Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Chemicals
2.3. Animals
2.4. Diets
2.5. IVF and Embryo Transfer
2.6. Behavioral Analyses
2.6.1. Test Battery and Scoring
2.6.2. Ultrasonic Vocalization Test
2.6.3. Three-Chamber Test
2.6.4. Self-Grooming Test
2.6.5. Elevated Plus Maze Test
2.7. Molecular Analyses
2.7.1. Brain Collection and DNA/RNA Extraction
2.7.2. Transcriptomic and Methylomic Pipeline for Brain Tissue
2.8. Statistical Analyses
3. Results
3.1. Maternal Obesity Prior to Conception Induces ASD-like Behaviors in Male Offspring with Variable Penetrance
3.2. Transcriptional Dysregulation in ASD-like Offspring Reflects Human ASD Pathways
3.3. Molecular Interaction Networks Reveal ASD-Specific Signaling Alterations
3.4. Aberrant Patterns of DNA Methylation Within the Homer1 Promoter Region Are Associated with the ASD Phenotype
3.5. Visual Summary: Maternal Obesity Alters Neural Gene Regulation and Behavior
4. Discussion
4.1. Pre-Conception Obesity Reprograms Neurodevelopment and Induces ASD Traits
4.2. Behavioral Domains Are Selectively Altered by Pre-Conceptional Programming
4.3. Cortical Gene Expression Changes Mirror Known ASD Risk Pathways
4.4. Epigenetic Regulation of Homer1 Isoforms Links Molecular and Behavioral Phenotypes
4.5. Implications, Limitations, and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASD | Autism spectrum disorder |
CP | Canonical Pathway |
DGE | Differential gene expression |
DOHaD | Developmental Origins of Health and Disease |
DMR | Differentially methylated regions |
DTU | Differential transcript usage |
EPM | Elevate plus maze |
FC | Fold change |
GAM | Gamete Donor |
GO:BP | Gene Ontology: Biological Process |
GSEA | Gene Set Enrichment Analysis |
HFD | High fat diet |
IVF | In vitro fertilization |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
kME | Module Eigengene-based Connectivity |
MSigDB | Molecular Signatures database |
ND | Normal diet |
PND | Postnatal day |
MGI | Mouse Genome Informatics |
RPKM | Reads per kilobase of transcript, per Million mapped reads |
SFARI | Simons Foundation Autism Research Initiative |
SUR | Surrogate |
TPM | Transcript per Millon |
USV | Ultrasonic Vocalization |
WGCNA | Weighted gene co-expression network analysis |
WGBS | Whole-genome bisulfite sequencing |
References
- Nordahl, C.W.; Andrews, D.S.; Dwyer, P.; Waizbard-Bartov, E.; Restrepo, B.; Lee, J.K.; Heath, B.; Saron, C.; Rivera, S.M.; Solomon, M.; et al. The Autism Phenome Project: Toward Identifying Clinically Meaningful Subgroups of Autism. Front. Neurosci. 2021, 15, 786220. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Loomes, R.; Hull, L.; Mandy, W.P.L. What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. J. Am. Acad. Child. Adolesc. Psychiatry 2017, 56, 466–474. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Strathearn, L.; Momany, A.; Kovacs, E.H.; Guiler, W.; Ladd-Acosta, C. The intersection of genome, epigenome and social experience in autism spectrum disorder: Exploring modifiable pathways for intervention. Neurobiol. Learn. Mem. 2023, 202, 107761. [Google Scholar] [CrossRef]
- Agarwal, P.; Morriseau, T.S.; Kereliuk, S.M.; Doucette, C.A.; Wicklow, B.A.; Dolinsky, V.W. Maternal obesity, diabetes during pregnancy and epigenetic mechanisms that influence the developmental origins of cardiometabolic disease in the offspring. Crit. Rev. Clin. Lab. Sci. 2018, 55, 71–101. [Google Scholar] [CrossRef] [PubMed]
- Balachandar, V.; Mahalaxmi, I.; Neethu, R.; Arul, N.; Abhilash, V.G. New insights into epigenetics as an influencer: An associative study between maternal prenatal factors in Autism Spectrum Disorder (ASD). Neurol. Perspect. 2022, 2, 78–86. [Google Scholar] [CrossRef]
- Banik, A.; Kandilya, D.; Ramya, S.; Stünkel, W.; Chong, Y.S.; Dheen, S.T. Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes 2017, 8, 150. [Google Scholar] [CrossRef]
- Bilder, D.A.; Bakian, A.V.; Viskochil, J.; Clark, E.A.; Botts, E.L.; Smith, K.R.; Pimentel, R.; McMahon, W.M.; Coon, H. Maternal prenatal weight gain and autism spectrum disorders. Pediatrics 2013, 132, e1276–e1283. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.; Lu, J.; Li, L.J.; Guo, H.Y.; Xu, K.; Wang, N.; Zhao, S.X.; Jin, X.W.; Wang, S.G.; Yin, S.; et al. Maternal obesity may disrupt offspring metabolism by inducing oocyte genome hyper-methylation via increased DNMTs. eLife 2024, 13, RP97507. [Google Scholar] [CrossRef]
- Lei, X.Y.; Li, Y.J.; Ou, J.J.; Li, Y.M. Association between parental body mass index and autism spectrum disorder: A systematic review and meta-analysis. Eur. Child. Adolesc. Psychiatry 2019, 28, 933–947. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Xia, B.; Jin, X.; Zou, Q.; Zeng, Z.; Zhao, W.; Yan, S.; Li, L.; Yuan, S.; et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metab. 2021, 33, 923–938. [Google Scholar] [CrossRef]
- Sinclair, K.D.; Lea, R.G.; Rees, W.D.; Young, L.E. The developmental origins of health and disease: Current theories and epigenetic mechanisms. Soc. Reprod. Fertil. Suppl. 2007, 64, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Corley, M.J.; Vargas-Maya, N.; Pang, A.P.S.; Lum-Jones, A.; Li, D.; Khadka, V.; Sultana, R.; Blanchard, D.C.; Maunakea, A.K. Epigenetic Delay in the Neurodevelopmental Trajectory of DNA Methylation States in Autism Spectrum Disorders. Front. Genet. 2019, 10, 907. [Google Scholar] [CrossRef]
- Takahashi, E.; Allan, N.; Peres, R.; Ortug, A.; van der Kouwe, A.J.W.; Valli, B.; Ethier, E.; Levman, J.; Baumer, N.; Tsujimura, K.; et al. Integration of structural MRI and epigenetic analyses hint at linked cellular defects of the subventricular zone and insular cortex in autism: Findings from a case study. Front. Neurosci. 2022, 16, 1023665. [Google Scholar] [CrossRef]
- Prepared by the Animal Facilities Standards Committee of the Animal Care Panel. Guide for Laboratory Animal Facilities and Care. ILAR J. 2021, 62, 345–358. [Google Scholar] [CrossRef]
- Chatot, C.L.; Ziomek, C.A.; Bavister, B.D.; Lewis, J.L.; Torres, I. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 1989, 86, 679–688. [Google Scholar] [CrossRef]
- Riel, J.M.; Yamauchi, Y.; Ruthig, V.A.; Malinta, Q.U.; Blanco, M.; Moretti, C.; Cocquet, J.; Ward, M.A. Rescue of Sly Expression Is Not Sufficient to Rescue Spermiogenic Phenotype of Mice with Deletions of Y Chromosome Long Arm. Genes 2019, 10, 133. [Google Scholar] [CrossRef]
- Quinn, P.; Barros, C.; Whittingham, D.G. Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J. Reprod. Fertil. 1982, 66, 161–168. [Google Scholar] [CrossRef]
- Silverman, J.L.; Thurm, A.; Ethridge, S.B.; Soller, M.M.; Petkova, S.P.; Abel, T.; Bauman, M.D.; Brodkin, E.S.; Harony-Nicolas, H.; Wöhr, M.; et al. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. Genes Brain Behav. 2022, 21, e12803. [Google Scholar] [CrossRef] [PubMed]
- Peca, J.; Feliciano, C.; Ting, J.T.; Wang, W.; Wells, M.F.; Venkatraman, T.N.; Lascola, C.D.; Fu, Z.; Feng, G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Blanchard, D.C.; Arakawa, K.; Dunlap, C.; Blanchard, R.J. Scent marking behavior as an odorant communication in mice. Neurosci. Biobehav. Rev. 2008, 32, 1236–1248. [Google Scholar] [CrossRef] [PubMed]
- Balaan, C.; Corley, M.J.; Eulalio, T.; Leite-Ahyo, K.; Pang, A.P.S.; Fang, R.; Khadka, V.S.; Maunakea, A.K.; Ward, M.A. Juvenile Shank3b deficient mice present with behavioral phenotype relevant to autism spectrum disorder. Behav. Brain Res. 2019, 356, 137–147. [Google Scholar] [CrossRef]
- Moy, S.S.; Nadler, J.J.; Perez, A.; Barbaro, R.P.; Johns, J.M.; Magnuson, T.R.; Piven, J.; Crawley, J.N. Sociability and preference for social novelty in five inbred strains: An approach to assess autistic-like behavior in mice. Genes. Brain Behav. 2004, 3, 287–302. [Google Scholar] [CrossRef]
- Moy, S.S.; Nadler, J.J.; Young, N.B.; Nonneman, R.J.; Segall, S.K.; Andrade, G.M.; Crawley, J.N.; Magnuson, T.R. Social approach and repetitive behavior in eleven inbred mouse strains. Behav. Brain Res. 2008, 191, 118–129. [Google Scholar] [CrossRef]
- Pearson, B.L.; Pobbe, R.L.; Defensor, E.B.; Oasay, L.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism. Genes. Brain Behav. 2011, 10, 228–235. [Google Scholar] [CrossRef]
- Defensor, E.B.; Pearson, B.L.; Pobbe, R.L.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. A novel social proximity test suggests patterns of social avoidance and gaze aversion-like behavior in BTBR T+ tf/J mice. Behav. Brain Res. 2011, 217, 302–308. [Google Scholar] [CrossRef]
- Handley, S.L.; Mithani, S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch. Pharmacol. 1984, 327, 1–5. [Google Scholar] [CrossRef]
- Komada, M.; Takao, K.; Miyakawa, T. Elevated plus maze for mice. J. Vis. Exp. 2008, 22, 1088. [Google Scholar]
- Pobbe, R.L.; Defensor, E.B.; Pearson, B.L.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J. General and social anxiety in the BTBR T+ tf/J mouse strain. Behav. Brain Res. 2011, 216, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.S.; Morrison, J.P.; Southwell, M.F.; Foley, J.F.; Bolon, B.; Elmore, S.A. Histology Atlas of the Developing Prenatal and Postnatal Mouse Central Nervous System, with Emphasis on Prenatal Days E7.5 to E18.5. Toxicol. Pathol. 2017, 45, 705–744. [Google Scholar] [CrossRef]
- Rajan, A.; Fame, R.M. Brain development and bioenergetic changes. Neurobiol. Dis. 2024, 199, 106550. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, J.; Tian, W.; Luo, C.; Bartlett, A.; Aldridge, A.; Lucero, J.; Osteen, J.K.; Nery, J.R.; Chen, H.; et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 2021, 598, 120–128. [Google Scholar] [CrossRef] [PubMed]
- van Kampen, A.H.C.; Mahamune, U.; Jongejan, A.; van Schaik, B.D.C.; Balashova, D.; Lashgari, D.; Pras-Raves, M.; Wever, E.J.M.; Dane, A.D.; García-Valiente, R.; et al. ENCORE: A practical implementation to improve reproducibility and transparency of computational research. Nat. Commun. 2024, 15, 8117. [Google Scholar] [CrossRef]
- Dobin, A.; Gingeras, T.R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11.14.1–11.14.19. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Harris, M.A.; Clark, J.; Ireland, A.; Lomax, J.; Ashburner, M.; Foulger, R.; Eilbeck, K.; Lewis, S.; Marshall, B.; Mungall, C.; et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32, D258–D261. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Consortium, T.S. SPARK: A US Cohort of 50,000 Families to Accelerate Autism Research. Neuron 2018, 97, 488–493. [Google Scholar] [CrossRef]
- Blake, J.A.; Baldarelli, R.; Kadin, J.A.; Richardson, J.E.; Smith, C.L.; Bult, C.J.; Mouse Genome Database, G. Mouse Genome Database (MGD): Knowledgebase for mouse-human comparative biology. Nucleic Acids Res. 2021, 49, D981–D987. [Google Scholar] [CrossRef]
- Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27, 1571–1572. [Google Scholar] [CrossRef]
- Akalin, A.; Kormaksson, M.; Li, S.; Garrett-Bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012, 13, R87. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wu, H. Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol. 2019, 7, 327–334. [Google Scholar] [CrossRef]
- Maunakea, A.K.; Nagarajan, R.P.; Bilenky, M.; Ballinger, T.J.; D’Souza, C.; Fouse, S.D.; Johnson, B.E.; Hong, C.; Nielsen, C.; Zhao, Y.; et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Zhou, Y.Y.; Pan, L.Y.; Zhang, X.; Jiang, H.Y. Early Life Antibiotic Exposure and the Subsequent Risk of Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. J. Autism Dev. Disord. 2022, 52, 2236–2246. [Google Scholar] [CrossRef]
- Takahashi, T.; Okabe, S.; Broin, P.O.; Nishi, A.; Ye, K.; Beckert, M.V.; Izumi, T.; Machida, A.; Kang, G.; Abe, S.; et al. Structure and function of neonatal social communication in a genetic mouse model of autism. Mol. Psychiatry 2016, 21, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Gawlińska, K.; Gawliński, D.; Borczyk, M.; Korostyński, M.; Przegaliński, E.; Filip, M. A Maternal High-Fat Diet during Early Development Provokes Molecular Changes Related to Autism Spectrum Disorder in the Rat Offspring Brain. Nutrients 2021, 13, 3212. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, N.; Landi, I.; Bethlehem, R.A.I.; Seidlitz, J.; Busuoli, E.M.; Mandelli, V.; Satta, E.; Trakoshis, S.; Auyeung, B.; Kundu, P.; et al. Imbalanced social-communicative and restricted repetitive behavior subtypes of autism spectrum disorder exhibit different neural circuitry. Commun. Biol. 2021, 4, 574. [Google Scholar] [CrossRef]
- Rein, B.; Yan, Z.; Wang, Z.J. Diminished social interaction incentive contributes to social deficits in mouse models of autism spectrum disorder. Genes. Brain Behav. 2020, 19, e12610. [Google Scholar] [CrossRef]
- Turi, M.; Burr, D.C.; Igliozzi, R.; Aagten-Murphy, D.; Muratori, F.; Pellicano, E. Children with autism spectrum disorder show reduced adaptation to number. Proc. Natl. Acad. Sci. USA 2015, 112, 7868–7872. [Google Scholar] [CrossRef]
- Das, I.; Estevez, M.A.; Sarkar, A.A.; Banerjee-Basu, S. A multifaceted approach for analyzing complex phenotypic data in rodent models of autism. Mol. Autism 2019, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, X.; Xu, J.; Mao, H.; Li, Y.; Ren, K.; Ma, G.; Xue, Q.; Tao, H.; Wu, S.; et al. Dissection of the relationship between anxiety and stereotyped self-grooming using the Shank3B mutant autistic model, acute stress model and chronic pain model. Neurobiol. Stress. 2021, 15, 100417. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Molina, L.; Conquet, F.; Dubois-Dauphin, M.; Schibler, U. The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 1997, 16, 6762–6771. [Google Scholar] [CrossRef]
- Lin, Y.; Bloodgood, B.L.; Hauser, J.L.; Lapan, A.D.; Koon, A.C.; Kim, T.K.; Hu, L.S.; Malik, A.N.; Greenberg, M.E. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 2008, 455, 1198–1204. [Google Scholar] [CrossRef]
- Rosina, E.; Battan, B.; Siracusano, M.; Di Criscio, L.; Hollis, F.; Pacini, L.; Curatolo, P.; Bagni, C. Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Transl. Psychiatry 2019, 9, 50. [Google Scholar] [CrossRef]
- Javed, S.; Selliah, T.; Lee, Y.-J.; Huang, W.-H. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci. Biobehav. Rev. 2020, 118, 538–567. [Google Scholar] [CrossRef]
- Yoon, S.; Piguel, N.H.; Khalatyan, N.; Dionisio, L.E.; Savas, J.N.; Penzes, P. Homer1 promotes dendritic spine growth through ankyrin-G and its loss reshapes the synaptic proteome. Mol. Psychiatry 2021, 26, 1775–1789. [Google Scholar] [CrossRef]
- Banerjee, A.; Luong, J.A.; Ho, A.; Saib, A.O.; Ploski, J.E. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment. Mol. Autism 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Verkaik-Schakel, R.N.; Biber, K.; Plosch, T.; Serchov, T. Antidepressant treatment is associated with epigenetic alterations of Homer1 promoter in a mouse model of chronic depression. J. Affect. Disord. 2021, 279, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Nakao, H.; Migishima, R.; Hino, T.; Matsui, M.; Hayashi, F.; Nakao, K.; Manabe, T.; Aiba, A.; Inokuchi, K. Requirement of the immediate early gene vesl-1S/homer-1a for fear memory formation. Mol. Brain 2009, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Szumlinski, K.K.; Kalivas, P.W.; Worley, P.F. Homer proteins: Implications for neuropsychiatric disorders. Curr. Opin. Neurobiol. 2006, 16, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Szumlinski, K.K.; Abernathy, K.E.; Oleson, E.B.; Klugmann, M.; Lominac, K.D.; He, D.Y.; Ron, D.; During, M.; Kalivas, P.W. Homer isoforms differentially regulate cocaine-induced neuroplasticity. Neuropsychopharmacology 2006, 31, 768–777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allan, N.P.; Torres, A.; Corley, M.J.; Yamamoto, B.Y.; Balaan, C.; Yamauchi, Y.; Peres, R.; Qin, Y.; Khadka, V.S.; Deng, Y.; et al. Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation. Cells 2025, 14, 1201. https://doi.org/10.3390/cells14151201
Allan NP, Torres A, Corley MJ, Yamamoto BY, Balaan C, Yamauchi Y, Peres R, Qin Y, Khadka VS, Deng Y, et al. Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation. Cells. 2025; 14(15):1201. https://doi.org/10.3390/cells14151201
Chicago/Turabian StyleAllan, Nina P., Amada Torres, Michael J. Corley, Brennan Y. Yamamoto, Chantell Balaan, Yasuhiro Yamauchi, Rafael Peres, Yujia Qin, Vedbar S. Khadka, Youping Deng, and et al. 2025. "Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation" Cells 14, no. 15: 1201. https://doi.org/10.3390/cells14151201
APA StyleAllan, N. P., Torres, A., Corley, M. J., Yamamoto, B. Y., Balaan, C., Yamauchi, Y., Peres, R., Qin, Y., Khadka, V. S., Deng, Y., Ward, M. A., & Maunakea, A. K. (2025). Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation. Cells, 14(15), 1201. https://doi.org/10.3390/cells14151201