Mitochondrial Dysregulation in Male Infertility: A Preliminary Study for Infertility-Specific lncRNA Variants
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. DNA Extraction and Sample Preparation
2.3. Whole-Genome Sequencing (WGS) and Data Analysis
2.4. Bioinformatics Analysis
2.5. Validation of lncRNA Expression in Azoospermic Samples
2.6. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Whole-Genome Sequencing and Variant Annotation
3.3. Identification and Filtering of Unique Variants Affecting Mitochondrial Dynamics
3.4. Investigation of the Role of Variants—Association with Diseases and Impact on lncRNA-miRNA Interactions
3.5. Expression-Based Validation of lncRNAs Harboring Infertility-Associated Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
lncRNA | Long noncoding RNA |
ncRNA | Noncoding RNA |
NOA | Nonobstructive Azoospermia |
ROS | Reactive Oxygen Species |
WGS | Whole Genome Sequencing |
WHO | World Health Organization |
References
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil. Steril. 2017, 108, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, P.N.; Sigman, M.; Collura, B.; De Jonge, C.J.; Eisenberg, M.L.; Lamb, D.J.; Mulhall, J.P.; Niederberger, C.; Sandlow, J.I.; Sokol, R.Z.; et al. Diagnosis and Treatment of Infertility in Men: AUA/ASRM Guideline Part I. Fertil. Steril. 2021, 115, 54–61. [Google Scholar] [CrossRef]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male Infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef]
- Kothandaraman, N.; Agarwal, A.; Abu-Elmagd, M.; Al-Qahtani, M.H. Pathogenic Landscape of Idiopathic Male Infertility: New Insight towards Its Regulatory Networks. npj Genom. Med. 2016, 1, 16023. [Google Scholar] [CrossRef]
- Boeri, L.; Kandil, H.; Ramsay, J. Idiopathic Male Infertility—What Are We Missing? Arab J. Urol. 2024, 23, 215–229. [Google Scholar] [CrossRef]
- Lv, M.Q.; Ge, P.; Zhang, J.; Yang, Y.Q.; Zhou, L.; Zhou, D.X. Temporal Trends in Semen Concentration and Count among 327 373 Chinese Healthy Men from 1981 to 2019: A Systematic Review. Hum. Reprod. 2021, 36, 1751–1775. [Google Scholar] [CrossRef]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Jolles, M.; Pinotti, R.; Swan, S.H. Temporal Trends in Sperm Count: A Systematic Review and Meta-Regression Analysis of Samples Collected Globally in the 20th and 21st Centuries. Hum. Reprod. Update 2023, 29, 157–176. [Google Scholar] [CrossRef]
- Slade, P.; O’Neill, C.; Simpson, A.J.; Lashen, H. The Relationship between Perceived Stigma, Disclosure Patterns, Support and Distress in New Attendees at an Infertility Clinic. Hum. Reprod. 2007, 22, 2309–2317. [Google Scholar] [CrossRef]
- Wu, A.K.; Odisho, A.Y.; Washington, S.L.; Katz, P.P.; Smith, J.F. Out-of-Pocket Fertility Patient Expense: Data from a Multicenter Prospective Infertility Cohort. J. Urol. 2014, 191, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Moraes, C.R.; Meyers, S. The Sperm Mitochondrion: Organelle of Many Functions. Anim. Reprod. Sci. 2018, 194, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Vertika, S.; Singh, K.K.; Rajender, S. Mitochondria, Spermatogenesis, and Male Infertility—An Update. Mitochondrion 2020, 54, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, M.B.; Kumar, R.; Bhatt, A.; Bamezai, R.N.K.; Kumar, R.; Gupta, N.P.; Das, T.K.; Dada, R. Mitochondrial DNA Mutations in Etiopathogenesis of Male Infertility. Indian J. Urol. 2008, 24, 150–154. [Google Scholar] [CrossRef]
- Amor, H.; Hammadeh, M.E. A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility. Genes 2022, 13, 1182. [Google Scholar] [CrossRef]
- Hermann Ayekoue, J.E.; Sylvère N’Zi, K.G.; Berenger Ako, A.A.; N’Guessan, M.F.; Guillaume Yayé, Y.; Amadou Coulibaly, F.; Joseph Djaman, A. Polymorphism of Mitochondrial DNA Genes Involved in Asthenozoospermia in Infertile Patients of Côte d’Ivoire. Reprod. Dev. Med. 2023, 7, 38–43. [Google Scholar] [CrossRef]
- Kyrgiafini, M.A.; Giannoulis, T.; Chatziparasidou, A.; Mamuris, Z. Elucidating the Role of OXPHOS Variants in Asthenozoospermia: Insights from Whole Genome Sequencing and an In Silico Analysis. Int. J. Mol. Sci. 2024, 25, 4121. [Google Scholar] [CrossRef]
- Boguenet, M.; Bouet, P.E.; Spiers, A.; Reynier, P.; May-Panloup, P. Mitochondria: Their Role in Spermatozoa and in Male Infertility. Hum. Reprod. Update 2021, 27, 697–719. [Google Scholar] [CrossRef]
- Takeshima, T.; Usui, K.; Mori, K.; Asai, T.; Yasuda, K.; Kuroda, S.; Yumura, Y. Oxidative Stress and Male Infertility. Reprod. Med. Biol. 2020, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Koli, S.; Reddy, K.V.R. Regulatory Non-Coding Transcripts in Spermatogenesis: Shedding Light on “Dark Matter”. Andrology 2014, 2, 360–369. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, K.; Gao, Y.; Wang, C.; Li, L.; Liao, Y.; Hu, K.; Liang, M. Roles of Noncoding RNA in Reproduction. Front. Genet. 2021, 12, 2513. [Google Scholar] [CrossRef]
- Aliakbari, F.; Eshghifar, N.; Mirfakhraie, R.; Pourghorban, P.; Azizi, F. Coding and Non-Coding RNAs, as Male Fertility and Infertility Biomarkers. Int. J. Fertil. Steril. 2021, 15, 158. [Google Scholar] [CrossRef]
- Kyrgiafini, M.A.; Sarafidou, T.; Mamuris, Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. Biology 2022, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
- Kyrgiafini, M.A.; Mamuris, Z. Circular RNAs and Their Role in Male Infertility: A Systematic Review. Biomolecules 2023, 13, 1046. [Google Scholar] [CrossRef]
- Shi, Z.; Yu, M.; Guo, T.; Sui, Y.; Tian, Z.; Ni, X.; Chen, X.; Jiang, M.; Jiang, J.; Lu, Y.; et al. MicroRNAs in Spermatogenesis Dysfunction and Male Infertility: Clinical Phenotypes, Mechanisms and Potential Diagnostic Biomarkers. Front. Endocrinol. 2024, 15, 1293368. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; James, E.R.; Aston, K.I.; Carrell, D.T.; Jenkins, T.G.; Yeste, M. The Role of MiRNAs in Male Human Reproduction: A Systematic Review. Andrology 2020, 8, 7–26. [Google Scholar] [CrossRef]
- Yu, P.; Zhao, X.; Zhou, D.; Wang, S.; Hu, Z.; Lian, K.; Zhang, N.; Duan, P.; Yu, P.; Zhao, X.; et al. The MicroRNA-Mediated Apoptotic Signaling Axis in Male Reproduction: A Possible and Targetable Culprit in Male Infertility. Cell Biol. Toxicol. 2025, 41, 54. [Google Scholar] [CrossRef]
- Du, L.; Chen, W.; Zhang, D.; Cui, Y.; He, Z. The Functions and Mechanisms of PiRNAs in Mediating Mammalian Spermatogenesis and Their Applications in Reproductive Medicine. Cell Mol. Life Sci. 2024, 81, 379. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 9 July 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Dyer, S.C.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Barrera-Enriquez, V.P.; Becker, A.; Bennett, R.; Beracochea, M.; Berry, A.; et al. Ensembl 2025. Nucleic Acids Res. 2025, 53, D948–D957. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Gusic, M.; Prokisch, H. NcRNAs: New Players in Mitochondrial Health and Disease? Front. Genet. 2020, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Lu, Y.; Zhang, H.; Zhang, J.; Fang, X.; Wang, J.; Li, M. Mitochondrial Non-Coding RNAs Are Potential Mediators of Mitochondrial Homeostasis. Biomolecules 2022, 12, 1863. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinforma. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Pierre, A.S.; Génin, E. How Important Are Rare Variants in Common Disease? Brief. Funct. Genom. 2014, 13, 353–361. [Google Scholar] [CrossRef]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the Deleteriousness of Variants throughout the Human Genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef] [PubMed]
- Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A Web Server for Functional Annotation of Human Genome Sequence Variation (2020 Update). Nucleic Acids Res. 2020, 48, W185–W192. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.R.; Liu, W.; Zhang, Q.; Guo, A.Y. LncRNASNP2: An Updated Database of Functional SNPs and Mutations in Human and Mouse LncRNAs. Nucleic Acids Res. 2018, 46, D276–D280. [Google Scholar] [CrossRef]
- Chatziparasidou, A.; Sarafidou, T.; Kyrgiafini, M.-A.; Moutou, K.; Markantoni, M.; Giannoulis, T.; Papatheodorou, A.; Oraiopoulou, C.; Samolada, G.; Christoforidis, N.; et al. Unraveling the Genetic Basis of Azoospermia: Transcriptome Profiling Analyses in a Greek Population. FS Sci. 2024, 6, 16–29. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhong, Y.; Wang, Y.; Zhang, X.; Batista, D.L.; Gejman, R.; Ansell, P.J.; Zhao, J.; Weng, C.; Klibanski, A. Activation of P53 by MEG3 Non-Coding RNA. J. Biol. Chem. 2007, 282, 24731–24742. [Google Scholar] [CrossRef]
- Fang, X.; Lu, X.; Ma, Y.; Sun, N.; Jiao, Y.; Meng, H.; Song, M.; Jin, H.; Yao, G.; Song, N.; et al. Possible Involvement of a MEG3-MiR-21-SPRY1-NF-ΚB Feedback Loop in Spermatogenic Cells Proliferation, Autophagy, and Apoptosis. iScience 2024, 27, 110904. [Google Scholar] [CrossRef]
- Kino, T.; Hurt, D.E.; Ichijo, T.; Nader, N.; Chrousos, G.P. Noncoding RNA Gas5 Is a Growth Arrest- and Starvation-Associated Repressor of the Glucocorticoid Receptor. Sci. Signal. 2010, 3, ra8. [Google Scholar] [CrossRef]
- Garabedian, M.J.; Logan, S.K. Glucocorticoid Receptor DNA Binding Decoy Is a Gas. Sci. Signal. 2010, 3, pe5. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Ju, H.-Q.; Yang, Z.; Ge, Q.; Zhang, Z.; Liu, F.; Yang, L.; Gong, H.; Shi, C.; Qu, L.; et al. Mitochondrial Long Non-Coding RNA GAS5 Tunes TCA Metabolism in Response to Nutrient Stress. Nat. Metab. 2021, 3, 90–106. [Google Scholar] [CrossRef] [PubMed]
- Mourtada-Maarabouni, M.; Pickard, M.R.; Hedge, V.L.; Farzaneh, F.; Williams, G.T. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 2009, 28, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.T.; Pyburn, J.S.; Nguyen, N.L.; Schank, M.B.; Zhao, J.; Wang, L.; Leshaodo, T.O.; El Gazzar, M.; Moorman, J.P.; Yao, Z.Q. Epigenetic Regulation by LncRNA GAS5/MiRNA/MRNA Network in Human Diseases. Int. J. Mol. Sci. 2025, 26, 1377. [Google Scholar] [CrossRef]
- Mparmpakas, D.; Zachariades, E.; Sotiriadis, G.; Goumenou, A.; Harvey, A.J.; Gidron, Y.; Karteris, E. Differential Expression of Placental Glucocorticoid Receptors and Growth Arrest-Specific Transcript 5 in Term and Preterm Pregnancies: Evidence for Involvement of Maternal Stress. Obstet. Gynecol. Int. 2014, 2014, 239278. [Google Scholar] [CrossRef]
- Zheng, D.; Hou, Y.; Li, Y.; Bian, Y.; Khan, M.; Li, F.; Huang, L.; Qiao, C. Long Non-Coding RNA Gas5 Is Associated With Preeclampsia and Regulates Biological Behaviors of Trophoblast via MicroRNA-21. Front. Genet. 2020, 11, 188. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhong, J.X.; Xiang, Y.Y. LncRNA-GAS5 Related to the Processes of Recurrent Pregnancy Loss by Regulating Th1/Th2 Balance. Kaohsiung J. Med. Sci. 2021, 37, 479. [Google Scholar] [CrossRef] [PubMed]
- Bhan, A.; Mandal, S.S. LncRNA HOTAIR: A Master Regulator of Chromatin Dynamics and Cancer. Biochim. Biophys. Acta 2015, 1856, 151. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, X.; Wang, Y.; Wang, K. Functions and Underlying Mechanisms of LncRNA HOTAIR in Cancer Chemotherapy Resistance. Cell Death Discov. 2022, 8, 383. [Google Scholar] [CrossRef]
- Hajjari, M.; Salavaty, A. HOTAIR: An Oncogenic Long Non-Coding RNA in Different Cancers. Cancer Biol. Med. 2015, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, M.; Chen, W.; Wang, R.; Ye, Z.; Wang, Y.; Li, X.; Cai, C. LncRNA-HOTAIR Inhibition Aggravates Oxidative Stress-Induced H9c2 Cells Injury through Suppression of MMP2 by MiR-125. Acta Biochim. Biophys. Sin. 2018, 50, 996–1006. [Google Scholar] [CrossRef]
- Kong, L.; Zhou, X.; Wu, Y.; Wang, Y.; Chen, L.; Li, P.; Liu, S.; Sun, S.; Ren, Y.; Mei, M.; et al. Targeting HOTAIR Induces Mitochondria Related Apoptosis and Inhibits Tumor Growth in Head and Neck Squamous Cell Carcinoma in Vitro and in Vivo. Curr. Mol. Med. 2015, 15, 952–960. [Google Scholar] [CrossRef]
- You, H.; Li, H.; Gou, W. LncRNA HOTAIR Promotes ROS Generation and NLRP3 Inflammasome Activation by Inhibiting Nrf2 in Diabetic Retinopathy. Medicine 2023, 102, E35155. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Wei, L.; Qian, F.; Bo, L.; Gao, S.; Yang, G.; Mao, C. LncRNA HOTAIR Regulates Autophagy and Proliferation Mechanisms in Premature Ovarian Insufficiency through the MiR-148b-3p/ATG14 Axis. Cell Death Discov. 2024, 10, 44. [Google Scholar] [CrossRef]
- Banikazemi, Z.; Heidar, Z.; Rezaee, A.; Taghavi, S.P.; Zadeh Modarres, S.; Asemi, Z.; Goleij, P.; Jahed, F.; Mazaheri, E.; Taghizadeh, M. Long Non-Coding RNAs and Female Infertility: What Do We Know? Pathol. Res. Pract. 2023, 250, 154814. [Google Scholar] [CrossRef]
- Asl, A.J.; Sharifi, M.; Dashti, A.; Reza Dashti, G. Relationship between Long Non-Coding RNA MALAT1 and HOTAIR Expression with Sperm Parameters, DNA and Malondialdehyde Levels in Male Infertility. Tissue Cell 2023, 85, 102248. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Li, X.; Zhang, P.; Wang, J.; Zhu, D.; Chen, X.; Ye, L. Low Long Non-Coding RNA HOTAIR Expression Is Associated with down-Regulation of Nrf2 in the Spermatozoa of Patients with Asthenozoospermia or Oligoasthenozoospermia. Int. J. Clin. Exp. Pathol. 2015, 8, 14198–14205. [Google Scholar]
- Li, R.; Wang, X.; Zhu, C.; Wang, K. LncRNA PVT1: A Novel Oncogene in Multiple Cancers. Cell Mol. Biol. Lett. 2022, 27, 84. [Google Scholar] [CrossRef]
- Alessio, E.; Buson, L.; Chemello, F.; Peggion, C.; Grespi, F.; Martini, P.; Massimino, M.L.; Pacchioni, B.; Millino, C.; Romualdi, C.; et al. Single Cell Analysis Reveals the Involvement of the Long Non-Coding RNA Pvt1 in the Modulation of Muscle Atrophy and Mitochondrial Network. Nucleic Acids Res. 2019, 47, 1653–1670. [Google Scholar] [CrossRef]
- Wu, F.; Huang, W.; Tan, Q.; Guo, Y.; Cao, Y.; Shang, J.; Ping, F.; Wang, W.; Li, Y. ZFP36L2 Regulates Myocardial Ischemia/Reperfusion Injury and Attenuates Mitochondrial Fusion and Fission by LncRNA PVT1. Cell Death Dis. 2021, 12, 614. [Google Scholar] [CrossRef]
- Tabury, K.; Monavarian, M.; Listik, E.; Shelton, A.K.; Choi, A.S.; Quintens, R.; Arend, R.C.; Hempel, N.; Ryan Miller, C.; Gyorrfy, B.; et al. PVT1 Is a Stress-Responsive LncRNA That Drives Ovarian Cancer Metastasis and Chemoresistance. Life Sci. Alliance 2022, 5, e202201370. [Google Scholar] [CrossRef]
- Song, C.; Qi, Y.; Zhang, J.; Guo, C.; Yuan, C. CDKN2B-AS1: An Indispensable Long Non-Coding RNA in Multiple Diseases. Curr. Pharm. Des. 2020, 26, 5335–5346. [Google Scholar] [CrossRef] [PubMed]
- Hjazi, A.; Ghaffar, E.; Asghar, W.; Khalaf, H.A.; Ullah, M.I.; Romero-Parra, R.M.; Hussien, B.M.; Alazbjee, A.A.A.; Bisht, Y.S.; Mustafa, Y.F.; et al. CDKN2B-AS1 as a Novel Therapeutic Target in Cancer: Mechanism and Clinical Perspective. Biochem. Pharmacol. 2023, 213, 115627. [Google Scholar] [CrossRef] [PubMed]
- Vahedi Raad, M.; Firouzabadi, A.M.; Tofighi Niaki, M.; Henkel, R.; Fesahat, F. The Impact of Mitochondrial Impairments on Sperm Function and Male Fertility: A Systematic Review. Reprod. Biol. Endocrinol. 2024, 22, 83. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.M.; Sabbaghian, M.; Jalili, M.; Divsalar, A.; Wolkenhauer, O.; Salehzadeh-Yazdi, A. Comprehensive Functional Enrichment Analysis of Male Infertility. Sci. Rep. 2017, 7, 15778. [Google Scholar] [CrossRef]
- Chatziparasidou, A.; Kyrgiafini, M.A.; Sarafidou, T.; Moutou, K.A.; Mamuris, Z. Genetic Insights into Azoospermia and Severe Oligozoospermia: Discovering Seven SNPs through GWAS and In Silico Analysis. Curr. Issues Mol. Biol. 2024, 46, 6522–6532. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.; Radwan, A.F.; Shaker, O.G.; Adel, A.; Sayed, G.A. A Comparison of the Expression Patterns and Diagnostic Capability of the NcRNAs NEAT1 and MiR-34a in Non-Obstructive Azoospermia and Severe Oligospermia. Hum. Genom. 2025, 19, 35. [Google Scholar] [CrossRef] [PubMed]
- Bak, C.W.; Song, S.H.; Yoon, T.K.; Lim, J.J.; Shin, T.E.; Sung, S. Natural Course of Idiopathic Oligozoospermia: Comparison of Mild, Moderate and Severe Forms. Int. J. Urol. 2010, 17, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.; Rodriguez, A.; Marciano, O.; Nordgren, R.; Lundy, S.D.; Raheem, O.A. A 10-Year Longitudinal Analysis of the Impact of Demographic, Lifestyle, and Medical Factors on Semen Qualities in Men in a City in the Midwestern Region of the United States of America. Asian J. Androl. 2025, 27, 464–469. [Google Scholar] [CrossRef] [PubMed]
Demographics | Normozoospermic (n = 10) | Teratozoospermic (n = 5) | Asthenozoospermic (n = 5) | Oligozoospermic (n = 5) | p-Value |
---|---|---|---|---|---|
Age | 28–53 Mean = 36.4 (SD = 7.2) | 31–49 Mean = 38 (SD = 6.82) | 21–32 Mean = 29 (SD = 5.07) | 34–41 Mean = 39 (SD = 2.83) | 0.049717 (ANOVA) 0.037 (Tukey’s test, Asthenoz.–Oligoz.) |
Body Mass Index (BMI) | 19.5–40.4 Mean = 26.97 (SD = 6.07) | 24.8–33 Mean = 29.24 (SD = 3.31) | 20.5–32.3 Mean = 25.33 (SD = 5.28) | 26.5–36.3 Mean = 31.1 (SD = 4.43) | 0.362778 (ANOVA) |
Smoking | 30% Not Smoking, 70% Smoking | 60% Not Smoking, 40% Smoking | 60% Not Smoking, 40% Smoking | 40% Not Smoking, 60% Smoking | 0.4148 (chi-square test) |
Alcohol Consumption | 100% ≤ 2 drinks/week | 80% ≤ 2 drinks/week | 80% ≤ 2 drinks/week | 80% ≤ 2 drinks/week | 0.560632 (chi-square test) |
Comparison | Unique Variants | Genes Mapped |
---|---|---|
Normozoospermic vs. Asthenozoospermic | 2,329,803 – 680,099 | 30,362 – 26,019 |
Normozoospermic vs. Oligozoospermic | 2,260,073 – 717,374 | 34,650 – 26,451 |
Normozoospermic vs. Teratozoospermic | 2,342,243 – 617,722 | 34,603 – 22,022 |
Variant | Allele | lncRNA |
---|---|---|
rs1293520072 | T | PVT1 |
rs62512808 | A | PVT1 |
rs62512840 | G | PVT1 |
rs61743293 | T | CDKN2B-AS1 |
rs4977754 | C | CDKN2B-AS1 |
Variant | rs61743293 | rs4977754 | rs16935753 |
---|---|---|---|
Gene name | CDKN2B-AS1 | CDKN2B-AS1 | CDKN2B-AS1 |
Associated variant | rs1011970 | rs1011970 | rs17694493 rs1011970 |
Associated disease | Breast cancer | Breast cancer | Prostate cancer Breast cancer |
Detection | Asthenozoospermia Oligozoospermia Teratozoospermia | Asthenozoospermia Oligozoospermia Teratozoospermia | Teratozoospermia |
Variants | Male Infertility Subtype | lncRNA | Gain of miRNA Binding Sites |
---|---|---|---|
rs72698763 | Asthenozoospermia | MEG3 | hsa-miR-3121-5p |
rs77508107 | Asthenozoospermia—Oligozoospermia | MEG3 | hsa-miR-3130-5p |
hsa-miR-203b-5p | |||
hsa-miR-6718-5p | |||
hsa-miR-4482-5p | |||
hsa-miR-383-3p | |||
rs79315403 | Asthenozoospermia | GAS5 | hsa-miR-641 |
hsa-miR-3617-5p | |||
rs117549407 | Asthenozoospermia | PVT1 | hsa-miR-1290 |
rs118184290 | Asthenozoospermia | PVT1 | hsa-miR-875-3p |
hsa-miR-4463 | |||
hsa-miR-873-3p | |||
rs188541206 | Asthenozoospermia | PVT1 | hsa-miR-4659a-3p |
hsa-miR-4778-3p | |||
hsa-miR-4659b-3p | |||
rs61743293 | Asthenozoospermia—Oligozoospermia— Teratozoospermia | ANRIL | hsa-miR-4457 |
hsa-miR-624-3p | |||
hsa-miR-513b-5p | |||
rs4977754 | Asthenozoospermia—Oligozoospermia— Teratozoospermia | ANRIL | hsa-miR-3611 |
rs75997850 | Oligozoospermia | MEG3 | hsa-miR-4662a-5p |
rs45497496 | Oligozoospermia | MEG3 | hsa-miR-490-3p |
hsa-miR-7851-3p | |||
hsa-miR-619-3p | |||
rs188154930 | Oligozoospermia | ZFAS1 | hsa-miR-3687 |
hsa-miR-4442 | |||
rs558352708 | Oligozoospermia | ZFAS1 | hsa-miR-6894-3p |
rs75608030 | Oligozoospermia— Teratozoospermia | PVT1 | hsa-miR-3198 |
hsa-miR-6514-5p | |||
hsa-miR-8082 | |||
hsa-miR-4534 | |||
hsa-miR-4309 | |||
rs56026723 | Oligozoospermia | PVT1 | hsa-miR-4690-5p |
rs182698882 | Teratozoospermia | UCA1 | hsa-miR-4671-5p |
rs147453927 | Teratozoospermia | TUG1 | hsa-miR-596 |
rs62512788 | Teratozoospermia | PVT1 | hsa-miR-548av-3p |
rs16935753 | Teratozoospermia | ANRIL | hsa-miR-3145-3p |
Variants | Male Infertility Subtype | lncRNA | Loss of miRNA Binding Sites |
---|---|---|---|
rs79315403 | Asthenozoospermia | GAS5 | hsa-miR-577 |
rs117549407 | Asthenozoospermia | PVT1 | hsa-miR-4320 |
rs118184290 | Asthenozoospermia | PVT1 | hsa-miR-5186 |
rs75997850 | Oligozoospermia | MEG3 | hsa-miR-6804-5p |
rs45497496 | Oligozoospermia | MEG3 | hsa-miR-6125 |
rs142547171 | Oligozoospermia— Teratozoospermia | MEG3 | hsa-miR-4731-5p |
hsa-miR-637 | |||
rs558352708 | Oligozoospermia | ZFAS1 | hsa-miR-632 |
hsa-miR-654-3p | |||
hsa-miR-4288 | |||
rs75608030 | Oligozoospermia— Teratozoospermia | PVT1 | hsa-miR-4775 |
rs80289709 | Oligozoospermia— Teratozoospermia | PVT1 | hsa-miR-4775 |
rs56026723 | Oligozoospermia | PVT1 | hsa-miR-6808-5p |
hsa-miR-583 | |||
hsa-miR-6893-5p | |||
hsa-miR-940 | |||
hsa-miR-1827 | |||
rs142547171 | Oligozoospermia— Teratozoospermia | MEG3 | hsa-miR-4731-5p |
hsa-miR-637 | |||
rs182698882 | Teratozoospermia | UCA1 | hsa-miR-3150b-3p |
hsa-miR-6888-5p | |||
hsa-miR-151a-5p | |||
rs80289709 | Oligozoospermia— Teratozoospermia | PVT1 | hsa-miR-4775 |
rs62512788 | Teratozoospermia | PVT1 | hsa-miR-892c-5p |
rs16935753 | Teratozoospermia | ANRIL | hsa-miR-888-3p |
hsa-miR-6719-3p |
lncRNA | Regulation | log2 Fold Change | FDR | WGS—Male Infertility Subtype |
---|---|---|---|---|
MEG3 | Downregulated | −4.27 | 0.0003 | Asthenozoospermia– Oligozoospermia– Teratozoospermia |
GAS5 | Downregulated | −1.6 | 0.0005 | Asthenozoospermia |
PVT1 | Downregulated | −1.8 | 0.0001 | Asthenozoospermia– Oligozoospermia– Teratozoospermia |
HOTAIR | Upregulated | 1.3 | 0.0226 | Asthenozoospermia– Oligozoospermia |
CDKN2B-AS1 | Upregulated | 2.6 | 0.0001 | Teratozoospermia |
lncRNA | Regulation | log2 Fold Change | FDR | WGS—Male Infertility Subtype |
---|---|---|---|---|
MEG3 | Downregulated | −2.4 | 0.0008 | Asthenozoospermia– Oligozoospermia– Teratozoospermia |
GAS5 | Downregulated | −1.4 | 0.0015 | Asthenozoospermia |
HOTAIR | Upregulated | 2.8 | 0.0012 | Asthenozoospermia– Oligozoospermia |
lncRNA | Regulation | log2 Fold Change | FDR | WGS—Male Infertility Subtype |
---|---|---|---|---|
PVT1 | Downregulated | −4.3 | 0.0024 | Asthenozoospermia– Oligozoospermia– Teratozoospermia |
HOTAIR | Upregulated | 1.9 | 0.001 | Asthenozoospermia– Oligozoospermia |
CDKN2B-AS1 | Upregulated | 4.7 | 0.0005 | Teratozoospermia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamatellos, G.; Kyrgiafini, M.-A.; Kaltsas, A.; Mamuris, Z. Mitochondrial Dysregulation in Male Infertility: A Preliminary Study for Infertility-Specific lncRNA Variants. DNA 2025, 5, 38. https://doi.org/10.3390/dna5030038
Stamatellos G, Kyrgiafini M-A, Kaltsas A, Mamuris Z. Mitochondrial Dysregulation in Male Infertility: A Preliminary Study for Infertility-Specific lncRNA Variants. DNA. 2025; 5(3):38. https://doi.org/10.3390/dna5030038
Chicago/Turabian StyleStamatellos, Georgios, Maria-Anna Kyrgiafini, Aris Kaltsas, and Zissis Mamuris. 2025. "Mitochondrial Dysregulation in Male Infertility: A Preliminary Study for Infertility-Specific lncRNA Variants" DNA 5, no. 3: 38. https://doi.org/10.3390/dna5030038
APA StyleStamatellos, G., Kyrgiafini, M.-A., Kaltsas, A., & Mamuris, Z. (2025). Mitochondrial Dysregulation in Male Infertility: A Preliminary Study for Infertility-Specific lncRNA Variants. DNA, 5(3), 38. https://doi.org/10.3390/dna5030038