606–3615. [Google Scholar] [CrossRef]
- Boyken, S.E.; Chen, Z.; Groves, B.; Langan, R.A.; Oberdorfer, G.; Ford, A.; Gilmore, J.M.; Xu, C.; DiMaio, F.; Pereira, J.H.; et al. De novo design of protein homo-oligomers with modular hydrogen-bond network–mediated specificity. Science 2016, 352, 680–687. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, D.; Chen, W.; Chen, Y.; Yang, K.; Yang, P.; Quan, Q.; Li, Z.; Zhou, K.; Chen, M.; et al. Shape and Stiffness Switchable Hydroplastic Wood with Programmability and Reproducibility. ACS Nano 2023, 17, 23524–23534. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wang, Y.; Gu, Z.; Chen, L. Bi-functional water-purification materials derived from natural wood modified TiO2 by photothermal effect and photocatalysis. RSC Adv. 2022, 12, 26245–26250. [Google Scholar] [CrossRef]
- Cui, G.; Guo, X.; Deng, L. Preparation strategies of mussel-inspired chitosan-based biomaterials for hemostasis. Front. Pharmacol. 2024, 15, 1439036. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, C.; Zhang, C.; Shi, J.; Mei, C.; Pan, M.; Liu, Z. Activating the Room-Temperature Phosphorescence of Organic Dyes through the Confinement Effect of Delignified Wood. ACS Sustain. Chem. Eng. 2024, 12, 3726–3735. [Google Scholar] [CrossRef]
- Ran, Y.; Li, J.; Zhang, S.; Wang, J.; Huang, Y.; Wang, W.; Cao, J. Super-stable modified wood for enhanced autonomous indoor humidity regulation. Chem. Eng. J. 2024, 488, 150814. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.-F.; Shu, L.; Yao, J. Construction of MXene functionalized wood-based hydrogels using ZnCl2 aqueous solution for flexible electronics. J. Mater. Chem. A 2023, 11, 10337–10345. [Google Scholar] [CrossRef]
Modification Methods | Main Reagents/Materials | Efficiency | Environmental Impact | Cost | Mechanism of Action | Performance Change | |
---|---|---|---|---|---|---|---|
Organic modification | Resin impregnation | Urea formaldehyde resin (UF), phenolic resin (PF), melamine formaldehyde resin (MF) | Medium–high (mature process, curing rate varies from resin) | The formaldehyde-containing resin releases VOCs, and MF has lower toxicity but a higher cost than UF/PF | UF/PF has a lower cost and higher MF. | Resin functional groups (-NH2, -CH2OH) form hydrogen bonds with wood polar groups (-OH). After curing, a cross-linked network is formed. | Filling the cell wall defects, the waterproof, tensile strength, hardness, and other properties are improved. |
Furfurylation | Furfuryl alcohol (FA) | (Impregnation and catalytic polymerization required) | Furfuryl alcohol from biomass, less free formaldehyde | Depends on furfuryl alcohol raw materials and process costs | FA polymerization fills the pores of wood and reduces free hydroxyl groups. Hydrogen bond recombination enhances stability. | The dimensional stability, hardness, and strength are improved, but the brittleness will also increase. | |
Acetylate | Acetic anhydride | The traditional method is time-consuming, and the new method such as the rapid impregnation method can be improved | Nontoxic reagent, stable product | Mainly from the cost and process of acetic anhydride | Acetyl replaces the cell wall hydroxyl group and reduces the hydrogen bond formation site. | Moisture absorption decreases, and hot pressing can further improve strength. | |
Inorganic modification | SiO2 impregnation | Silica nanoparticles | Medium (impregnation and distribution control required) | Innocuity | Depending on the cost of nanoparticles | SiO2 forms hydrogen bonds with wood hydroxyl groups to enhance the interface bonding. Water molecules promote hydrogen bond aggregation in humid environments. | It has high impact resistance, high density, and weak hygroscopicity. |
CaCO3 mineralization | Calcium carbonate | Low (requiring enzyme catalysis or solution exchange, multiple steps) | Innocuity | Depending on the reagent and process cost | Hydrogen bonds promote the adsorption of mineral precursors on the cell wall. High-temperature pressing enhances viscoelasticity. | The hardness is improved, and the flame retardancy is also improved. | |
Organic–inorganic synergistic modification | Organic–inorganic composites (e.g., SiO2/PEG and resin/SiO2) | Silica/lauric acid tetracarboxylate/vinyltriethoxysilane/glycidyl methacrylat, etc. | Medium-low (often involving multi-step process or sol–gel) | Depending on the specific organic/inorganic component | Depending on a variety of materials and processes | Related materials are combined with wood chemical components through hydrogen bonds and give wood different properties. | According to the relevant material changes, such as mechanical, thermochromic, superhydrophobic, and other properties. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Hu, Y.; Dong, Y.; Jiang, S.; Han, X. The Influence of Hydrogen Bonding in Wood and Its Modification Methods: A Review. Polymers 2025, 17, 2064. https://doi.org/10.3390/polym17152064
Zhang T, Hu Y, Dong Y, Jiang S, Han X. The Influence of Hydrogen Bonding in Wood and Its Modification Methods: A Review. Polymers. 2025; 17(15):2064. https://doi.org/10.3390/polym17152064
Chicago/Turabian StyleZhang, Ting, Yudong Hu, Yanyan Dong, Shaohua Jiang, and Xiaoshuai Han. 2025. "The Influence of Hydrogen Bonding in Wood and Its Modification Methods: A Review" Polymers 17, no. 15: 2064. https://doi.org/10.3390/polym17152064
APA StyleZhang, T., Hu, Y., Dong, Y., Jiang, S., & Han, X. (2025). The Influence of Hydrogen Bonding in Wood and Its Modification Methods: A Review. Polymers, 17(15), 2064. https://doi.org/10.3390/polym17152064