Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (731)

Search Parameters:
Keywords = wind power consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1541 KiB  
Article
Economic Dispatch Strategy for Power Grids Considering Waste Heat Utilization in High-Energy-Consuming Enterprises
by Lei Zhou, Ping He, Siru Wang, Cailian Ma, Yiming Zhou, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2450; https://doi.org/10.3390/pr13082450 - 2 Aug 2025
Viewed by 203
Abstract
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the [...] Read more.
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the economic and environmental benefits of regional power grids. Existing research often focuses on grid revenue, leaving high-energy-consuming enterprises in a passive regulatory position. To address this, this paper constructs an economic dispatch strategy for power grids that considers waste heat utilization in high-energy-consuming enterprises. A typical representative, electrolytic aluminum load and its waste heat utilization model, for the entire production process of high-energy-consuming loads, is established. Using a tiered carbon trading calculation formula, a low-carbon production scheme for high-energy-consuming enterprises is developed. On the grid side, considering local load levels, the uncertainty of wind power output, and the energy demands of aluminum production, a robust day-ahead economic dispatch model is established. Case analysis based on the modified IEEE-30 node system demonstrates that the proposed method balances economic efficiency and low-carbon performance while reducing the conservatism of traditional optimization approaches. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 4460 KiB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

18 pages, 6506 KiB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 - 31 Jul 2025
Viewed by 301
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

28 pages, 13030 KiB  
Article
Meta-Heuristic Optimization for Hybrid Renewable Energy System in Durgapur: Performance Comparison of GWO, TLBO, and MOPSO
by Sudip Chowdhury, Aashish Kumar Bohre and Akshay Kumar Saha
Sustainability 2025, 17(15), 6954; https://doi.org/10.3390/su17156954 - 31 Jul 2025
Viewed by 159
Abstract
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three [...] Read more.
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three optimization techniques: Grey Wolf Optimization (GWO), Teaching–Learning-Based Optimization (TLBO), and Multi-Objective Particle Swarm Optimization (MOPSO). The study compared their outcomes to identify which method yielded the most effective performance. The research included a statistical analysis to evaluate how consistently and stably each optimization method performed. The analysis revealed optimal values for the output power of photovoltaic systems (PVs), wind turbines (WTs), diesel generator capacity (DGs), and battery storage (BS). A one-year period was used to confirm the optimized configuration through the analysis of capital investment and fuel consumption. Among the three methods, GWO achieved the best fitness value of 0.24593 with an LPSP of 0.12528, indicating high system reliability. MOPSO exhibited the fastest convergence behaviour. TLBO yielded the lowest Net Present Cost (NPC) of 213,440 and a Cost of Energy (COE) of 1.91446/kW, though with a comparatively higher fitness value of 0.26628. The analysis suggests that GWO is suitable for applications requiring high reliability, TLBO is preferable for cost-sensitive solutions, and MOPSO is advantageous for obtaining quick, approximate results. Full article
(This article belongs to the Special Issue Energy Technology, Power Systems and Sustainability)
Show Figures

Figure 1

20 pages, 3940 KiB  
Article
24 Hours Ahead Forecasting of the Power Consumption in an Industrial Pig Farm Using Deep Learning
by Boris Evstatiev, Nikolay Valov, Katerina Gabrovska-Evstatieva, Irena Valova, Tsvetelina Kaneva and Nicolay Mihailov
Energies 2025, 18(15), 4055; https://doi.org/10.3390/en18154055 - 31 Jul 2025
Viewed by 237
Abstract
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as [...] Read more.
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as pig farms. To achieve this, 24 individual models are trained using artificial neural networks that forecast the energy production 1 to 24 h ahead. The selected features include power consumption over the last 72 h, time-based data, average, minimum, and maximum daily temperatures, relative humidities, and wind speeds. The models’ Normalized mean absolute error (NMAE), Normalized root mean square error (NRMSE), and Mean absolute percentage error (MAPE) vary between 16.59% and 19.00%, 22.19% and 24.73%, and 9.49% and 11.49%, respectively. Furthermore, the case studies showed that in most situations, the forecasting error does not exceed 10% with several cases up to 25%. The proposed methodology can be useful for energy managers of animal farm facilities, and help them provide a better prognosis of their energy consumption for the Energy Market. The proposed methodology could be improved by selecting additional features, such as the variation of the controlled meteorological parameters over the last couple of days and the schedule of technological processes. Full article
(This article belongs to the Special Issue Application of AI in Energy Savings and CO2 Reduction)
Show Figures

Figure 1

29 pages, 3661 KiB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 263
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 1597 KiB  
Article
Customer Directrix Load Method for High Penetration of Winds Considering Contribution Factors of Generators to Load Bus
by Tianxiang Zhang, Yifei Wang, Qing Zhu, Bin Han, Xiaoming Wang and Ming Fang
Electronics 2025, 14(15), 2931; https://doi.org/10.3390/electronics14152931 - 23 Jul 2025
Viewed by 153
Abstract
As part of the carbon peak and neutrality drive, an influx of renewable energy into the grid is imminent. However, the unpredictability of renewables like wind and solar can lead to significant curtailment if the power system relies solely on traditional generators. This [...] Read more.
As part of the carbon peak and neutrality drive, an influx of renewable energy into the grid is imminent. However, the unpredictability of renewables like wind and solar can lead to significant curtailment if the power system relies solely on traditional generators. This paper presents a demand response mechanism to enhance renewable energy uptake by defining an optimal load curve for each node, considering the generator’s dynamic impact, system operations, and renewable energy projections. Once the ideal load curve is published, consumers, influenced by incentives, voluntarily align their consumption, steering the actual load to resemble the proposed curve. This strategy not only guides flexible generation resources to better utilize renewables but also minimizes the communication and control expenses associated with large-scale customer demand response. Additionally, a new evaluation metric for user response is proposed to ensure equitable incentive distribution. The model has been shown to lower both consumer power costs and system generation expenses, achieving a 22% reduction in renewable energy wastage. Full article
Show Figures

Figure 1

22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 226
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

20 pages, 6173 KiB  
Article
Research on an Energy-Harvesting System Based on the Energy Field of the Environment Surrounding a Photovoltaic Power Plant
by Bin Zhang, Binbin Wang, Hongxi Zhang, Abdelkader Outzourhit, Fouad Belhora, Zoubir El Felsoufi, Jia-Wei Zhang and Jun Gao
Energies 2025, 18(14), 3786; https://doi.org/10.3390/en18143786 - 17 Jul 2025
Viewed by 289
Abstract
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation [...] Read more.
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation of photovoltaic systems; however, their deployment depends on the accurate mapping of wind energy fields and solar irradiance fields. This study proposes a multi-scale simulation method based on computational fluid dynamics (CFD) to optimize the placement of energy-harvesting systems in photovoltaic power plants. By integrating wind and irradiance distribution analysis, the spatial characteristics of airflow and solar radiation are mapped to identify high-efficiency zones for energy harvesting. The results indicate that the top of the photovoltaic panel exhibits a higher wind speed and reflected irradiance, providing the optimal location for an energy-harvesting system. The proposed layout strategy improves overall energy capture efficiency, enhances sensor deployment effectiveness, and supports intelligent, maintenance-free monitoring systems. This research not only provides theoretical guidance for the design of energy-harvesting systems in PV stations but also offers a scalable method applicable to various geographic scenarios, contributing to the advancement of smart and self-powered energy systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

25 pages, 3133 KiB  
Article
Real-Time Optimal Dispatching Strategy for Wind–Thermal–Storage Integrated System with Adaptive Time Division and Variable Objectives
by Peng Cao, Changhong Deng, Xiaohui Zhang, Yuanao Zhang, Li Feng and Kaike Wang
Electronics 2025, 14(14), 2842; https://doi.org/10.3390/electronics14142842 - 15 Jul 2025
Viewed by 192
Abstract
Against the backdrop of the increasing penetration rate of new energy year by year, power systems face a continuously growing demand for flexibility. Under the structure of such a new power system, it is essential not only to introduce diverse flexible power sources [...] Read more.
Against the backdrop of the increasing penetration rate of new energy year by year, power systems face a continuously growing demand for flexibility. Under the structure of such a new power system, it is essential not only to introduce diverse flexible power sources but also to explore the flexible regulation capabilities of existing conventional power sources. To fully utilize the flexibility of thermal power units (TPUs), this study proposes a real-time optimal scheduling strategy for a wind–thermal energy-storage integrated system with an adaptive time division and variable objectives. Based on the evaluation results of the real-time flexible supply–demand relationship within a regional power grid, the operation modes of TPUs are categorized into three types: economic mode, peak shaving mode, and coordination mode. For each operation mode, corresponding optimization objectives are defined, and an energy storage control strategy is developed to assist in the peak shaving of TPUs. While effectively harnessing the flexibility of TPUs, the proposed method reduces both the frequency and capacity of TPUs entering deep peak shaving. Using data from a province in Northwest China as a case study, simulation calculations and analyses demonstrate that the proposed method increases renewable energy consumption by 314.37 MWh while decreasing system economic benefits by CNY 129,000. Compared with traditional scheduling methods for TPUs to accommodate renewable energy, the system benefit increases by CNY 297,000, and an additional 13.53 MWh of peak wind power is accommodated. These results confirm that the proposed scheduling strategy can significantly enhance the system’s ability to integrate new energy while maintaining its economic efficiency. Full article
(This article belongs to the Special Issue Planning, Scheduling and Control of Grids with Renewables)
Show Figures

Figure 1

15 pages, 5296 KiB  
Article
Study on Multiple-Inverter-Drive Method for IPMSM to Improve the Motor Efficiency
by Koki Takeuchi and Kan Akatsu
World Electr. Veh. J. 2025, 16(7), 398; https://doi.org/10.3390/wevj16070398 - 15 Jul 2025
Viewed by 233
Abstract
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been [...] Read more.
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been conducted on improving the efficiency of EV power units. In this study, we propose a multiple-inverter-drive permanent magnet synchronous motor based on an 8-pole, 48-slot structure, which is commonly used as an EV motor. The proposed motor is composed of two completely independent parallel inverters and windings, and intermittent operation is possible; that is, only one inverter and one parallel winding is used depending on the situation. In the proposed motor, we compare losses including stator iron loss, rotor iron loss, and magnet eddy current loss by PWM voltage inputs for some stator winding topologies, we show that the one-side winding arrangement is the most efficient during intermittent operation, and that it is more efficient than normal operation especially in the low-speed, low-torque range. Finally, through a vehicle-driving simulation considering the efficiency map including motor loss and inverter loss, we show that the intentional use of intermittent operation can improve electrical energy consumption. Full article
Show Figures

Figure 1

18 pages, 5137 KiB  
Article
Comparative Analysis of Energy Efficiency and Position Stability of Sub-250 g Quadcopter and Bicopter with Similar Mass Under Varying Conditions
by Artur Kierzkowski, Mateusz Woźniak and Paweł Bury
Energies 2025, 18(14), 3728; https://doi.org/10.3390/en18143728 - 14 Jul 2025
Viewed by 326
Abstract
This paper investigates the energy efficiency and positional stability of two types of ultralight unmanned aerial vehicles (UAVs)—bicopter and quadcopter—both with mass below 250 g, under varying flight conditions. The study is motivated by increasing interest in low-weight drones due to their regulatory [...] Read more.
This paper investigates the energy efficiency and positional stability of two types of ultralight unmanned aerial vehicles (UAVs)—bicopter and quadcopter—both with mass below 250 g, under varying flight conditions. The study is motivated by increasing interest in low-weight drones due to their regulatory flexibility and application potential in constrained environments. A comparative methodology was adopted, involving the construction of both UAV types using identical components where possible, including motors, sensors, and power supply, differing only in propulsion configuration. Experimental tests were conducted in wind-free and wind-induced environments to assess power consumption and stability. The data were collected through onboard blackbox logging, and positional deviation was tracked via video analysis. Results show that while the quadcopter consistently demonstrated lower energy consumption (by 6–22%) and higher positional stability, the bicopter offered advantages in simplicity of frame design and reduced component count. However, the bicopter required extensive manual tuning of PID parameters due to the inherent instability introduced by servo-based control. The findings highlight the potential of bicopters in constrained applications, though they emphasize the need for precise control strategies and high-performance servos. The study fills a gap in empirical analysis of energy consumption in lightweight bicopter UAVs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

28 pages, 10424 KiB  
Article
The Application of Wind Power Prediction Based on the NGBoost–GRU Fusion Model in Traffic Renewable Energy System
by Fudong Li, Yongjun Gan and Xiaolong Li
Sustainability 2025, 17(14), 6405; https://doi.org/10.3390/su17146405 - 13 Jul 2025
Viewed by 472
Abstract
In the context of the “double carbon” goals and energy transformation, the integration of energy and transportation has emerged as a crucial trend in their coordinated development. Wind power prediction serves as the cornerstone technology for ensuring efficient operations within this integrated framework. [...] Read more.
In the context of the “double carbon” goals and energy transformation, the integration of energy and transportation has emerged as a crucial trend in their coordinated development. Wind power prediction serves as the cornerstone technology for ensuring efficient operations within this integrated framework. This paper introduces a wind power prediction methodology based on an NGBoost–GRU fusion model and devises an innovative dynamic charging optimization strategy for electric vehicles (EVs) through deep collaboration. By integrating the dynamic feature extraction capabilities of GRU for time series data with the strengths of NGBoost in modeling nonlinear relationships and quantifying uncertainties, the proposed approach achieves enhanced performance. Specifically, the dual GRU fusion strategy effectively mitigates error accumulation and leverages spatial clustering to boost data homogeneity. These advancements collectively lead to a significant improvement in the prediction accuracy and reliability of wind power generation. Experiments on the dataset of a wind farm in Gansu Province demonstrate that the model achieves excellent performance, with an RMSE of 36.09 kW and an MAE of 29.96 kW at the 12 h prediction horizon. Based on this predictive capability, a “wind-power-charging collaborative optimization framework” is developed. This framework not only significantly enhances the local consumption rate of wind power but also effectively cuts users’ charging costs by approximately 18.7%, achieving a peak-shaving effect on grid load. As a result, it substantially improves the economic efficiency and stability of system operation. Overall, this study offers novel insights and robust support for optimizing the operation of integrated energy systems. Full article
Show Figures

Figure 1

11 pages, 2142 KiB  
Proceeding Paper
Heatwaves and Power Peaks: Analyzing Croatia’s Record Electricity Consumption in July 2024
by Paolo Blecich, Igor Bonefačić, Tomislav Senčić and Igor Wolf
Eng. Proc. 2025, 87(1), 90; https://doi.org/10.3390/engproc2025087090 - 10 Jul 2025
Viewed by 440
Abstract
This study examines the causes and implications of the unprecedented electricity consumption observed in Croatia during an intense heatwave in July 2024. On the evening of 17 July 2024, power demand reached an all-time high of 3381 MW, significantly surpassing the average demand [...] Read more.
This study examines the causes and implications of the unprecedented electricity consumption observed in Croatia during an intense heatwave in July 2024. On the evening of 17 July 2024, power demand reached an all-time high of 3381 MW, significantly surpassing the average demand of around 2000 MW. More concerningly, during these peak hours, 35% of the electricity had to be imported due to insufficient domestic generation capacity. As a result, average monthly electricity prices for July and August 2024 exceeded 250 EUR/MWh in the evening hours. Looking ahead, Croatia and Southern Europe are expected to face increasingly hotter summers, pushing power systems to accommodate even higher peak loads. As the energy transition progresses toward a greater reliance on intermittent renewable energy, enhancing power grid flexibility will become essential. Flexible power generation will play a critical role in bridging gaps in renewable energy output. Solutions such as pumped hydro storage and battery systems can store excess renewable energy and release it during peak demand periods. Additionally, demand response strategies—encouraging the shift of electricity usage to times of higher wind and solar availability—offer another effective way to adapt to the intermittent nature of renewable energy sources. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

36 pages, 5532 KiB  
Article
Supporting Sustainable Development Goals with Second-Life Electric Vehicle Battery: A Case Study
by Muhammad Nadeem Akram and Walid Abdul-Kader
Sustainability 2025, 17(14), 6307; https://doi.org/10.3390/su17146307 - 9 Jul 2025
Viewed by 435
Abstract
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many [...] Read more.
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many benefits. This paper focuses on reducing the energy consumption cost and greenhouse gas emissions of Internet-of-Things-enabled campus microgrids by installing solar photovoltaic panels on rooftops alongside energy storage systems that leverage second-life batteries, a gas-fired campus power plant, and a wind turbine while considering the potential loads of a prosumer microgrid. A linear optimization problem is derived from the system by scheduling energy exchanges with the Ontario grid through net metering and solved by using Python 3.11. The aim of this work is to support Sustainable Development Goals, namely 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). A comparison between a base case scenario and the results achieved with the proposed scenarios shows a significant reduction in electricity cost and greenhouse gas emissions and an increase in self-consumption rate and renewable fraction. This research work provides valuable insights and guidelines to policymakers. Full article
Show Figures

Figure 1

Back to TopTop