Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Method
2.2. Extraction of Nucleic Material and Purification
2.3. Complementary DNA (cDNA) Synthesis and PCR
2.4. Rotavirus Whole Genome Sequencing
2.5. Data Analysis
2.5.1. Quality Control, Genome Assembly and Genotype Assignment
2.5.2. Sequence Alignments
2.5.3. VP7 and VP4 Antigenic Regions
3. Results
3.1. Metrics on the Study Strains
3.2. Phylogenetic Analysis
3.2.1. Phylogenetic Analysis of the Equine-like G3
3.2.2. Phylogenetic Analysis of P[8]
3.2.3. Phylogenetic Analysis of VP1-3 and VP6
- VP1 gene
- VP2 gene
- VP3 gene
- VP6 gene
3.2.4. Phylogenetic Analysis of NSP1-5
- NSP1 gene
- NSP2 gene
- NSP3 gene
- NSP4 gene
- NSP5 gene
3.3. Amino Acids Changes Within Antigenic Regions
- Changes within G3 antigenic regions
- Changes within P[8] antigenic regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Esona, M.D.; Gautam, R. Rotavirus. Clin. Lab. Med. 2015, 35, 363–391. [Google Scholar] [CrossRef] [PubMed]
- Kwambana, B.A.; Ikumapayi, U.N.; Sallah, N.; Dione, M.; Jarju, S.; Panchalingham, S.; Jafali, J.; Lamin, M.; Betts, M.; Adeyemi, M.; et al. High Genotypic Diversity among Rotavirus Strains Infecting Gambian Children. Pediatr. Infect. Dis. J. 2014, 33 (Suppl. 1), S69–S75. [Google Scholar] [CrossRef] [PubMed]
- Lartey, B.L.; Damanka, S.; Dennis, F.E.; Enweronu-Laryea, C.C.; Addo-Yobo, E.; Ansong, D.; Kwarteng-Owusu, S.; Sagoe, K.W.; Mwenda, J.M.; Diamenu, S.K.; et al. Rotavirus Strain Distribution in Ghana Pre- and Post- Rotavirus Vaccine Introduction. Vaccine 2018, 36, 7238–7242. [Google Scholar] [CrossRef] [PubMed]
- Matthijnssens, J.; Van Ranst, M. Genotype Constellation and Evolution of Group A Rotaviruses Infecting Humans. Curr. Opin. Virol. 2012, 2, 426–433. [Google Scholar] [CrossRef] [PubMed]
- WHO-Position Paper Rotavirus Vaccines: WHO Position Paper—July 2021. Available online: https://www.who.int/publications-detail-redirect/WHO-WER9628 (accessed on 16 May 2023).
- Agbla, J.M.; Esona, M.D.; Agbankpe, A.J.; Capo-Chichi, A.; Gautam, R.; Dougnon, T.V.; Razack, O.; Bowen, M.D.; Bankole, H.S. Molecular Characteristics of Rotavirus Genotypes Circulating in the South of Benin, 2016–2018. BMC Res. Notes 2020, 13, 485. [Google Scholar] [CrossRef] [PubMed]
- Agbla, J.M.; Esona, M.D.; Jaimes, J.; Gautam, R.; Agbankpé, A.J.; Katz, E.; Dougnon, T.V.; Capo-Chichi, A.; Ouedraogo, N.; Razack, O.; et al. Whole Genome Analysis of Rotavirus Strains Circulating in Benin before Vaccine Introduction, 2016–2018. Virus Res. 2022, 313, 198715. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, H.B.; Estes, M.K. Rotaviruses: From Pathogenesis to Vaccination. Gastroenterology 2009, 136, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Matthijnssens, J.; Ciarlet, M.; Heiman, E.; Arijs, I.; Delbeke, T.; McDonald, S.M.; Palombo, E.A.; Iturriza-Gómara, M.; Maes, P.; Patton, J.T.; et al. Full Genome-Based Classification of Rotaviruses Reveals a Common Origin between Human Wa-Like and Porcine Rotavirus Strains and Human DS-1-Like and Bovine Rotavirus Strains. J. Virol. 2008, 82, 3204–3219. [Google Scholar] [CrossRef] [PubMed]
- Matthijnssens, J.; Ciarlet, M.; Rahman, M.; Attoui, H.; Bányai, K.; Estes, M.K.; Gentsch, J.R.; Iturriza-Gómara, M.; Kirkwood, C.D.; Martella, V.; et al. Recommendations for the Classification of Group A Rotaviruses Using All 11 Genomic RNA Segments. Arch. Virol. 2008, 153, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- RCWG Virus Classification. Available online: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification (accessed on 18 March 2023).
- Burnett, E.; Parashar, U.D.; Tate, J.E. Global Impact of Rotavirus Vaccination on Diarrhea Hospitalizations and Deaths Among Children <5 Years Old: 2006–2019. J. Infect. Dis. 2020, 222, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.D.; Armah, G.E.; Mwenda, J.M.; Kirkwood, C.D. The Full Impact of Rotavirus Vaccines in Africa Has Yet to Be Realized. Clin. Infect. Dis. 2023, 76, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Rotavirus Vaccines: An Update. Releve Epidemiol. Hebd. 2009, 84, 533–540. [Google Scholar]
- Bernstein, D.I.; Sack, D.A.; Rothstein, E.; Reisinger, K.; Smith, V.E.; O’Sullivan, D.; Spriggs, D.R.; Ward, R.L. Efficacy of Live, Attenuated, Human Rotavirus Vaccine 89–12 in Infants: A Randomised Placebo-Controlled Trial. Lancet 1999, 354, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, N.; Rongsen-Chandola, T.; Bavdekar, A.; John, J.; Antony, K.; Taneja, S.; Goyal, N.; Kawade, A.; Kang, G.; Rathore, S.S.; et al. Efficacy of a Monovalent Human-Bovine (116E) Rotavirus Vaccine in Indian Infants: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2014, 383, 2136–2143. [Google Scholar] [CrossRef] [PubMed]
- Bwogi, J.; Karamagi, C.; Byarugaba, D.K.; Tushabe, P.; Kiguli, S.; Namuwulya, P.; Malamba, S.S.; Jere, K.C.; Desselberger, U.; Iturriza-Gomara, M. Co-Surveillance of Rotaviruses in Humans and Domestic Animals in Central Uganda Reveals Circulation of Wide Genotype Diversity in the Animals. Viruses 2023, 15, 738. [Google Scholar] [CrossRef] [PubMed]
- Ciarlet, M.; Schödel, F. Development of a Rotavirus Vaccine: Clinical Safety, Immunogenicity, and Efficacy of the Pentavalent Rotavirus Vaccine, RotaTeq®. Vaccine 2009, 27, G72–G81. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, C.D.; Steele, A.D. Rotavirus Vaccines in China: Improvement Still Required. JAMA Netw. Open 2018, 1, e181579. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Liu, P.; Zhu, F. The Performance of Licensed Rotavirus Vaccines and the Development of a New Generation of Rotavirus Vaccines: A Review. Hum. Vaccines Immunother. 2021, 17, 880–896. [Google Scholar] [CrossRef] [PubMed]
- Arana, A.; Montes, M.; Jere, K.C.; Alkorta, M.; Iturriza-Gómara, M.; Cilla, G. Emergence and Spread of G3P[8] Rotaviruses Possessing an Equine-like VP7 and a DS-1-like Genetic Backbone in the Basque Country (North of Spain), 2015. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 44, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Cowley, D.; Donato, C.M.; Roczo-Farkas, S.; Kirkwood, C.D. Emergence of a Novel Equine-like G3P[8] Inter-Genogroup Reassortant Rotavirus Strain Associated with Gastroenteritis in Australian Children. J. Gen. Virol. 2016, 97, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Camilloni, B.; Bianchini, S.; Ianiro, G.; Polinori, I.; Farinelli, E.; Monini, M.; Principi, N. First Detection of a Reassortant G3P[8] Rotavirus A Strain in Italy: A Case Report in an 8-Year-Old Child. Virol. J. 2019, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.M.; Esona, M.D.; Betrapally, N.S.; De La Cruz De Leon, L.A.; Neira, Y.R.; Rey, G.J.; Bowen, M.D. Whole-Gene Analysis of Inter-Genogroup Reassortant Rotaviruses from the Dominican Republic: Emergence of Equine-like G3 Strains and Evidence of Their Reassortment with Locally-Circulating Strains. Virology 2019, 534, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, C.; Liebert, U.G. Molecular Characterization of Different Equine-like G3 Rotavirus Strains from Germany. Infect. Genet. Evol. 2018, 57, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Tacharoenmuang, R.; Komoto, S.; Guntapong, R.; Ide, T.; Haga, K.; Katayama, K.; Kato, T.; Ouchi, Y.; Kurahashi, H.; Tsuji, T.; et al. Whole Genomic Analysis of an Unusual Human G6P[14] Rotavirus Strain Isolated from a Child with Diarrhea in Thailand: Evidence for Bovine-To-Human Interspecies Transmission and Reassortment Events. PLoS ONE 2015, 10, e0139381. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, T.; Wahyuni, R.M.; Doan, Y.H.; Dinana, Z.; Soegijanto, S.; Fujii, Y.; Juniastuti; Yamani, L.N.; Matsui, C.; Deng, L.; et al. Equine-like G3 Rotavirus Strains as Predominant Strains among Children in Indonesia in 2015–2016. Infect. Genet. Evol. 2018, 61, 224–228. [Google Scholar] [CrossRef]
- Manjate, F.; João, E.D.; Mwangi, P.; Chirinda, P.; Mogotsi, M.; Messa, A.; Garrine, M.; Vubil, D.; Nobela, N.; Nhampossa, T.; et al. Genomic Characterization of the Rotavirus G3P[8] Strain in Vaccinated Children, Reveals Possible Reassortment Events between Human and Animal Strains in Manhiça District, Mozambique. Front. Microbiol. 2023, 14, 1193094. [Google Scholar] [CrossRef] [PubMed]
- Malakalinga, J.J.; Misinzo, G.; Msalya, G.M.; Shayo, M.J.; Kazwala, R.R. Genetic Diversity and Genomic Analysis of G3P[6] and Equine-like G3P[8] in Children under-Five from Southern Highlands and Eastern Tanzania. Acta Trop. 2023, 242, 106902. [Google Scholar] [CrossRef] [PubMed]
- Mwanga, M.J.; Verani, J.R.; Omore, R.; Tate, J.E.; Parashar, U.D.; Murunga, N.; Gicheru, E.; Breiman, R.F.; Nokes, D.J.; Agoti, C.N. Multiple Introductions and Predominance of Rotavirus Group A Genotype G3P[8] in Kilifi, Coastal Kenya, 4 Years after Nationwide Vaccine Introduction. Pathogens 2020, 9, 981. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gutierrez, M.; Hernandez-Mira, E.; Rendon-Marin, S.; Ruiz-Saenz, J. Wa-1 Equine-Like G3P[8] Rotavirus from a Child with Diarrhea in Colombia. Viruses 2021, 13, 1075. [Google Scholar] [CrossRef] [PubMed]
- Akane, Y.; Tsugawa, T.; Fujii, Y.; Honjo, S.; Kondo, K.; Nakata, S.; Fujibayashi, S.; Ohara, T.; Mori, T.; Higashidate, Y.; et al. Molecular and Clinical Characterization of the Equine-like G3 Rotavirus That Caused the First Outbreak in Japan, 2016. J. Gen. Virol. 2021, 102, 001548. [Google Scholar] [CrossRef] [PubMed]
- Tahar, A.S.; Ong, E.J.; Rahardja, A.; Mamora, D.; Lim, K.T.; Ahmed, K.; Kulai, D.; Tan, C.S. Emergence of Equine-like G3 and Porcine-like G9 Rotavirus Strains in Sarawak, Malaysia: 2019−2021. J. Med. Virol. 2023, 95, e28987. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, P.N.; Potgieter, R.-L.; Uwimana, J.; Mutesa, L.; Muganga, N.; Murenzi, D.; Tusiyenge, L.; Mwenda, J.M.; Mogotsi, M.T.; Rakau, K.; et al. The Evolution of Post-Vaccine G8P[4] Group a Rotavirus Strains in Rwanda; Notable Variance at the Neutralization Epitope Sites. Pathogens 2023, 12, 658. [Google Scholar] [CrossRef] [PubMed]
- Andrews Simon Babraham Bioinformatics. FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 26 August 2024).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An Integrated Platform for Visualization and Analysis of High-Throughput Sequence-Based Experimental Data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Pickett, B.E.; Sadat, E.L.; Zhang, Y.; Noronha, J.M.; Squires, R.B.; Hunt, V.; Liu, M.; Kumar, S.; Zaremba, S.; Gu, Z.; et al. ViPR: An Open Bioinformatics Database and Analysis Resource for Virology Research. Nucleic Acids Res. 2012, 40, D593–D598. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More Models, New Heuristics and High-Performance Computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Ciarlet, M.; Hoshino, Y.; Liprandi, F. Single Point Mutations May Affect the Serotype Reactivity of Serotype G11 Porcine Rotavirus Strains: A Widening Spectrum? J. Virol. 1997, 71, 8213–8220. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.H.; Nakagomi, T.; Nakagomi, O. Evidence for Genetic Reassortment between Human Rotaviruses by Full Genome Sequencing of G3P[4] and G2P[4] Strains Co-Circulating in India. Trop. Med. Health 2013, 41, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Agbemabiese, C.A.; Nakagomi, T.; Damanka, S.A.; Dennis, F.E.; Lartey, B.L.; Armah, G.E.; Nakagomi, O. Sub-Genotype Phylogeny of the Non-G, Non-P Genes of Genotype 2 Rotavirus A Strains. PLoS ONE 2019, 14, e0217422. [Google Scholar] [CrossRef] [PubMed]
- Mhango, C.; Banda, A.; Chinyama, E.; Mandolo, J.J.; Kumwenda, O.; Malamba-Banda, C.; Barnes, K.G.; Kumwenda, B.; Jambo, K.C.; Donato, C.M.; et al. Comparative Whole Genome Analysis Reveals Re-Emergence of Human Wa-like and DS-1-like G3 Rotaviruses after Rotarix Vaccine Introduction in Malawi. Virus Evol. 2023, 9, vead030. [Google Scholar] [CrossRef] [PubMed]
- Medici, M.C.; Tummolo, F.; Martella, V.; Arcangeletti, M.C.; De Conto, F.; Chezzi, C.; Magrì, A.; Fehér, E.; Marton, S.; Calderaro, A.; et al. Whole Genome Sequencing Reveals Genetic Heterogeneity of G3P[8] Rotaviruses Circulating in Italy. Infect. Genet. Evol. 2016, 40, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Malasao, R.; Saito, M.; Suzuki, A.; Imagawa, T.; Nukiwa-Soma, N.; Tohma, K.; Liu, X.; Okamoto, M.; Chaimongkol, N.; Dapat, C.; et al. Human G3P[4] Rotavirus Obtained in Japan, 2013, Possibly Emerged through a Human–Equine Rotavirus Reassortment Event. Virus Genes 2015, 50, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Tacharoenmuang, R.; Komoto, S.; Guntapong, R.; Upachai, S.; Singchai, P.; Ide, T.; Fukuda, S.; Ruchusatsawast, K.; Sriwantana, B.; Tatsumi, M.; et al. High Prevalence of Equine-like G3P[8] Rotavirus in Children and Adults with Acute Gastroenteritis in Thailand. J. Med. Virol. 2020, 92, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Bonura, F.; Bányai, K.; Mangiaracina, L.; Bonura, C.; Martella, V.; Giammanco, G.M.; De Grazia, S. Emergence in 2017–2019 of Novel Reassortant Equine-like G3 Rotavirus Strains in Palermo, Sicily. Transbound. Emerg. Dis. 2022, 69, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Arana, A.; Jere, K.C.; Chaguza, C.; Montes, M.; Alkorta, M.; Iturriza-Gomara, M.; Cilla, G. Molecular Epidemiology of G12 Rotavirus Strains during Eight Consecutive Epidemic Seasons in the Basque Country (North of Spain), 2010–2018. Infect. Genet. Evol. 2019, 71, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Moure, U.A.E.; Banga-Mingo, V.; Gody, J.C.; Mwenda, J.M.; Fandema, J.; Waku-Kouomou, D.; Manengu, C.; Koyazegbe, T.D.; Esona, M.D.; Bowen, M.D.; et al. Emergence of G12 and G9 Rotavirus Genotypes in the Central African Republic, January 2014 to February 2016. BMC Res. Notes 2018, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, P.N.; Mogotsi, M.T.; Seheri, M.L.; Mphahlele, M.J.; Peenze, I.; Esona, M.D.; Kumwenda, B.; Steele, A.D.; Kirkwood, C.D.; Ndze, V.N.; et al. Whole Genome In-Silico Analysis of South African G1P[8] Rotavirus Strains before and after Vaccine Introduction over a Period of 14 Years. Vaccines 2020, 8, 609. [Google Scholar] [CrossRef] [PubMed]
Genes/Genogroup | RVA Strains Compared | Shared Sequence Identity | |
---|---|---|---|
Nucleotide Identity (%) | Amino Acid Identity (%) | ||
VP7-G3 | Among Benin G3 strains | 99.6–100 | 99.7–100 |
All G3-lineage IX | 90.6–99.2 | 97.2–99.7 | |
VP4-P[8] | Among Benin P[8] strains | 97.7–100 | 97.7–100 |
All P[8]-Lineage III | 95.3–99.0 | 96.4–98.8 | |
Genogroup I2 | Among Benin VP6 strains | 97.9–100 | 99.7–100 |
All VP6-Lineage V | 95.8–99.6 | 98.2–100 | |
Genogroup R2 | Among Benin VP1 strains | 96.6–99.5 | 98.9–99.9 |
All VP1-Lineage V | 93.7–99.1 | 98.4–99.8 | |
Genogroup C2 | Among Benin VP2 strains | 98.7–100 | 99.8–100 |
All VP2-Lineage IV | 95.7–99.7 | 99.1–100 | |
Genogroup M2 | Among Benin VP3 strains | 99.5–100 | 99.5–100 |
All VP3-Lineage VII | 95.9–99.1 | 97.7–99.6 | |
Genogroup A2 | Among Benin NSP1 strains | 95.8–99.3 | 96.3–99.6 |
All NSP1-Lineage IV | 93.8–99.2 | 93.3–99.2 | |
Genogroup N2 | Among Benin NSP2 strains | 86.6–100 | 95.0–100 |
All NSP2-Lineage V | 80.8–99.1 | 94.3–99.7 | |
All Benin strains and NSP2-Lineage VI (new) | 86.6–100 | 95.3–100 | |
Among lineage VI | 98.6–100 | 99.7–100 | |
Lineage VI and lineage I (HQ650123/RVA/Human-tc/USA/DS-1/1976/G2P4) | 88.1 | 94.6 | |
Lineage VI and lineage II | 84.5–85.3 | 92.1–93.1 | |
Lineage VI and lineage III | 87.8 | 94.3–94.6 | |
Lineage VI and lineage IV | 88.0 | 94.6 | |
Lineage VI and lineage V | 86.4–87.1 | 94.3–95.6 | |
Genogroup T2 | Among Benin NSP3 strains | 96.2–99.8 | 97.1–100 |
All NSP3-Lineage V | 98.8–99.6 | 99.0–100 | |
Genogroup E2 | Among Benin NSP4 strains | 92.0–99.0 | 96.0–99.4 |
All NSP4-Lineage VI | 98.5–99.8 | 97.7–99.4 | |
All NSP4-Lineage XII | 98.1–99.4 | 98.3–100 | |
Genogroup H2 | Among Benin NSP5 strains | 99.7–100 | 100 |
All NSP5-Lineage IV | 97.3–99.5 | 99.5–100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agbla, J.M.; Mogotsi, M.T.; Zohoun, A.G.; Shange, N.D.; Capochichi, A.; Ogunbayo, A.E.; Assogba, R.; Khakha, S.; Sossou, A.; Sondlane, H.; et al. Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era. Viruses 2025, 17, 1091. https://doi.org/10.3390/v17081091
Agbla JM, Mogotsi MT, Zohoun AG, Shange ND, Capochichi A, Ogunbayo AE, Assogba R, Khakha S, Sossou A, Sondlane H, et al. Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era. Viruses. 2025; 17(8):1091. https://doi.org/10.3390/v17081091
Chicago/Turabian StyleAgbla, Jijoho M., Milton T. Mogotsi, Alban G. Zohoun, Nkosazana D. Shange, Annick Capochichi, Ayodeji E. Ogunbayo, Rolande Assogba, Shainey Khakha, Aristide Sossou, Hlengiwe Sondlane, and et al. 2025. "Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era" Viruses 17, no. 8: 1091. https://doi.org/10.3390/v17081091
APA StyleAgbla, J. M., Mogotsi, M. T., Zohoun, A. G., Shange, N. D., Capochichi, A., Ogunbayo, A. E., Assogba, R., Khakha, S., Sossou, A., Sondlane, H., Mwenda, J. M., Esona, M. D., & Nyaga, M. M. (2025). Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era. Viruses, 17(8), 1091. https://doi.org/10.3390/v17081091