Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,425)

Search Parameters:
Keywords = whole-genome sequences

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5790 KiB  
Article
Molecular Surveillance and Whole Genomic Characterization of Bovine Rotavirus A G6P[1] Reveals Interspecies Reassortment with Human and Feline Strains in China
by Ahmed H. Ghonaim, Mingkai Lei, Yang Zeng, Qian Xu, Bo Hong, Dongfan Li, Zhengxin Yang, Jiaru Zhou, Changcheng Liu, Qigai He, Yufei Zhang and Wentao Li
Vet. Sci. 2025, 12(8), 742; https://doi.org/10.3390/vetsci12080742 (registering DOI) - 7 Aug 2025
Abstract
Group A rotavirus (RVA) is a leading causative agent of diarrhea in both young animals and humans. In China, multiple genotypes are commonly found within the bovine population. In this study, we investigated 1917 fecal samples from calves with diarrhea between 2022 and [...] Read more.
Group A rotavirus (RVA) is a leading causative agent of diarrhea in both young animals and humans. In China, multiple genotypes are commonly found within the bovine population. In this study, we investigated 1917 fecal samples from calves with diarrhea between 2022 and 2025, with 695 testing positive for RVA, yielding an overall detection rate of 36.25%. The highest positivity rate was observed in Hohhot (38.98%), and annual detection rates ranged from 26.75% in 2022 to 42.22% in 2025. A bovine rotavirus (BRV) strain, designated 0205HG, was successfully isolated from a fecal sample of a newborn calf. Its presence was confirmed through cytopathic effects (CPEs), the indirect immunofluorescence assay (IFA), electron microscopy (EM), and high-throughput sequencing. Genomic characterization identified the strain as having the G6-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3 genotype constellation. The structural proteins VP2 and VP7, along with nonstructural genes NSP1–NSP4, shared high sequence identity with Chinese bovine strains, whereas VP1, VP4, and NSP5 clustered more closely with human rotaviruses, and VP3 was related to feline strains. These findings highlight the genetic diversity and interspecies reassortment of BRVs in China, underlining the importance of continued surveillance and evolutionary analysis. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
Show Figures

Graphical abstract

15 pages, 3707 KiB  
Article
Biodegradation of Both Ethanol and Acetaldehyde by Acetobacter ghanensis JN01
by Hongyan Liu, Jingjing Wang, Qianqian Xu, Xiaoyu Cao, Xinyue Du, Kun Lin and Hai Yan
Catalysts 2025, 15(8), 756; https://doi.org/10.3390/catal15080756 (registering DOI) - 7 Aug 2025
Abstract
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was [...] Read more.
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was successfully isolated from the traditional fermented food Jiaosu and identified as Acetobacter ghanensis JN01 based on average nucleotide identity (ANI) analysis. Initial ethanol of 1 g/L was completely biodegraded within 4 h, while initial acetaldehyde of 1 g/L was also rapidly removed at 2 or 1 h by whole cells or cell-free extracts (CEs) of JN01, respectively, which indicated that JN01 indeed has a strong ability in the biodegradation of both ethanol and acetaldehyde. Whole-genome sequencing revealed a 2.85 Mb draft genome of JN01 with 57.0% guanine–cytosine (GC) content and the key metabolic genes (adh1, adh2, and aldh) encoding involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), co-located with NADH dehydrogenase genes and ethanol-responsive regulatory motifs, supporting the metabolic pathway of transforming ethanol to acetaldehyde, and, subsequently, converting acetaldehyde to acetic acid. Furthermore, selected in vitro safety-related traits of JN01 were also assessed, which is very important in the development of microbial catalysts against both ethanol and acetaldehyde. Full article
(This article belongs to the Section Biocatalysis)
19 pages, 4153 KiB  
Article
Whole-Genome Resequencing Analysis of Athletic Traits in Grassland-Thoroughbred
by Wenqi Ding, Wendian Gong, Tugeqin Bou, Lin Shi, Yanan Lin, Xiaoyuan Shi, Zheng Li, Huize Wu, Manglai Dugarjaviin and Dongyi Bai
Animals 2025, 15(15), 2323; https://doi.org/10.3390/ani15152323 (registering DOI) - 7 Aug 2025
Abstract
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses [...] Read more.
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses and Xilingol horses for this study. This breed is tentatively named “Grassland-Thoroughbred”, and the samples were divided into two groups based on racing ability: 30 racehorses and 30 non-racehorses. Based on whole-genome sequencing data, the study achieved an average sequencing depth of 25.63×. The analysis revealed strong selection pressure on chromosomes (Chr) 1 and 3. Selection signals were detected using methods such as the nucleotide diversity ratio (π ratio), integrated haplotype score (iHS), fixation index (Fst), and cross-population extended haplotype homozygosity (XP-EHH). Regions ranked in the top 5% by at least three methods were designated as candidate regions. This approach detected 215 candidate genes. Additionally, the Fst method was employed to detect Indels, and the top 1% regions detected were considered candidate regions, covering 661 candidate genes. Functional enrichment analysis of the candidate genes suggests that pathways related to immune regulation, neural signal transmission, muscle contraction, and energy metabolism may significantly influence differences in performance. Among these identified genes, PPARGC1A, FOXO1, SGCD, FOXP2, PRKG1, SLC25A15, CKMT2, and TRAP1 play crucial roles in muscle function, metabolism, sensory perception, and neurobiology, indicating their key significance in shaping racehorse phenotypes. This study not only enhances understanding of the molecular mechanisms underlying racehorse speed but also provides essential theoretical and practical references for the molecular breeding of Grassland-Thoroughbreds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1307 KiB  
Article
Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era
by Jijoho M. Agbla, Milton T. Mogotsi, Alban G. Zohoun, Nkosazana D. Shange, Annick Capochichi, Ayodeji E. Ogunbayo, Rolande Assogba, Shainey Khakha, Aristide Sossou, Hlengiwe Sondlane, Jason M. Mwenda, Mathew D. Esona and Martin M. Nyaga
Viruses 2025, 17(8), 1091; https://doi.org/10.3390/v17081091 (registering DOI) - 7 Aug 2025
Abstract
While a global downward trend in rotavirus diarrhea cases has been observed following vaccine introduction, reassortment, genetic drift, and vaccine-escaping strains remain a concern, particularly in Sub-Saharan Africa. Here, we provide genomic insights into three equine-like G3P[8] rotavirus strains detected in Benin during [...] Read more.
While a global downward trend in rotavirus diarrhea cases has been observed following vaccine introduction, reassortment, genetic drift, and vaccine-escaping strains remain a concern, particularly in Sub-Saharan Africa. Here, we provide genomic insights into three equine-like G3P[8] rotavirus strains detected in Benin during the post-vaccine era. Whole-genome sequencing was performed using the Illumina MiSeq platform, and genomic analysis was conducted using bioinformatics tools. The G3 of the study strains clustered within the recently described lineage IX, alongside the human-derived equine-like strain D388. The P[8] is grouped within the lineage III, along with cognate strains from the GenBank database. Both the structural and non-structural gene segments of these study strains exhibited genetic diversity, highlighting the ongoing evolution of circulating strains. Notably, we identified a novel NSP2 lineage, designated NSP2-lineage VI. Amino acid comparisons of the G3 gene showed two conservative substitutions at positions 156 (A156V) and 260 (I260V) and one radical substitution at position 250 (K250E) relative to the prototype equine-like strain D388, the equine strain Erv105, and other non-equine-like strains. In the P[8] gene, three conservative (N195G, N195D, N113D) and one radical (D133N) substitutions were observed when compared with vaccine strains Rotarix and RotaTeq. These findings suggest continuous viral evolution, potentially driven by vaccine pressure. Ongoing genomic surveillance is essential to monitor genotype shifts as part of the efforts to evaluate the impact of emerging strains and to assess vaccine effectiveness in Sub-Saharan Africa. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

21 pages, 3405 KiB  
Article
Allelic Variation of Helicobacter pylori vacA Gene and Its Association with Gastric Pathologies in Clinical Samples Collected in Jordan
by Mamoon M. Al-Hyassat, Hala I. Al-Daghistani, Lubna F. Abu-Niaaj, Sima Zein and Talal Al-Qaisi
Microorganisms 2025, 13(8), 1841; https://doi.org/10.3390/microorganisms13081841 - 7 Aug 2025
Abstract
Helicobacter pylori is a well-established causative agent of gastritis, peptic ulcers, gastric adenocarcinoma, and primary gastric lymphoma. It colonizes the human stomach and expresses numerous virulent factors that influence disease progression. Among these factors is the cytotoxin vacA gene, which encodes the vacuolating [...] Read more.
Helicobacter pylori is a well-established causative agent of gastritis, peptic ulcers, gastric adenocarcinoma, and primary gastric lymphoma. It colonizes the human stomach and expresses numerous virulent factors that influence disease progression. Among these factors is the cytotoxin vacA gene, which encodes the vacuolating capacity of the cytotoxin and plays a key role in the bacterium’s pathogenic potential. This study investigated the allelic diversity of the vacA among H. pylori strains infecting patients in Jordan with various gastric conditions and examined potential associations between vacA s-and m- genotypes, histopathological and endoscopic findings, and the development of gastric diseases. Gastric biopsies were collected from 106 patients at two hospitals in Jordan who underwent endoscopic examination. The collected biopsies for each patient were subjected to histopathological assessment, urease detection using the Rapid Urease Test (RUT), a diagnostic test for H. pylori, and molecular detection of the vacA gene and its s and m alleles. The histopathology reports indicated that 83 of 106 patients exhibited gastric disorders, of which 81 samples showed features associated with H. pylori infection. The RUT was positive in 76 of 106 with an accuracy of 93.8%. Real-time polymerase chain reaction (RT-PCR) targeting the 16S rRNA gene confirmed the presence of H. pylori in 79 of 81 histologically diagnosed cases as infected (97.5%), while the vacA gene was detected only in 75 samples (~95%). To explore genetic diversity, PCR-amplified fragments underwent sequence analysis of the vacA gene. The m-allele was detected in 58 samples (73%), the s-allele was detected in 45 (57%), while both alleles were not detected in 13% of samples. The predominant genotype combination among Jordanians was vacA s2/m2 (50%), significantly linked to mild chronic gastritis, followed by s1/m2 (35%) and s1/m1 (11.8%) which are linked to severe gastric conditions including malignancies. Age-and gender-related differences in vacA genotype were observed with less virulent s2m2 and s1m2 genotypes predominating in younger adults specially males, while the more virulent m1 genotypes were found exclusively in females and middle-aged patients. Genomic sequencing revealed extensive diversity within H. pylori, likely reflecting its long-standing co-evolution with human hosts in Jordan. This genetic variability plays a key role in modulating virulence and influencing clinical outcomes. Comprehensive characterization of vacA genotypic variations through whole-genome sequencing is essential to enhance diagnostic precision, strengthen epidemiological surveillance, and inform targeted therapeutic strategies. While this study highlights the significance of the vacA m and s alleles, future research is recommended in order to investigate the other vacA allelic variations, such as the i, d, and c alleles, to achieve a more comprehensive understanding of H. pylori pathogenicity and associated disease severity across different strains. These investigations will be crucial for improving diagnostic accuracy and guiding the development of targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Helicobacter pylori Infection: Detection and Novel Treatment)
Show Figures

Figure 1

13 pages, 2533 KiB  
Article
Molecular and Clinical Characterization of Crimean–Congo Hemorrhagic Fever in Bulgaria, 2015–2024
by Kim Ngoc, Ivan Stoikov, Ivelina Trifonova, Elitsa Panayotova, Evgenia Taseva, Iva Trifonova and Iva Christova
Pathogens 2025, 14(8), 785; https://doi.org/10.3390/pathogens14080785 (registering DOI) - 6 Aug 2025
Abstract
Crimean–Congo hemorrhagic fever (CCHF) is a zoonotic viral disease endemic to parts of Africa, Asia and southeastern Europe. Bulgaria is one of the few European countries with the consistent annual reporting of human CCHF cases. This study provides a descriptive overview of 24 [...] Read more.
Crimean–Congo hemorrhagic fever (CCHF) is a zoonotic viral disease endemic to parts of Africa, Asia and southeastern Europe. Bulgaria is one of the few European countries with the consistent annual reporting of human CCHF cases. This study provides a descriptive overview of 24 confirmed CCHF cases in Bulgaria between 2015 and 2024. Laboratory confirmation was performed by an enzyme-linked immunosorbent assay (ELISA) and/or real-time reverse transcriptase polymerase chain reaction (RT-qPCR) testing. Common findings included fever, fatigue, gastrointestinal symptoms, thrombocytopenia, leukopenia, liver dysfunction and coagulopathy. Two fatal cases were recorded. Two samples collected in 2016 and 2024 were subjected to whole-genome sequencing. Phylogenetic analysis showed that both strains clustered within the Turkish branch of the Europe 1 genotype and shared high genetic similarity with previous Bulgarian strains, as well as strains from neighboring countries. These findings suggest the long-term persistence of a genetically stable viral lineage in the region. Continuous molecular and clinical surveillance is necessary to monitor the evolution and public health impact of CCHFV in endemic areas. Full article
Show Figures

Figure 1

12 pages, 888 KiB  
Article
Identification of Candidate Genes for Endometriosis in a Three-Generation Family with Multiple Affected Members Using Whole-Exome Sequencing
by Carla Lintas, Alessia Azzarà, Vincenzo Panasiti and Fiorella Gurrieri
Biomedicines 2025, 13(8), 1922; https://doi.org/10.3390/biomedicines13081922 - 6 Aug 2025
Abstract
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its [...] Read more.
Background: Endometriosis is a chronic inflammatory condition affecting 10–15% of women of reproductive age. Genome-wide association studies (GWASs) have accounted for only a fraction of its high heritability, indicating the need for alternative approaches to identify rare genetic variants contributing to its etiology. To this end, we performed whole-exome sequencing (WES) in a multi-affected family. Methods: A multigenerational family was studied, comprising three sisters, their mother, grandmother, and a daughter, all diagnosed with endometriosis. WES was conducted on the three sisters and their mother. We used the enGenome-Evai and Varelect software to perform our analysis, which mainly focused on rare, missense, frameshift, and stop variants. Results: Bioinformatic analysis identified 36 co-segregating rare variants. Six missense variants in genes associated with cancer growth were prioritized. The top candidates were c.3319G>A (p.Gly1107Arg) in the LAMB4 gene and c.1414G>A (p.Gly472Arg) in the EGFL6 gene. Variants in NAV3, ADAMTS18, SLIT1, and MLH1 may also contribute to disease onset through a synergistic and additive model. Conclusions: We identified novel candidate genes for endometriosis in a multigenerational affected family, supporting a polygenic model of the disease. Our study is an exploratory family-based WES study, and replication and functional studies are warranted to confirm these preliminary findings. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 2475 KiB  
Article
Phage Host Range Expansion Through Directed Evolution on Highly Phage-Resistant Strains of Klebsiella pneumoniae
by Kevin A. Burke, Tracey L. Peters, Olga A. Kirillina, Caitlin D. Urick, Bertran D. Walton, Jordan T. Bird, Nino Mzhavia, Martin O. Georges, Paphavee Lertsethtakarn, Lillian A. Musila, Mikeljon P. Nikolich and Andrey A. Filippov
Int. J. Mol. Sci. 2025, 26(15), 7597; https://doi.org/10.3390/ijms26157597 - 6 Aug 2025
Abstract
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The [...] Read more.
Multidrug-resistant (MDR) strains of Klebsiella pneumoniae present an acute threat as they continue to disseminate globally. Phage therapy has shown promise as a powerful approach to combat MDR infections, but narrow phage host ranges make development of broad acting therapeutics more challenging. The goal of this effort was to use in vitro directed evolution (the “Appelmans protocol”) to isolate K. pneumoniae phages with broader host ranges for improved therapeutic cocktails. Five myophages in the genus Jiaodavirus (family Straboviridae) with complementary activity were mixed and passaged against a panel of 11 bacterial strains including a permissive host and phage-resistant clinical isolates. Following multiple rounds of training, we collected phage variants displaying altered specificity or expanded host ranges compared with parental phages when tested against a 100 strain diversity panel of K. pneumoniae. Some phage variants gained the ability to lyse previously phage-resistant strains but lost activity towards previously phage-susceptible strains, while several variants had expanded activity. Whole-genome sequencing identified mutations and recombination events impacting genes associated with host tropism including tail fiber genes that most likely underlie the observed changes in host ranges. Evolved phages with broader activity are promising candidates for improved K. pneumoniae therapeutic phage cocktails. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

17 pages, 2376 KiB  
Article
Selection and Characterisation of Elite Mesorhizobium spp. Strains That Mitigate the Impact of Drought Stress on Chickpea
by María Camacho, Francesca Vaccaro, Pilar Brun, Francisco Javier Ollero, Francisco Pérez-Montaño, Miriam Negussu, Federico Martinelli, Alessio Mengoni, Dulce Nombre Rodriguez-Navarro and Camilla Fagorzi
Agriculture 2025, 15(15), 1694; https://doi.org/10.3390/agriculture15151694 - 5 Aug 2025
Abstract
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains [...] Read more.
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains from chickpea nodules collected in southern Spain and evaluated their cultivar-specific symbiotic performance. Two commercial cultivars (Pedrosillano and Blanco Lechoso) and twenty chickpea germplasms were tested under growth chamber and greenhouse conditions, both with and without drought stress. Initial screening in a sterile substrate using nodulation assays, shoot/root dry weight measurements, and acetylene reduction assays identified three elite strains (ISC11, ISC15, and ISC25) with superior symbiotic performance and nitrogenase activity. Greenhouse trials under reduced irrigation demonstrated that several strain–cultivar combinations significantly mitigated drought effects on plant biomass, with specific interactions (e.g., ISC25 with RR-98 or BT6-19) preserving over 70% of shoot biomass relative to controls. Whole-genome sequencing of the elite strains revealed diverse taxonomic affiliations—ISC11 as Mesorhizobium ciceri, ISC15 as Mesorhizobium mediterraneum, and ISC25 likely representing a novel species. Genome mining identified plant growth-promoting traits including ACC deaminase genes (in ISC11 and ISC25) and genes coding for auxin biosynthesis-related enzymes. Our findings highlight the potential of targeted rhizobial inoculants tailored to chickpea cultivars to improve crop performance under water-limiting conditions. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

14 pages, 1669 KiB  
Article
Guinea Pig X Virus Is a Gammaherpesvirus
by Vy Ngoc Yen Truong, Robert Ellis and Brent A. Stanfield
Viruses 2025, 17(8), 1084; https://doi.org/10.3390/v17081084 - 5 Aug 2025
Abstract
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus [...] Read more.
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus propagation was conducted in Vero cells, followed by genomic DNA extraction and pan-herpesvirus nested PCR. Sanger sequencing filled gaps in the initial genome assembly, and whole-genome sequencing was performed using the Illumina MiSeq platform. Phylogenetic analyses focused on ORF8 (glycoprotein B), ORF9 (DNA polymerase catalytic subunit), ORF50 (RTA: replication and transcription activator), and ORF73 (LANA: latency-associated nuclear antigen). Results showed that GPXV ORFs showed variable evolutionary relationships with other gammaherpesviruses, including divergence from primate-associated viruses and clustering with bovine and rodent viruses. In addition to phylogenetics, a comprehensive comparative analysis of protein-coding genes between GPXV and the previously described Guinea Pig Herpes-Like Virus (GPHLV) revealed divergence. Twenty-four non-ORF genomic features were unique to GPXV, while 62 shared ORFs exhibited low to high sequence divergence. These findings highlight GPXV’s distinct evolutionary trajectory and its potential role as a model for studying host-specific adaptations and gammaherpesvirus diversity. Full article
(This article belongs to the Special Issue Animal Herpesvirus 2025)
Show Figures

Graphical abstract

17 pages, 3344 KiB  
Article
Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes
by Ruizhao Jia, Wenya Su, Wenjia Wang, Lulu Shi, Xinrou Zheng, Youming Zhang, Hai Xu, Xueyun Geng, Ling Li, Mingyu Wang and Xiang Li
Biology 2025, 14(8), 1000; https://doi.org/10.3390/biology14081000 - 5 Aug 2025
Abstract
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns [...] Read more.
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns in the perianal skin environment of patients with perianal diseases and to investigate the drivers of AMR in this niche, a total of 51 bacterial isolates were selected from a historical strain bank containing isolates originally collected from patients with perianal diseases. All the isolates originated from the skin site and were subjected to antimicrobial susceptibility testing, whole-genome sequencing, and co-occurrence network analysis. The analysis revealed a highly structured resistance pattern, dominated by two distinct modules: one representing a classic Staphylococcal resistance platform centered around mecA and the bla operon, and a broad-spectrum multidrug resistance module in Gram-negative bacteria centered around tet(A) and predominantly carried by IncFIB and other IncF family plasmids. Further analysis pinpointed IncFIB-type plasmids as potent vehicles driving the efficient dissemination of the latter resistance module. Moreover, numerous unexplained resistance phenotypes were observed in a subset of isolates, indicating the potential presence of emerging and uncharacterized AMR threats. These findings establish the perianal skin as a complex reservoir of multidrug resistance genes and a hub for mobile genetic element exchange, highlighting the necessity of enhanced surveillance and targeted interventions in this clinically important ecological niche. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

18 pages, 2678 KiB  
Article
Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation
by Nina P. Allan, Amada Torres, Michael J. Corley, Brennan Y. Yamamoto, Chantell Balaan, Yasuhiro Yamauchi, Rafael Peres, Yujia Qin, Vedbar S. Khadka, Youping Deng, Monika A. Ward and Alika K. Maunakea
Cells 2025, 14(15), 1201; https://doi.org/10.3390/cells14151201 - 5 Aug 2025
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we separated the effects of pre-conception and gestational obesity. We found that maternal high fat diet (HFD) exposure prior to conception alone was sufficient to induce ASD-like behaviors in male offspring—including altered vocalizations, reduced sociability, and increased repetitive grooming—without anxiety-related changes. These phenotypes were absent in female offspring and those exposed only during gestation. Cortical transcriptome analysis revealed dysregulation and isoform shifts in genes implicated in ASD, including Homer1 and Zswim6. Whole-genome bisulfite sequencing of hippocampal tissue showed hypomethylation of an alternative Homer1 promoter, correlating with increased expression of the short isoform Homer1a, which is known to disrupt synaptic scaffolding. This pattern was specific to mice with ASD-like behaviors. Our findings show that pre-conceptional maternal obesity can lead to lasting, isoform-specific transcriptomic and epigenetic changes in the offspring’s brain. These results underscore the importance of maternal health before pregnancy as a critical and modifiable factor in ASD risk. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Autism Spectrum Disorder)
Show Figures

Figure 1

28 pages, 5831 KiB  
Article
An Italian Single-Center Genomic Surveillance Study: Two-Year Analysis of SARS-CoV-2 Spike Protein Mutations
by Riccardo Cecchetto, Emil Tonon, Asia Palmisano, Anna Lagni, Erica Diani, Virginia Lotti, Marco Mantoan, Livio Montesarchio, Francesca Palladini, Giona Turri and Davide Gibellini
Int. J. Mol. Sci. 2025, 26(15), 7558; https://doi.org/10.3390/ijms26157558 - 5 Aug 2025
Viewed by 8
Abstract
The repeated occurrence of SARS-CoV-2 variants, largely driven by virus–host interactions, was and will remain a public health concern. Spike protein mutations shaped viral infectivity, transmissibility, and immune escape. From February 2022 to April 2024, a local genomic surveillance program in Verona, Italy, [...] Read more.
The repeated occurrence of SARS-CoV-2 variants, largely driven by virus–host interactions, was and will remain a public health concern. Spike protein mutations shaped viral infectivity, transmissibility, and immune escape. From February 2022 to April 2024, a local genomic surveillance program in Verona, Italy, was conducted on 1333 SARS-CoV-2-positive nasopharyngeal swabs via next generation full-length genome sequencing. Spike protein mutations were classified based on their prevalence over time. Mutations were grouped into five categories: fixed, emerging, fading, transient, and divergent. Notably, some divergent mutations displayed a “Lazarus effect,” disappearing and later reappearing in new lineages, indicating potential adaptive advantages in specific genomic contexts. This two-year surveillance study highlights the dynamic nature of spike protein mutations and their role in SARS-CoV-2 evolution. The findings underscore the need for ongoing mutation-focused genomic monitoring to detect early signals of variant emergence, especially among mutations previously considered disadvantageous. Such efforts are critical for driving public health responses and guiding future vaccine and therapeutic strategies. Full article
(This article belongs to the Special Issue The Interaction Between Cell and Virus, 3rd Edition)
Show Figures

Figure 1

22 pages, 884 KiB  
Article
Mitochondrial Dysregulation in Male Infertility: A Preliminary Study for Infertility-Specific lncRNA Variants
by Georgios Stamatellos, Maria-Anna Kyrgiafini, Aris Kaltsas and Zissis Mamuris
DNA 2025, 5(3), 38; https://doi.org/10.3390/dna5030038 - 5 Aug 2025
Viewed by 41
Abstract
Background/Objectives: Male infertility is a major health concern with a complex etiopathology, yet a substantial proportion of cases remain idiopathic. Mitochondrial dysfunction and non-coding RNA (ncRNA) deregulation have both been implicated in impaired spermatogenesis, but their interplay remains poorly understood. This study aimed [...] Read more.
Background/Objectives: Male infertility is a major health concern with a complex etiopathology, yet a substantial proportion of cases remain idiopathic. Mitochondrial dysfunction and non-coding RNA (ncRNA) deregulation have both been implicated in impaired spermatogenesis, but their interplay remains poorly understood. This study aimed to identify infertility-specific variants in ncRNAs that affect mitochondrial dynamics and homeostasis and to explore their roles. Methods: Whole-genome sequencing (WGS) was performed on genomic DNA samples from teratozoospermic, asthenozoospermic, oligozoospermic, and normozoospermic men. Variants uniquely present in infertile individuals and mapped to ncRNAs that affect mitochondrial dynamics were selected and prioritized using bioinformatics tools. An independent transcriptomic validation was conducted using RNA-sequencing data from testicular biopsies of men with non-obstructive azoospermia (NOA) to determine whether the ncRNAs harboring WGS-derived variants were transcriptionally altered. Results: We identified several infertility-specific variants located in lncRNAs known to interact with mitochondrial regulators, including GAS5, HOTAIR, PVT1, MEG3, and CDKN2B-AS1. Transcriptomic analysis confirmed significant deregulation of these lncRNAs in azoospermic testicular samples. Bioinformatic analysis also implicated the disruption of lncRNA–miRNA–mitochondria networks, potentially contributing to mitochondrial membrane potential loss, elevated reactive oxygen species (ROS) production, impaired mitophagy, and germ cell apoptosis. Conclusions: Our integrative genomic and transcriptomic analysis highlights lncRNA–mitochondrial gene interactions as a novel regulatory layer in male infertility, while the identified lncRNAs hold promise as biomarkers and therapeutic targets. However, future functional studies are warranted to elucidate their mechanistic roles and potential for clinical translation in reproductive medicine. Full article
Show Figures

Figure 1

15 pages, 9666 KiB  
Article
Hidden in the Genome: The First Italian Family with North Carolina Macular Dystrophy Carrying a Novel PRDM13 and CCNC Duplication
by Beatrice Spedicati, Domizia Pasquetti, Aurora Santin, Stefania Zampieri, Anna Morgan, Stefania Lenarduzzi, Giuseppe Giovanni Nardone, Elisa Paccagnella, Stefania Cappellani, Laura Diplotti, Stefano Pensiero, Fulvio Parentin, Paolo Gasparini, Maurizio Battaglia Parodi and Giorgia Girotto
Biomedicines 2025, 13(8), 1904; https://doi.org/10.3390/biomedicines13081904 - 5 Aug 2025
Viewed by 120
Abstract
Background: North Carolina Macular Dystrophy (NCMD) is a non-progressive inherited macular dystrophy characterized by marked phenotypic variability. The genetic etiology of NCMD remains largely unknown, and only a limited number of families have been reported in Europe. Methods: We performed an in-depth [...] Read more.
Background: North Carolina Macular Dystrophy (NCMD) is a non-progressive inherited macular dystrophy characterized by marked phenotypic variability. The genetic etiology of NCMD remains largely unknown, and only a limited number of families have been reported in Europe. Methods: We performed an in-depth investigation of an Italian family affected by NCMD using an integrated approach that combined SNP-array analysis, whole-exome sequencing, and long-read whole-genome sequencing. Additionally, we conducted a comprehensive review of NCMD-related literature. Results: We identified a novel 98 Kb duplication involving both PRDM13 and CCNC genes in a three-generation kindred, where the proband exhibited severe macular alterations, while all other affected family members presented with a milder clinical phenotype. A review of the literature suggests different genotype–phenotype correlations and similar penetrance for duplications and single-nucleotide variants (SNVs) in described families. Specifically, smaller duplications may be associated with more severe phenotypes, while SNVs exhibit high phenotypic variability. Conclusions: In this study, we describe the first NCMD Italian family, in which the integration of second- and third-generation sequencing methods enabled the identification of a novel pathogenic PRDM13 and CCNC duplication, thereby expanding the mutational spectrum of NCMD. Overall, these findings, together with the literature review, highlight the importance of selecting appropriate genetic testing approaches that allow the detection of non-coding variants and CNVs and thus enable accurate diagnosis and effective clinical management of patients and their families. Full article
(This article belongs to the Special Issue Ophthalmic Genetics: Unraveling the Genomics of Eye Disorders)
Show Figures

Figure 1

Back to TopTop