Guinea Pig X Virus Is a Gammaherpesvirus
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Viruses
2.2. Viral Purification and DNA Extraction
2.3. Generation of a Consensus GPXV Genome
2.4. Next-Generation Sequencing, Viral Classification, De Novo Assembly, and ORF Identification
3. Results
3.1. Genomic Features and Homology of GPXV
3.2. Phylogenetic Analysis of GPXV ORF8, 9, 50, and 73
3.3. Genomic Comparison Between GPXV and GPHLV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bia, F.J.; Summers, W.C.; Fong, C.K.; Hsiung, G.D. New endogenous herpesvirus of guinea pigs: Biological and molecular characterization. J. Virol. 1980, 36, 245–253. [Google Scholar] [CrossRef]
- Lowen, A.C.; Mubareka, S.; Tumpey, T.M.; García-Sastre, A.; Palese, P. The guinea pig as a transmission model for human influenza viruses. Proc. Natl. Acad. Sci. USA 2006, 103, 9988–9992. [Google Scholar] [CrossRef]
- Clark, S.; Hall, Y.; Williams, A. Animal models of tuberculosis: Guinea pigs. Cold Spring Harb. Perspect. Med. 2014, 5, a018572. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Volek, J.S. Guinea pigs: A suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation. Nutr. Metab. 2006, 3, 17. [Google Scholar] [CrossRef]
- Alenius, S.; Dinter, Z.; Oberg, B. Therapeutic effect of trisodium phosphonoformate on cutaneous herpesvirus infection in guinea pigs. Antimicrob. Agents Chemother. 1978, 14, 408–413. [Google Scholar] [CrossRef]
- Helgstrand, E.; Eriksson, B.; Johansson, N.G.; Lannerö, B.; Larsson, A.; Misiorny, A.; Norén, J.O.; Sjöberg, B.; Stenberg, K.; Stening, G.; et al. Trisodium phosphonoformate, a new antiviral compound. Science 1978, 201, 819–821. [Google Scholar] [CrossRef]
- Alenius, S.; Oberg, B. Comparison of the therapeutic effects of five antiviral agents on cutaneous herpesvirus infection in guinea pigs. Arch. Virol. 1978, 58, 277–288. [Google Scholar] [CrossRef]
- Schwarz, T.; Störk, C.K.; Megahy, I.W.; Lawrie, A.M.; Lochmüller, E.M.; Johnston, P.E. Osteodystrophia fibrosa in two guinea pigs. J. Am. Vet. Med.Assoc. 2001, 219, 49. [Google Scholar] [CrossRef]
- Tveden-Nyborg, P.; Vogt, L.; Schjoldager, J.G.; Jeannet, N.; Hasselholt, S.; Paidi, M.D.; Christen, S.; Lykkesfeldt, J. Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs. PLoS ONE 2012, 7, e48488. [Google Scholar] [CrossRef]
- Griffith, B.P.; Lucia, H.L.; Hsiung, G.D. Brain and visceral involvement during congenital cytomegalovirus infection of guinea pigs. Pediatr. Res. 1982, 16, 455–459. [Google Scholar] [CrossRef]
- Suparwitri, S.; Noviasari, P. Effect of olive oil administration on the level of transforming growth factor β1 during orthodontic tooth movement in old and young guinea pigs. F1000Res 2019, 8, 2028. [Google Scholar] [CrossRef]
- Stanfield, B.A.; Ruiz, E.; Chouljenko, V.N.; Kousoulas, K.G. Guinea pig herpes like virus is a gamma herpesvirus. Virus Genes 2024, 60, 148–158. [Google Scholar] [CrossRef]
- Escalera-Zamudio, M.; Rojas-Anaya, E.; Kolokotronis, S.O.; Taboada, B.; Loza-Rubio, E.; Méndez-Ojeda, M.L.; Arias, C.F.; Osterrieder, N.; Greenwood, A.D. Bats, Primates, and the Evolutionary Origins and Diversification of Mammalian Gammaherpesviruses. mBio 2016, 7, e01425-16. [Google Scholar] [CrossRef]
- Sorel, O.; Dewals, B.G. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front. Microbiol. 2018, 9, 3315. [Google Scholar] [CrossRef]
- Hanson, L.; Dishon, A.; Kotler, M. Herpesviruses that infect fish. Viruses 2011, 3, 2160–2191. [Google Scholar] [CrossRef]
- Fowler, P.; Marques, S.; Simas, J.P.; Efstathiou, S. ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J. Gen. Virol. 2003, 84 Pt 12, 3405–3416. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, Z.H. Purification of Herpesvirus Virions and Capsids. Bio. Protoc. 2014, 4, e1193. [Google Scholar] [CrossRef]
- Forrest, J.C.; Paden, C.R.; Allen, R.D., 3rd; Collins, J.; Speck, S.H. ORF73-null murine gammaherpesvirus 68 reveals roles for mLANA and p53 in virus replication. J. Virol. 2007, 81, 11957–11971. [Google Scholar] [CrossRef]
- Ehlers, B.; Borchers, K.; Grund, C.; Frölich, K.; Ludwig, H.; Buhk, H.J. Detection of new DNA polymerase genes of known and potentially novel herpesviruses by PCR with degenerate and deoxyinosine-substituted primers. Virus Genes 1999, 18, 211–220. [Google Scholar] [CrossRef]
- Dey, S.; Kaur, H.; Mazumder, M.; Brodsky, E. Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation. Genom. Inform. 2022, 20, e32. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Moorman, N.J.; Willer, D.O.; Speck, S.H. The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J. Virol. 2003, 77, 10295–10303. [Google Scholar] [CrossRef]
- Alibek, K.; Baiken, Y.; Kakpenova, A.; Mussabekova, A.; Zhussupbekova, S.; Akan, M.; Sultankulov, B. Implication of human herpesviruses in oncogenesis through immune evasion and supression. Infect. Agents Cancer 2014, 9, 3. [Google Scholar] [CrossRef]
- Liblekas, L.; Piirsoo, A.; Laanemets, A.; Tombak, E.-M.; Laaneväli, A.; Ustav, E.; Ustav, M.; Piirsoo, M. Analysis of the Replication Mechanisms of the Human Papillomavirus Genomes. Front. Microbiol. 2021, 12, 738125. [Google Scholar] [CrossRef]
- Rampersad, S.; Tennant, P. Replication and Expression Strategies of Viruses. Viruses 2018, 55–82. [Google Scholar] [CrossRef]
- Poole, E.; Neves, T.C.; Oliveira, M.T.; Sinclair, J.; da Silva, M.C.C. Human Cytomegalovirus Interleukin 10 Homologs: Facing the Immune System. Front. Cell Infect. Microbiol. 2020, 10, 245. [Google Scholar] [CrossRef]
- Leroy, H.; Han, M.; Woottum, M.; Bracq, L.; Bouchet, J.; Xie, M.; Benichou, S. Virus-Mediated Cell-Cell Fusion. Int. J. Mol. Sci. 2020, 21, 9644. [Google Scholar] [CrossRef] [PubMed]
- Walters, M.S.; Hall, K.T.; Whitehouse, A. The herpesvirus saimiri open reading frame (ORF) 50 (Rta) protein contains an at hook required for binding to the ORF50 response element in delayed-early promoters. J. Virol. 2004, 78, 4936–4942. [Google Scholar] [CrossRef] [PubMed]
- Blake, N. Immune evasion by gammaherpesvirus genome maintenance proteins. J. Gen. Virol. 2010, 91, 829–846. [Google Scholar] [CrossRef]
- Olsen, S.J.; Sand, R.; Chang, Y.; Moore, P.S. Evaluation of the Latency-Associated Nuclear Antigen (ORF73) of Kaposi’s Sarcoma-Associated Herpesvirus by Peptide Mapping and Bacterially Expressed Recombinant Western Blot Assay. J. Infect. Dis. 2000, 182, 306–310. [Google Scholar] [CrossRef]
- Krithivas, A.; Young, D.B.; Liao, G.; Greene, D.; Hayward, S.D. Human herpesvirus 8 LANA interacts with proteins ofthe mSin3 corepressor complex and negatively regulates Epstein-Barr virus gene expression in dually infected PEL cells. J. Virol. 2000, 74, 9637–9645. [Google Scholar] [CrossRef]
- Katano, H.; Sato, Y.; Kurata, T.; Mori, S.; Sata, T. High expression of HHV-8-encoded ORF73 protein in spindle-shaped cells of Kaposi’s sarcoma. Am. J. Pathol. 1999, 155, 47–52. [Google Scholar] [CrossRef]
- White, D.W.; Suzanne Beard, R.; Barton, E.S. Immune modulation during latent herpesvirus infection. Immunol. Rev. 2012, 245, 189–208. [Google Scholar] [CrossRef]
- Bernstein, D.I. Use of the Guinea pig model of genital herpes to evaluate vaccines and antivirals: Review. Antivir. Res. 2020, 180, 104821. [Google Scholar] [CrossRef]
- Iyer, A.V.; Pahar, B.; Chouljenko, V.N.; Walker, J.D.; Stanfield, B.; Kousoulas, K.G. Single dose of Glycoprotein K (gK)-deleted HSV-1 live-attenuated virus protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces lasting T cell memory immune responses. Virol. J. 2013, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Yadavalli, T.; Patil, C.; Sharma, P.; Volety, I.; Borase, H.; Kapoor, D.; Shukla, D. Unique Attributes of Guinea Pigs as New Models to Study Ocular Herpes Pathophysiology and Recurrence. Investig. Ophthalmol. Vis. Sci. 2023, 64, 41. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.; Aravantinou, M.; Menon, R.; Seidor, S.; Goldman, D.; Kenney, J.; Derby, N.; Gettie, A.; Blanchard, J.; Piatak, M., Jr.; et al. A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge. AIDS Res. Hum. Retroviruses 2013, 30, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.I.; Stanberry, L.R. Zosteriform Spread of Herpes Simplex Virus Type 2 Genital Infection in the Guinea-pig. J. Gen. Virol. 1986, 67, 1851–1857. [Google Scholar] [CrossRef]
- Awasthi, S.; Hook, L.M.; Shaw, C.E.; Pahar, B.; Stagray, J.A.; Liu, D.; Veazey, R.S.; Friedman, H.M. An HSV-2 Trivalent Vaccine Is Immunogenic in Rhesus Macaques and Highly Efficacious in Guinea Pigs. PLoS Pathog. 2017, 13, e1006141. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Huang, J.; Shaw, C.E.; Friedman, H.M. Blocking Herpes Simplex Virus 2 Glycoprotein E Immune Evasion as an Approach to Enhance Efficacy of a Trivalent Subunit Antigen Vaccine for Genital Herpes. J. Virol. 2014, 88, 842132. [Google Scholar] [CrossRef] [PubMed]
- Domingo, E. Interaction of Virus Populations with Their Hosts: Virus as Populations. Virus Popul. 2016, 123–268. [Google Scholar] [CrossRef]
ORF Name | Protein Name | Functional Domains/Motifs | Closest Homolog (Species) | Subcellular Location | E-Value | Percent Identity |
---|---|---|---|---|---|---|
ORF8 | Herpesvirus Glycoprotein B PH-like | Facilitates virion assembly, egress, and entry into host cells by interacting with viral and cellular membranes. | Marmot herpesvirus 1, Saguinine gammaherpesvirus 1, KSHV (HHV-8) | Host cell endosome | 0 | 56.93–59.80% |
ORF9 | DNA polymerase | DNA polymerase family B; This region of DNA polymerase B appears to consist of more than one structural domain, possibly including elongation, DNA-binding and dNTP binding activities. | Bovine herpesvirus 4 (BoHV-4), Marmot herpesvirus 1, Saguinine gammaherpesvirus 1 | Host nucleus | 0 | 58.57–58.76% |
ORF50 | Herpesvirus transcription activation factor | Transcriptional activator that initiates lytic replication by activating viral early gene expression This family includes EBV BRLF1 and similar ORF 50 proteins from other herpesviruses. | Marmot herpesvirus 1, Saguinine gammaherpesvirus 1, Bovine herpesvirus 4 (BoHV-4) | Host nucleus | 1 × 10−44 | 38.78–39.02% |
ORF73 | Protein LANA1-like, DNA-binding domain | Anchors viral episomes to host chromosomes and regulates latency gene expression | Human gammaherpesvirus 8 | Host nucleus | 5 × 10−6 | 37.80–38.27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, V.N.Y.; Ellis, R.; Stanfield, B.A. Guinea Pig X Virus Is a Gammaherpesvirus. Viruses 2025, 17, 1084. https://doi.org/10.3390/v17081084
Truong VNY, Ellis R, Stanfield BA. Guinea Pig X Virus Is a Gammaherpesvirus. Viruses. 2025; 17(8):1084. https://doi.org/10.3390/v17081084
Chicago/Turabian StyleTruong, Vy Ngoc Yen, Robert Ellis, and Brent A. Stanfield. 2025. "Guinea Pig X Virus Is a Gammaherpesvirus" Viruses 17, no. 8: 1084. https://doi.org/10.3390/v17081084
APA StyleTruong, V. N. Y., Ellis, R., & Stanfield, B. A. (2025). Guinea Pig X Virus Is a Gammaherpesvirus. Viruses, 17(8), 1084. https://doi.org/10.3390/v17081084