Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates, Sequencing, and Data
2.2. Antimicrobial Susceptibility Testing
2.3. Bioinformatic Analysis
2.4. Phenotype–Genotype Concordance Analysis
2.5. ARG Co-Occurrence Network Analysis
2.6. Correlation Analysis Between Antibiotic Categories and Plasmid Replicon Types
2.7. Use of GenAI
3. Results
3.1. Strains and Overview of ARGs
3.2. ARG Co-Occurrence Network Reveals a Highly Modular Resistance Structure
3.3. Plasmid Characteristics and Their Associations with ARGs
3.4. Discrepancies Between Phenotypic and Genotypic Resistance Reveal the Potential of Perianal Skin as a Reservoir for Unrecognized Resistance Mechanisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARGs | antibiotic resistance genes |
AMR | antimicrobial resistance |
MGEs | mobile genetic elements |
ESBLs | extended-spectrum beta-lactamases |
References
- World Health Organization. Ten Threats to Global Health in 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Arias, C.A.; Murray, B.E. The Rise of the Enterococcus: Beyond Vancomycin Resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, P.; Yu, W.; Chu, X.; Liu, X.; Yang, Q. The Epidemiology and Virulence of Carbapenem-Resistant Pseudomonas aeruginosa in China. Lancet Microbe 2023, 4, e665. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. GBD 2021 Antimicrobial Resistance Collaborators Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Dance, A. Five Ways Science Is Tackling the Antibiotic Resistance Crisis. Nature 2024, 632, 494–496. [Google Scholar] [CrossRef]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular Mechanisms of Antibiotic Resistance Revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.D.; Brooks, A.E. Therapeutic Strategies to Combat Antibiotic Resistance. Adv. Drug Deliv. Rev. 2014, 78, 14–27. [Google Scholar] [CrossRef]
- Aggarwal, R.; Mahajan, P.; Pandiya, S.; Bajaj, A.; Verma, S.K.; Yadav, P.; Kharat, A.S.; Khan, A.U.; Dua, M.; Johri, A.K. Antibiotic Resistance: A Global Crisis, Problems and Solutions. Crit. Rev. Microbiol. 2024, 50, 896–921. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Li, L.-G.; Zhang, T. Plasmid-Mediated Antibiotic Resistance Gene Transfer under Environmental Stresses: Insights from Laboratory-Based Studies. Sci. Total Environ. 2023, 887, 163870. [Google Scholar] [CrossRef]
- San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol. 2018, 26, 978–985. [Google Scholar] [CrossRef]
- Maddamsetti, R.; Yao, Y.; Wang, T.; Gao, J.; Huang, V.T.; Hamrick, G.S.; Son, H.-I.; You, L. Duplicated Antibiotic Resistance Genes Reveal Ongoing Selection and Horizontal Gene Transfer in Bacteria. Nat. Commun. 2024, 15, 1449. [Google Scholar] [CrossRef]
- Wang, Y.; Dagan, T. The Evolution of Antibiotic Resistance Islands Occurs Within the Framework of Plasmid Lineages. Nat. Commun. 2024, 15, 4555. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- McInnes, R.S.; McCallum, G.E.; Lamberte, L.E.; van Schaik, W. Horizontal Transfer of Antibiotic Resistance Genes in the Human Gut Microbiome. Curr. Opin. Microbiol. 2020, 53, 35–43. [Google Scholar] [CrossRef]
- Chu, K.; Liu, Y.; Hua, Z.; Lu, Y.; Ye, F. Spatio-Temporal Distribution and Dynamics of Antibiotic Resistance Genes in a Water-Diversion Lake, China. J. Environ. Manag. 2023, 348, 119232. [Google Scholar] [CrossRef] [PubMed]
- Forster, S.C.; Liu, J.; Kumar, N.; Gulliver, E.L.; Gould, J.A.; Escobar-Zepeda, A.; Mkandawire, T.; Pike, L.J.; Shao, Y.; Stares, M.D.; et al. Strain-Level Characterization of Broad Host Range Mobile Genetic Elements Transferring Antibiotic Resistance from the Human Microbiome. Nat. Commun. 2022, 13, 1445. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global Trends in Antimicrobial Resistance in Animals in Low- and Middle-Income Countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chen, C.; Sun, T.; Li, G.; Wang, W.; Zhao, H.; An, T. Mariculture Waters as Yet Another Hotbed for the Creation and Transfer of New Antibiotic-Resistant Pathogenome. Environ. Int. 2024, 187, 108704. [Google Scholar] [CrossRef]
- Rodríguez, E.A.; Ramirez, D.; Balcázar, J.L.; Jiménez, J.N. Metagenomic Analysis of Urban Wastewater Resistome and Mobilome: A Support for Antimicrobial Resistance Surveillance in an Endemic Country. Environ. Pollut. 2021, 276, 116736. [Google Scholar] [CrossRef]
- Li, Z.; Ju, Y.; Xia, J.; Zhang, Z.; Zhen, H.; Tong, X.; Sun, Y.; Lu, H.; Zong, Y.; Chen, P.; et al. Integrated Human Skin Bacteria Genome Catalog Reveals Extensive Unexplored Habitat-Specific Microbiome Diversity and Function. Adv. Sci. 2023, 10, e2300050. [Google Scholar] [CrossRef]
- Chen, Y.E.; Fischbach, M.A.; Belkaid, Y. Skin Microbiota-Host Interactions. Nature 2018, 553, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; NISC Comparative Sequencing Program Bouffard, G.G.; Blakesley, R.W.; Murray, P.R.; Green, E.D. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef]
- Li, Z.; Xia, J.; Jiang, L.; Tan, Y.; An, Y.; Zhu, X.; Ruan, J.; Chen, Z.; Zhen, H.; Ma, Y.; et al. Characterization of the Human Skin Resistome and Identification of Two Microbiota Cutotypes. Microbiome 2021, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, J.S.; Bhate, K.; Hartnett, K.P.; Fleming-Dutra, K.E.; Margolis, D.J. Trends in Oral Antibiotic Prescription in Dermatology, 2008 to 2016. JAMA Dermatol. 2019, 155, 290–297. [Google Scholar] [CrossRef]
- MacGibeny, M.A.; Jo, J.-H.; Kong, H.H. Antibiotic Stewardship in Dermatology-Reducing the Risk of Prolonged Antimicrobial Resistance in Skin. JAMA Dermatol. 2022, 158, 989–991. [Google Scholar] [CrossRef]
- Proctor, D.M.; Sansom, S.E.; Deming, C.; Conlan, S.; Blaustein, R.A.; Atkins, T.K.; Dangana, T.; Fukuda, C.; Thotapalli, L.; Kong, H.H. Clonal Candida Auris and ESKAPE Pathogens on the Skin of Residents of Nursing Homes. Nature 2025, 639, 1016–1023. [Google Scholar] [CrossRef]
- Ys, C.; Ds, K.; Dh, L.; Jb, L.; Ej, L.; Sd, L.; Kh, S.; Hj, J. Clinical Characteristics and Incidence of Perianal Diseases in Patients with Ulcerative Colitis. Ann. Coloproctol. 2018, 34, 138–143. [Google Scholar] [CrossRef]
- Mott, T.; Latimer, K.; Edwards, C. Hemorrhoids: Diagnosis and Treatment Options. Am. Fam. Physician 2018, 97, 172–179. [Google Scholar] [PubMed]
- Sahnan, K.; Adegbola, S.O.; Tozer, P.J.; Watfah, J.; Phillips, R.K. Perianal Abscess. BMJ 2017, 356, j475. [Google Scholar] [CrossRef] [PubMed]
- Seow-Choen, F.; Nicholls, R.J. Anal Fistula. Br. J. Surg. 1992, 79, 197–205. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, X.; Qin, J.; Lu, N.; Cheng, G.; Wu, N.; Pan, Y.; Li, J.; Zhu, L.; Wang, X.; et al. Metagenome-Wide Analysis of Antibiotic Resistance Genes in a Large Cohort of Human Gut Microbiota. Nat. Commun. 2013, 4, 2151. [Google Scholar] [CrossRef]
- Shayista, H.; Prasad, M.N.; Raj, S.N.; Prasad, A.; Lakshmi, S.; Ranjini, H.; Manju, K.; Ravikumara; Chouhan, R.S.; Khohlova, O.Y.; et al. Complexity of Antibiotic Resistance and Its Impact on Gut Microbiota Dynamics. Eng. Microbiol. 2024, 5, 100187. [Google Scholar] [CrossRef]
- Bender, F.; Eckerth, L.; Fritzenwanker, M.; Liese, J.; Askevold, I.; Imirzalioglu, C.; Padberg, W.; Hecker, A.; Reichert, M. Drug Resistant Bacteria in Perianal Abscesses Are Frequent and Relevant. Sci. Rep. 2022, 12, 14866. [Google Scholar] [CrossRef]
- Qiao, L.; Gao, H.; You, Y.; Zhu, J. Analysis of the Distribution Characteristics of Infecting Microorganisms in the Wound Tissue of Patients with Perianal Abscess Combined with Infection and the Influencing Factors of Wound Healing. BMC Gastroenterol. 2025, 25, 258. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Meng, T.; Luo, M.; Zhu, J.; Wang, M.; Shen, W. Diverse New Plasmid Structures and Antimicrobial Resistance in Strains Isolated from Perianal Abscess Patients. Front. Microbiol. 2024, 15, 1452795. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, L.; Su, W.; Zhang, S.; Xu, H.; Wang, M.; Shen, W. Microbiomic Signatures of Anal Fistula and Putative Sources of Microbes. Front. Cell Infect. Microbiol. 2024, 14, 1332490. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Gontjes, K.J.; Gibson, K.E.; Lansing, B.; Cassone, M.; Mody, L. Can Alternative Anatomical Sites and Environmental Surveillance Replace Perianal Screening for Multidrug-Resistant Organisms in Nursing Homes? Infect. Control. Hosp. Epidemiol. 2022, 43, 1063–1066. [Google Scholar] [CrossRef]
- Otto, M. Coagulase-Negative Staphylococci as Reservoirs of Genes Facilitating MRSA Infection: Staphylococcal Commensal Species Such as Staphylococcus epidermidis Are Being Recognized as Important Sources of Genes Promoting MRSA Colonization and Virulence. Bioessays 2013, 35, 4–11. [Google Scholar] [CrossRef]
- Argemi, X.; Hansmann, Y.; Prola, K.; Prévost, G. Coagulase-Negative Staphylococci Pathogenomics. Int. J. Mol. Sci. 2019, 20, 1215. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhu, Y.; Song, Y.; Li, T.; Luo, T.; Sun, G.; Yang, C.; Cao, C.; Lu, Y.; Li, M.; et al. Molecular Analysis of Staphylococcus epidermidis Strains Isolated from Community and Hospital Environments in China. PLoS ONE 2013, 8, e62742. [Google Scholar] [CrossRef]
- Wielders, C.; Vriens, M.R.; Brisse, S.; de Graaf-Miltenburg, L.; Troelstra, A.; Fleer, A.; Schmitz, F.; Verhoef, J.; Fluit, A. Evidence for In-Vivo Transfer of mecA DNA between Strains of Staphylococcus aureus. Lancet 2001, 357, 1674–1675. [Google Scholar] [CrossRef] [PubMed]
- Forslund, K.; Sunagawa, S.; Kultima, J.R.; Mende, D.R.; Arumugam, M.; Typas, A.; Bork, P. Country-Specific Antibiotic Use Practices Impact the Human Gut Resistome. Genome Res. 2013, 23, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Plasmids and the Spread of Resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
- Castañeda-Barba, S.; Top, E.M.; Stalder, T. Plasmids, a Molecular Cornerstone of Antimicrobial Resistance in the One Health Era. Nat. Rev. Microbiol. 2024, 22, 18–32. [Google Scholar] [CrossRef]
- Villa, L.; García-Fernández, A.; Fortini, D.; Carattoli, A. Replicon Sequence Typing of IncF Plasmids Carrying Virulence and Resistance Determinants. J. Antimicrob. Chemother. 2010, 65, 2518–2529. [Google Scholar] [CrossRef] [PubMed]
- Collineau, L.; Boerlin, P.; Carson, C.A.; Chapman, B.; Fazil, A.; Hetman, B.; McEwen, S.A.; Parmley, E.J.; Reid-Smith, R.J.; Taboada, E.N.; et al. Integrating Whole-Genome Sequencing Data Into Quantitative Risk Assessment of Foodborne Antimicrobial Resistance: A Review of Opportunities and Challenges. Front. Microbiol. 2019, 10, 1107. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Wang, W.; Li, L.; Zhang, M.; Xu, H.; Fu, C.; Pang, X.; Wang, M. Mechanisms of Tigecycline Resistance in Gram-Negative Bacteria: A Narrative Review. Eng. Microbiol. 2024, 4, 100165. [Google Scholar] [CrossRef]
- Nicoloff, H.; Hjort, K.; Levin, B.R.; Andersson, D.I. The High Prevalence of Antibiotic Heteroresistance in Pathogenic Bacteria Is Mainly Caused by Gene Amplification. Nat. Microbiol. 2019, 4, 504–514. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, R.; Su, W.; Wang, W.; Shi, L.; Zheng, X.; Zhang, Y.; Xu, H.; Geng, X.; Li, L.; Wang, M.; et al. Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes. Biology 2025, 14, 1000. https://doi.org/10.3390/biology14081000
Jia R, Su W, Wang W, Shi L, Zheng X, Zhang Y, Xu H, Geng X, Li L, Wang M, et al. Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes. Biology. 2025; 14(8):1000. https://doi.org/10.3390/biology14081000
Chicago/Turabian StyleJia, Ruizhao, Wenya Su, Wenjia Wang, Lulu Shi, Xinrou Zheng, Youming Zhang, Hai Xu, Xueyun Geng, Ling Li, Mingyu Wang, and et al. 2025. "Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes" Biology 14, no. 8: 1000. https://doi.org/10.3390/biology14081000
APA StyleJia, R., Su, W., Wang, W., Shi, L., Zheng, X., Zhang, Y., Xu, H., Geng, X., Li, L., Wang, M., & Li, X. (2025). Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes. Biology, 14(8), 1000. https://doi.org/10.3390/biology14081000