Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,329)

Search Parameters:
Keywords = wind power photovoltaic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5304 KiB  
Article
Multi-Criteria Optimization and Techno-Economic Assessment of a Wind–Solar–Hydrogen Hybrid System for a Plateau Tourist City Using HOMER and Shannon Entropy-EDAS Models
by Jingyu Shi, Ran Xu, Dongfang Li, Tao Zhu, Nanyu Fan, Zhanghua Hong, Guohua Wang, Yong Han and Xing Zhu
Energies 2025, 18(15), 4183; https://doi.org/10.3390/en18154183 - 7 Aug 2025
Abstract
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and [...] Read more.
Hydrogen offers an effective pathway for the large-scale storage of renewable energy. For a tourist city located in a plateau region rich in renewable energy, hydrogen shows great potential for reducing carbon emissions and utilizing uncertain renewable energy. Herein, the wind–solar–hydrogen stand-alone and grid-connected systems in the plateau tourist city of Lijiang City in Yunnan Province are modeled and techno-economically evaluated by using the HOMER Pro software (version 3.14.2) with the multi-criteria decision analysis models. The system is composed of 5588 kW solar photovoltaic panels, an 800 kW wind turbine, a 1600 kW electrolyzer, a 421 kWh battery, and a 50 kW fuel cell. In addition to meeting the power requirements for system operation, the system has the capacity to provide daily electricity for 200 households in a neighborhood and supply 240 kg of hydrogen per day to local hydrogen-fueled buses. The stand-alone system can produce 10.15 × 106 kWh of electricity and 93.44 t of hydrogen per year, with an NPC of USD 8.15 million, an LCOE of USD 0.43/kWh, and an LCOH of USD 5.26/kg. The grid-connected system can generate 10.10 × 106 kWh of electricity and 103.01 ton of hydrogen annually. Its NPC is USD 7.34 million, its LCOE is USD 0.11/kWh, and its LCOH is USD 3.42/kg. This study provides a new solution for optimizing the configuration of hybrid renewable energy systems, which will develop the hydrogen economy and create low-carbon-emission energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

30 pages, 2505 KiB  
Article
Battery Energy Storage Systems: Energy Market Review, Challenges, and Opportunities in Frequency Control Ancillary Services
by Gian Garttan, Sanath Alahakoon, Kianoush Emami and Shantha Gamini Jayasinghe
Energies 2025, 18(15), 4174; https://doi.org/10.3390/en18154174 - 6 Aug 2025
Abstract
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of [...] Read more.
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of BESS’ participation in frequency control ancillary service (FCAS) markets. This review synthesises the current state of knowledge on the evolution of the energy market and the role of battery energy storage systems in providing grid stability, particularly frequency control services, with a focus on their integration into evolving high-renewable-energy-source (RES) market structures. Specifically, solar PV and wind energy are emerging as the main drivers of RES expansion, accounting for approximately 61% of the global market share. A BESS offers greater flexibility in storage capacity, scalability and rapid response capabilities, making it an effective solution to address emerging security risks of the system. Moreover, a BESS is able to provide active power support through power smoothing when coupled with solar photovoltaic (PV) and wind generation. In this paper, we provide an overview of the current status of energy markets, the contribution of battery storage systems to grid stability and flexibility, as well as the challenges that BESS face in evolving electricity markets. Full article
Show Figures

Figure 1

30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 4509 KiB  
Article
Numerical Simulation and Analysis of Performance of Switchable Film-Insulated Photovoltaic–Thermal–Passive Cooling Module for Different Design Parameters
by Cong Jiao, Zeyu Li, Tiancheng Ju, Zihan Xu, Zhiqun Xu and Bin Sun
Processes 2025, 13(8), 2471; https://doi.org/10.3390/pr13082471 - 5 Aug 2025
Viewed by 145
Abstract
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. [...] Read more.
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. In our previous work, we proposed a switchable film-insulated photovoltaic–thermal–passive cooling (PVT-PC) module to address the structural incompatibility between diurnal and nocturnal modes. However, the performance of the proposed module strongly depends on two key design parameters: the structural height and the vacuum level of the air cushion. In this study, a numerical model of the proposed module is developed to examine the impact of design and meteorological parameters on its all-day performance. The results show that diurnal performance remains stable across different structural heights, while nocturnal passive cooling power shows strong dependence on vacuum level and structural height, achieving up to 103.73 W/m2 at 10 mm height and 1500 Pa vacuum, which is comparable to unglazed PVT modules. Convective heat transfer enhancement, induced by changes in air cushion shape, is identified as the primary contributor to improved nocturnal cooling performance. Wind speed has minimal impact on electrical output but significantly enhances thermal efficiency and nocturnal convective cooling power, with a passive cooling power increase of up to 31.61%. In contrast, higher sky temperatures degrade nocturnal cooling performance due to diminished radiative exchange, despite improving diurnal thermal efficiency. These findings provide fundamental insights for optimizing the structural design and operational strategies of PVT-PC systems under varying environmental conditions. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 - 3 Aug 2025
Viewed by 301
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

18 pages, 3091 KiB  
Article
Construction of Typical Scenarios for Multiple Renewable Energy Plant Outputs Considering Spatiotemporal Correlations
by Yuyue Zhang, Yan Wen, Nan Wang, Zhenhua Yuan, Lina Zhang and Runjia Sun
Symmetry 2025, 17(8), 1226; https://doi.org/10.3390/sym17081226 - 3 Aug 2025
Viewed by 193
Abstract
A high-quality set of typical scenarios is significant for power grid planning. Existing construction methods for typical scenarios do not account for the spatiotemporal correlations among renewable energy plant outputs, failing to adequately reflect the distribution characteristics of original scenarios. To address the [...] Read more.
A high-quality set of typical scenarios is significant for power grid planning. Existing construction methods for typical scenarios do not account for the spatiotemporal correlations among renewable energy plant outputs, failing to adequately reflect the distribution characteristics of original scenarios. To address the issues mentioned above, this paper proposes a construction method for typical scenarios considering spatiotemporal correlations, providing high-quality typical scenarios for power grid planning. Firstly, a symmetric spatial correlation matrix and a temporal autocorrelation matrix are defined, achieving quantitative representation of spatiotemporal correlations. Then, distributional differences between typical and original scenarios are quantified from multiple dimensions, and a scenario reduction model considering spatiotemporal correlations is established. Finally, the genetic algorithm is improved by incorporating adaptive parameter adjustment and an elitism strategy, which can efficiently obtain high-quality typical scenarios. A case study involving five wind farms and fourteen photovoltaic plants in Belgium is presented. The rate of error between spatial correlation matrices of original and typical scenario sets is lower than 2.6%, and the rate of error between temporal autocorrelations is lower than 2.8%. Simulation results demonstrate that typical scenarios can capture the spatiotemporal correlations of original scenarios. Full article
(This article belongs to the Special Issue New Power System and Symmetry)
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 229
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

28 pages, 4460 KiB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 - 1 Aug 2025
Viewed by 241
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

28 pages, 13030 KiB  
Article
Meta-Heuristic Optimization for Hybrid Renewable Energy System in Durgapur: Performance Comparison of GWO, TLBO, and MOPSO
by Sudip Chowdhury, Aashish Kumar Bohre and Akshay Kumar Saha
Sustainability 2025, 17(15), 6954; https://doi.org/10.3390/su17156954 - 31 Jul 2025
Viewed by 192
Abstract
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three [...] Read more.
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three optimization techniques: Grey Wolf Optimization (GWO), Teaching–Learning-Based Optimization (TLBO), and Multi-Objective Particle Swarm Optimization (MOPSO). The study compared their outcomes to identify which method yielded the most effective performance. The research included a statistical analysis to evaluate how consistently and stably each optimization method performed. The analysis revealed optimal values for the output power of photovoltaic systems (PVs), wind turbines (WTs), diesel generator capacity (DGs), and battery storage (BS). A one-year period was used to confirm the optimized configuration through the analysis of capital investment and fuel consumption. Among the three methods, GWO achieved the best fitness value of 0.24593 with an LPSP of 0.12528, indicating high system reliability. MOPSO exhibited the fastest convergence behaviour. TLBO yielded the lowest Net Present Cost (NPC) of 213,440 and a Cost of Energy (COE) of 1.91446/kW, though with a comparatively higher fitness value of 0.26628. The analysis suggests that GWO is suitable for applications requiring high reliability, TLBO is preferable for cost-sensitive solutions, and MOPSO is advantageous for obtaining quick, approximate results. Full article
(This article belongs to the Special Issue Energy Technology, Power Systems and Sustainability)
Show Figures

Figure 1

19 pages, 2137 KiB  
Article
Optimal Configuration and Empirical Analysis of a Wind–Solar–Hydro–Storage Multi-Energy Complementary System: A Case Study of a Typical Region in Yunnan
by Yugong Jia, Mengfei Xie, Ying Peng, Dianning Wu, Lanxin Li and Shuibin Zheng
Water 2025, 17(15), 2262; https://doi.org/10.3390/w17152262 - 29 Jul 2025
Viewed by 293
Abstract
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different [...] Read more.
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different resources and enhance both flexibility and economic efficiency. This paper develops a capacity optimization model for a wind–solar–hydro–storage multi-energy complementary system. The objectives are to improve net system income, reduce wind and solar curtailment, and mitigate intraday fluctuations. We adopt the quantum particle swarm algorithm (QPSO) for outer-layer global optimization, combined with an inner-layer stepwise simulation to maximize life cycle benefits under multi-dimensional constraints. The simulation is based on the output and load data of typical wind, solar, water, and storage in Yunnan Province, and verifies the effectiveness of the proposed model. The results show that after the wind–solar–hydro–storage multi-energy complementary system is optimized, the utilization rate of new energy and the system economy are significantly improved, which has a wide range of engineering promotion value. The research results of this paper have important reference significance for the construction of new power systems and the engineering design of multi-energy complementary projects. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

14 pages, 1771 KiB  
Article
An Adaptive Overcurrent Protection Method for Distribution Networks Based on Dynamic Multi-Objective Optimization Algorithm
by Biao Xu, Fan Ouyang, Yangyang Li, Kun Yu, Fei Ao, Hui Li and Liming Tan
Algorithms 2025, 18(8), 472; https://doi.org/10.3390/a18080472 - 28 Jul 2025
Viewed by 222
Abstract
With the large-scale integration of renewable energy into distribution networks, traditional fixed-setting overcurrent protection strategies struggle to adapt to rapid fluctuations in renewable energy (e.g., wind and photovoltaic) output. Optimizing current settings is crucial for enhancing the stability of modern distribution networks. This [...] Read more.
With the large-scale integration of renewable energy into distribution networks, traditional fixed-setting overcurrent protection strategies struggle to adapt to rapid fluctuations in renewable energy (e.g., wind and photovoltaic) output. Optimizing current settings is crucial for enhancing the stability of modern distribution networks. This paper proposes an adaptive overcurrent protection method based on an improved NSGA-II algorithm. By dynamically detecting renewable power fluctuations and generating adaptive solutions, the method enables the online optimization of protection parameters, effectively reducing misoperation rates, shortening operation times, and significantly improving the reliability and resilience of distribution networks. Using the rate of renewable power variation as the core criterion, renewable power changes are categorized into abrupt and gradual scenarios. Depending on the scenario, either a random solution injection strategy (DNSGA-II-A) or a Gaussian mutation strategy (DNSGA-II-B) is dynamically applied to adjust overcurrent protection settings and time delays, ensuring real-time alignment with grid conditions. Hard constraints such as sensitivity, selectivity, and misoperation rate are embedded to guarantee compliance with relay protection standards. Additionally, the convergence of the Pareto front change rate serves as the termination condition, reducing computational redundancy and avoiding local optima. Simulation tests on a 10 kV distribution network integrated with a wind farm validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

20 pages, 1979 KiB  
Article
Energy Storage Configuration Optimization of a Wind–Solar–Thermal Complementary Energy System, Considering Source-Load Uncertainty
by Guangxiu Yu, Ping Zhou, Zhenzhong Zhao, Yiheng Liang and Weijun Wang
Energies 2025, 18(15), 4011; https://doi.org/10.3390/en18154011 - 28 Jul 2025
Viewed by 370
Abstract
The large-scale integration of new energy is an inevitable trend to achieve the low-carbon transformation of power systems. However, the strong randomness of wind power, photovoltaic power, and loads poses severe challenges to the safe and stable operation of systems. Existing studies demonstrate [...] Read more.
The large-scale integration of new energy is an inevitable trend to achieve the low-carbon transformation of power systems. However, the strong randomness of wind power, photovoltaic power, and loads poses severe challenges to the safe and stable operation of systems. Existing studies demonstrate insufficient integration and handling of source-load bilateral uncertainties in wind–solar–fossil fuel storage complementary systems, resulting in difficulties in balancing economy and low-carbon performance in their energy storage configuration. To address this insufficiency, this study proposes an optimal energy storage configuration method considering source-load uncertainties. Firstly, a deterministic bi-level model is constructed: the upper level aims to minimize the comprehensive cost of the system to determine the energy storage capacity and power, and the lower level aims to minimize the system operation cost to solve the optimal scheduling scheme. Then, wind and solar output, as well as loads, are treated as fuzzy variables based on fuzzy chance constraints, and uncertainty constraints are transformed using clear equivalence class processing to establish a bi-level optimization model that considers uncertainties. A differential evolution algorithm and CPLEX are used for solving the upper and lower levels, respectively. Simulation verification in a certain region shows that the proposed method reduces comprehensive cost by 8.9%, operation cost by 10.3%, the curtailment rate of wind and solar energy by 8.92%, and carbon emissions by 3.51%, which significantly improves the economy and low-carbon performance of the system and provides a reference for the future planning and operation of energy systems. Full article
Show Figures

Figure 1

34 pages, 1593 KiB  
Article
Enhancing Radial Distribution System Performance Through Optimal Allocation and Sizing of Photovoltaic and Wind Turbine Distribution Generation Units with Rüppell’s Fox Optimizer
by Yacine Bouali and Basem Alamri
Mathematics 2025, 13(15), 2399; https://doi.org/10.3390/math13152399 - 25 Jul 2025
Viewed by 233
Abstract
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution [...] Read more.
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution network. To improve the performance of the distribution system, this study employs distributed generator (DG) units and focuses on determining their optimal placement, sizing, and power factor. A novel metaheuristic algorithm, referred to as Rüppell’s fox optimizer (RFO), is proposed to address this optimization problem under various scenarios. In the first scenario, where the DG operates at unity power factor, it is modeled as a photovoltaic system. In the second and third scenarios, the DG is modeled as a wind turbine system with fixed and optimal power factors, respectively. The performance of the proposed RFO algorithm is benchmarked against five well-known metaheuristic techniques to validate its effectiveness and competitiveness. Simulations are conducted on the IEEE 33-bus and IEEE 69-bus radial distribution test systems to demonstrate the applicability and robustness of the proposed approach. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 3279 KiB  
Review
Current State of Development of Demand-Driven Biogas Plants in Poland
by Aleksandra Łukomska, Kamil Witaszek and Jacek Dach
Processes 2025, 13(8), 2369; https://doi.org/10.3390/pr13082369 - 25 Jul 2025
Viewed by 474
Abstract
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity [...] Read more.
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity production lead to both overloads and power shortages in transmission and distribution networks. A significant advantage of biogas plants over sources such as photovoltaics or wind turbines is their ability to control electricity generation and align it with actual demand. Biogas produced during fermentation can be temporarily stored in a biogas tank above the digester and later used in an enlarged CHP unit to generate electricity and heat during peak demand periods. While demand-driven biogas plants operate similarly to traditional installations, their development requires navigating regulatory and administrative procedures, particularly those related to the grid connection of the generated electricity. In Poland, it has only recently become possible to obtain grid connection conditions for such installations, following the adoption of the Act of 28 July 2023, which amended the Energy Law and certain other acts. However, the biogas sector still faces challenges, particularly the need for effective incentive mechanisms and the removal of regulatory and economic barriers, especially given its estimated potential of up to 7.4 GW. Full article
Show Figures

Figure 1

21 pages, 2568 KiB  
Article
Research on the Data-Driven Identification of Control Parameters for Voltage Ride-Through in Energy Storage Systems
by Liming Bo, Jiangtao Wang, Xu Zhang, Yimeng Su, Xueting Cheng, Zhixuan Zhang, Shenbing Ma, Jiyu Wang and Xiaoyu Fang
Appl. Sci. 2025, 15(15), 8249; https://doi.org/10.3390/app15158249 - 24 Jul 2025
Viewed by 229
Abstract
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter [...] Read more.
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter identification has become a crucial approach for analyzing ESS dynamic behaviors during high-voltage ride-through (HVRT) and low-voltage ride-through (LVRT) and for optimizing control strategies. In this study, we present a multidimensional feature-integrated parameter identification framework for ESSs, combining a multi-scenario voltage disturbance testing environment built on a real-time laboratory platform with field-measured data and enhanced optimization algorithms. Focusing on the control characteristics of energy storage converters, a non-intrusive identification method for grid-connected control parameters is proposed based on dynamic trajectory feature extraction and a hybrid optimization algorithm that integrates an improved particle swarm optimization (PSO) algorithm with gradient-based coordination. The results demonstrate that the proposed approach effectively captures the dynamic coupling mechanisms of ESSs under dual-mode operation (charging and discharging) and voltage fluctuations. By relying on measured data for parameter inversion, the method circumvents the limitations posed by commercial confidentiality, providing a novel technical pathway to enhance the fault ride-through (FRT) performance of energy storage systems (ESSs). In addition, the developed simulation verification framework serves as a valuable tool for security analysis in power systems with high renewable energy penetration. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop