Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,570)

Search Parameters:
Keywords = water availability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8041 KB  
Article
Stable Water Isotopes and Machine Learning Approaches to Investigate Seawater Intrusion in the Magra River Estuary (Italy)
by Marco Sabattini, Francesco Ronchetti, Gianpiero Brozzo and Diego Arosio
Hydrology 2025, 12(10), 262; https://doi.org/10.3390/hydrology12100262 - 3 Oct 2025
Abstract
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, [...] Read more.
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, isotopic tracing (δ18O; δD), and multivariate statistical modeling. Over an 18-month period, 11 fixed stations were monitored across six seasonal campaigns, yielding a comprehensive dataset of water electrical conductivity (EC) and stable isotope measurements from fresh water to salty water. EC and oxygen isotopic ratios displayed strong spatial and temporal coherence (R2 = 0.99), confirming their combined effectiveness in identifying intrusion patterns. The mass-balance model based on δ18O revealed that marine water fractions exceeded 50% in the lower estuary for up to eight months annually, reaching as far as 8.5 km inland during dry periods. Complementary δD measurements provided additional insight into water origin and fractionation processes, revealing a slight excess relative to the local meteoric water line (LMWL), indicative of evaporative enrichment during anomalously warm periods. Multivariate regression models (PLS, Ridge, LASSO, and Elastic Net) identified river discharge as the primary limiting factor of intrusion, while wind intensity emerged as a key promoting variable, particularly when aligned with the valley axis. Tidal effects were marginal under standard conditions, except during anomalous events such as tidal surges. The results demonstrate that marine intrusion is governed by complex and interacting environmental drivers. Combined isotopic and machine learning approaches can offer high-resolution insights for environmental monitoring, early-warning systems, and adaptive resource management under climate-change scenarios. Full article
23 pages, 1884 KB  
Review
Silicon Photocatalytic Water-Treatment: Synthesis, Modifications, and Machine Learning Insights
by Abay S. Serikkanov, Nurlan B. Bakranov, Tunyk K. Idrissova, Dina I. Bakranova and Danil W. Boukhvalov
Nanomaterials 2025, 15(19), 1514; https://doi.org/10.3390/nano15191514 - 3 Oct 2025
Abstract
Photocatalytic technologies based on silicon (Si-based) nanostructures offer a promising solution for water purification, hydrogen generation, and the conversion of CO2 into useful chemical compounds. This review systematizes the diversity of modern approaches to the synthesis and modification of Si-based photocatalysts, including [...] Read more.
Photocatalytic technologies based on silicon (Si-based) nanostructures offer a promising solution for water purification, hydrogen generation, and the conversion of CO2 into useful chemical compounds. This review systematizes the diversity of modern approaches to the synthesis and modification of Si-based photocatalysts, including chemical deposition, metal-associated etching, hydrothermal methods, and atomic layer deposition. Heterostructures, plasmonic effects, and co-catalysts that enhance photocatalytic activity are considered. Particular attention is drawn to the silicon doping of semiconductors, such as TiO2 and ZnO, to enhance their optical and electronic properties. The formation of heterostructures and the evaluation of their efficiency were discussed. Despite the high biocompatibility and availability of silicon, its photocorrosion and limited stability require the development of protective coatings and morphology optimization. The application of machine learning for predicting redox potentials and optimizing photocatalyst synthesis could offer new opportunities for increasing their efficiency. The review highlights the potential of Si-based materials for sustainable technologies and provides a roadmap for further research. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 1305 KB  
Article
Preliminary Study on the Purity Analysis of Primary Certified Gas Mixtures Using Different Spectroscopic Techniques
by Francesca Rolle, Francesca Durbiano, Stefano Pavarelli, Ramona Russo, Chiara Festevole, Pier Giorgio Spazzini, Francesca Romana Pennecchi and Michela Sega
Sensors 2025, 25(19), 6068; https://doi.org/10.3390/s25196068 - 2 Oct 2025
Abstract
Purity analysis of parent gases used to produce reference gas mixtures is fundamental to assure the metrological traceability of the certified gas composition, and the use of purity data in the calculation of the mixture composition should be performed in accordance with the [...] Read more.
Purity analysis of parent gases used to produce reference gas mixtures is fundamental to assure the metrological traceability of the certified gas composition, and the use of purity data in the calculation of the mixture composition should be performed in accordance with the requirements of international standards. Purity analysis can be difficult to realize since limited measurement standards are available for the determination of trace levels of gaseous compounds. The first step of purity analysis is the definition of the impurities considered critical or significant to the final composition of a mixture. In this work, we present the activity carried out for the identification and quantification of impurities of carbon dioxide and water in some ultrapure gases used for the preparation of primary certified reference gas mixtures of carbon dioxide at atmospheric amount fraction (400–800 µmol·mol−1), by means of different spectroscopic techniques (Fourier Transform IR, Non-Dispersive IR and Cavity Ring-Down). Dynamic dilution was used for the generation of reference mixtures for the calibration of the analyzers by using calibrated Mass Flow Controllers. The certified reference gas mixtures produced with the tested pure gases will also be applied to characterization studies and calibration protocols for gas sensors used both for outdoor and indoor monitoring. Full article
(This article belongs to the Special Issue Advanced Sensors for Gas Monitoring: 2nd Edition)
18 pages, 2457 KB  
Article
The Potential for Reusing Superabsorbent Polymer from Baby Diapers for Water Retention in Agriculture
by Kamilla B. Shishkhanova, Vyacheslav S. Molchanov, Ilya V. Prokopiv, Alexei R. Khokhlov and Olga E. Philippova
Gels 2025, 11(10), 795; https://doi.org/10.3390/gels11100795 - 2 Oct 2025
Abstract
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and [...] Read more.
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and water retention properties of SAP gels from three different types of diapers were compared to those of an agricultural gel, Aquasorb. Sand was used as a model for soil. When mixed with sand, diaper gels have a swelling degree of ca. 100 g per gram of dried polymer, and a swelling pressure of 12–26 kPa, which are similar to those of Aquasorb gel. Using a synthesized poly(acrylamide-co-sodium acrylate) gel as an example, the correlation between the swelling pressure and the compression modulus of the swollen gel was demonstrated. Soil-hydrological constants were estimated from water retention curves obtained by equilibrium centrifugation of gel/sand mixtures. It was observed that adding 0.3 vol% of diaper gels to sand leads to a 3–4-fold increase in water range available to plants, which is close to that provided by agricultural gel Aquasorb. The water-holding properties were shown to be maintained during several swelling/deswelling cycles in the sand medium. The addition of diaper gels to soil had a significant positive impact on mustard (Brassica juncea L.) seed germination and seedling growth, similar to the agricultural gel Aquasorb. This suggests high potential for the reuse of SAPs from diaper waste to improve soil water retention and water accessibility to plants. This would provide both economic and environmental benefits, conserving energy and raw materials to produce new agricultural gels and limiting the amount of waste. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

22 pages, 3800 KB  
Article
Study on Carboxymethylation Modification of Konjac Gum and Its Effect in Drilling Fluid and Fracturing Fluid
by Yongfei Li, Pengli Guo, Kun Qu, Weichao Du, Yanling Wang and Gang Chen
Gels 2025, 11(10), 792; https://doi.org/10.3390/gels11100792 - 2 Oct 2025
Abstract
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum [...] Read more.
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum easily forms a weak gel network in water, but its water solubility and thermal stability are poor, and it is easily degraded at high temperatures. Therefore, its application in drilling fluid and fracturing fluid is limited. In this paper, a method of carboxymethyl modification of KGM was developed, and a carboxymethyl group was introduced to adjust KGM’s hydrogel forming ability and stability. Carboxymethylated Konjac glucomannan (CMKG) is a water-soluble anionic polysaccharide derived from natural Konjac glucomannan. By introducing carboxymethyl groups, CMKG overcomes the limitations of the native polymer, such as poor solubility and instability, while retaining its safe and biocompatible nature, making it an effective natural polymer additive for oilfield applications. The results show that when used as a drilling fluid additive, CMKG can form a stable three-dimensional gel network through molecular chain cross-linking, significantly improving the rheological properties of the mud. Its unique gel structure can enhance the encapsulation of clay particles and inhibit clay hydration expansion. When used as a fracturing fluid thickener, the viscosity of the gel system formed by CMKG at 0.6% (w/v) is superior to that of the weak gel system of KGM. The heat resistance/shear resistance tests confirm that the gel structure remains intact under high-temperature and high-shear conditions, meeting the sand-carrying capacity requirements for fracturing operations. The gel-breaking experiment shows that the system can achieve controlled degradation within 300 min, in line with on-site gel-breaking specifications. This modification process not only improves the rheological properties and water solubility of the CMKG gel but also optimizes the gel stability and controlled degradation through molecular structure adjustment. Full article
Show Figures

Graphical abstract

19 pages, 2144 KB  
Article
Nanoparticles Loaded with Lippia graveolens Essential Oil as a Topical Delivery System: In Vitro Antiherpetic Activity and Biophysical Parameters Evaluation
by Nancy Nallely Espinosa-Carranza, Rocío Álvarez-Román, David A. Silva-Mares, Luis A. Pérez-López, Catalina Leos-Rivas, Catalina Rivas-Morales, Juan Gabriel Báez-González and Sergio Arturo Galindo-Rodríguez
Pharmaceutics 2025, 17(10), 1286; https://doi.org/10.3390/pharmaceutics17101286 - 2 Oct 2025
Abstract
Background/Objectives: The skin is a protective barrier against pathogens such as herpes simplex virus type 1 (HSV-1), which causes recurrent and highly prevalent skin infections worldwide. The increasing resistance of HSV-1 to conventional treatments has driven the search for new therapeutic alternatives. [...] Read more.
Background/Objectives: The skin is a protective barrier against pathogens such as herpes simplex virus type 1 (HSV-1), which causes recurrent and highly prevalent skin infections worldwide. The increasing resistance of HSV-1 to conventional treatments has driven the search for new therapeutic alternatives. In this context, the essential oil of Lippia graveolens (EOL) has demonstrated promising antiviral activity; however, its high volatility limits direct skin application. To overcome this, polymeric nanoparticles (NPs) loaded with EOL were developed to improve its availability and antiviral efficacy. Methods: Nanoformulations were prepared by nanoprecipitation, and their antiviral activity against HSV-1 was evaluated using the plaque reduction assay. The effect of the nanoformulations on skin barrier integrity was assessed using an ex vivo porcine skin model and non-invasive techniques. Results: The NP-EOL exhibited physicochemical properties favorable for skin deposition, including a particle size around 200 nm, a polydispersity index of ≤ 0.2, and negative zeta potential. Moreover, NP-EOL showed 1.85-fold higher antiviral activity against HSV-1 compared with free EOL, while also reducing cytotoxicity in Vero cells. Conclusions: Results demonstrated that the NPs promoted skin hydration without altering pH or transepidermal water loss, suggesting they do not disrupt skin homeostasis. This study supports the potential of NP-based systems as effective topical delivery vehicles for EOL, representing a promising therapeutic alternative against HSV-1 skin infections. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems for the Treatment of Skin Disorders)
Show Figures

Graphical abstract

15 pages, 9569 KB  
Article
Cold–Temperate Betula platyphylla Sukaczev Forest Can Provide More Soil Nutrients to Increase Microbial Alpha Diversity and Microbial Necromass Carbon
by Yunbing Jiang, Mingliang Gao, Libin Yang, Zhichao Cheng, Siyuan Liu and Yongzhi Liu
Microorganisms 2025, 13(10), 2291; https://doi.org/10.3390/microorganisms13102291 - 1 Oct 2025
Abstract
Changes in vegetation type shape the soil microenvironment, thereby regulating the changes in the organic carbon pool by influencing microbial communities and the accumulation of microbial necromass carbon (MNC). This study investigated microbial biomass—via phospholipid fatty acids (PLFAs) analysis—and MNC accumulation across three [...] Read more.
Changes in vegetation type shape the soil microenvironment, thereby regulating the changes in the organic carbon pool by influencing microbial communities and the accumulation of microbial necromass carbon (MNC). This study investigated microbial biomass—via phospholipid fatty acids (PLFAs) analysis—and MNC accumulation across three cold–temperate forest types: Larix gmelinii forest (L), Larix gmeliniiBetula platyphylla Sukaczev mixed forest (LB), and Betula platyphylla Sukaczev forest (B). The results showed that the L had the lowest contents of pH, water content (WC), soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), and total phosphorus (TP), but the highest contents of dissolved organic carbon (DOC), available phosphorus (AP), and carbon to nitrogen ratio (C/N) (p < 0.05). LB had the lowest PLFAs content and the highest ratio of Gram-positive bacteria/Gram-negative bacteria (G+/G−), and total fungi/total bacteriai (F/B) of L was the highest. B had the highest alpha diversity index, and significantly positively correlated with pH, SOC, TN, AN, and TP. TP and C/N were the primary elements for significant differences in microbial community structure. The order of MNC content and its contribution to SOC was B > LB > L. MNC was significantly negatively correlated with PLFAs, DOC, and AP, and significantly positively correlated with pH, SOC, TN, AN, TP, Shannon–Wiener and Pielou indices. In conclusion, this study demonstrates that Betula platyphylla Sukaczev forest retains more carbon, nitrogen, and phosphorus, microbial alpha diversity, and acquires more MNC, which can provide a basis for subsequent forest management and carbon sequestration projects. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

29 pages, 3020 KB  
Article
Water Supply Management Index
by Mayra Mendoza Gómez, Daniel Tagle-Zamora, Jorge Luis Morales Martínez, Alex Caldera Ortega, Jesús Mora Rodríguez, Helena M. Ramos and Xitlali Delgado-Galván
Water 2025, 17(19), 2870; https://doi.org/10.3390/w17192870 - 1 Oct 2025
Abstract
One of the limiting factors in the implementation of water resource management is the absence of tools that help water programs evaluate processes and progress. This is because, until now, the indicators that have been developed have not addressed specific local characteristics and [...] Read more.
One of the limiting factors in the implementation of water resource management is the absence of tools that help water programs evaluate processes and progress. This is because, until now, the indicators that have been developed have not addressed specific local characteristics and issues. Therefore, in this research, a set of indicators has been proposed, with the purpose of developing a management index for urban public water supply, which will consider the Drinking Water and Sewer System of León (SAPAL), in the Mexican state of Guanajuato, as case study. This index will be useful to measure progress toward sustainable development, monitor the impact of public policies, and foster citizen participation. In order to propose a methodology that aligns with the changing environments, where proper decision-making is key to the current water management requirements, the combination of the Analytic Hierarchy Process (AHP) and Fuzzy Logic (FL) methodologies will be helpful for proper decision-making. All this will foster a paradigm shift towards appropriate water management actions that allow for the conditions and availability of human and natural resources, which the municipality has control of, for a long-term improvement that guarantees the well-being of the population. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

26 pages, 7079 KB  
Article
Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala
by Gudihalli Munivenkatappa Rajesh, Sajeena Shaharudeen, Fahdah Falah Ben Hasher and Mohamed Zhran
Water 2025, 17(19), 2869; https://doi.org/10.3390/w17192869 - 1 Oct 2025
Abstract
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth [...] Read more.
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth Engine (GEE) platform, making novel use of multi-source, open access datasets (CHIRPS precipitation, MODIS land cover and evapotranspiration, and OpenLand soil data) to estimate spatially distributed long-term runoff (2001–2023). Model calibration against observed runoff showed strong performance (NSE = 0.86, KGE = 0.81, R2 = 0.83, RMSE = 29.37 mm and ME = 13.48 mm), validating the approach. Over 75% of annual runoff occurs during the southwest monsoon (June–September), with July alone contributing 220.7 mm. Seasonal assessments highlighted monsoonal excesses and dry-season deficits, while water balance correlated strongly with rainfall (r = 0.93) and runoff (r = 0.94) but negatively with evapotranspiration (r = –0.87). Time-series analysis indicated a slight rise in rainfall, a decline in evapotranspiration, and a marginal improvement in water balance, implying gradual enhancement of regional water availability. Spatial analysis revealed a west–east gradient in precipitation, evapotranspiration, and water balance, producing surpluses in lowlands and deficits in highlands. These findings underscore the potential of cloud-based hydrological modeling to capture spatiotemporal dynamics of hydrological variables and support climate-resilient water management in monsoon-driven and data-scarce river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

26 pages, 2752 KB  
Article
Response Mechanism of Litter to Soil Water Conservation Functions Under the Density Gradient of Robinia pseudoacacia L. Forests in the Loess Plateau of the Western Shanxi Province
by Yunchen Zhang, Jianying Yang, Jianjun Zhang and Ben Zhang
Plants 2025, 14(19), 3042; https://doi.org/10.3390/plants14193042 - 1 Oct 2025
Abstract
In the ecologically fragile western Shanxi Loess region, stand density regulation of artificial Robinia pseudoacacia L. forests plays a crucial role in sustaining the water regulation functions of the litter-soil system, yet multi-scale mechanistic analyses remain scarce. To address this gap, we established [...] Read more.
In the ecologically fragile western Shanxi Loess region, stand density regulation of artificial Robinia pseudoacacia L. forests plays a crucial role in sustaining the water regulation functions of the litter-soil system, yet multi-scale mechanistic analyses remain scarce. To address this gap, we established six stand density classes (ranging from 1200 to 3200 stems/ha) and quantified litter water-holding traits and soil physicochemical properties. We then applied principal component analysis (PCA) and structural equation modeling (SEM) to examine density-litter-soil relationships. Low-density stands (≤2000 stems/ha) exhibited significantly higher litter accumulation (6.08–6.37 t/ha) and greater litter water-holding capacity (maximum 20.58 t/ha) than the high-density stands (p < 0.05). Soil capillary water-holding capacity decreased with increasing density (4702.63–4863.28 t/ha overall), while non-capillary porosity (5.26–6.21%) and soil organic carbon (~12.5 g/kg) were higher in high-density stands (≥2800 stems/ha), reflecting a structural-carbon optimization trade-off. PCA revealed a primary hydrological function axis with low-density stands clustering in the positive quadrant, while high-density stands shifted toward nutrient-conservation traits. SEM confirmed that stand density affected soil capillary water-holding capacity indirectly through litter accumulation (significant indirect path; non-significant direct path), highlighting the central role of litter quantity. When density exceeded ~2400 stems/ha, litter decomposition rate decreased by ~56%, coinciding with capillary porosity falling below ~47%, a threshold linked to impaired balance between water storage and infiltration. These findings identify 1200–1600 stems/ha as the optimal density range; in this range, soil capillary water-holding capacity reached 4788–4863 t/ha, and available phosphorus remained ≥2.1 mg/kg, providing a density-centered, near-natural management paradigm for constructing “water-conservation vegetation” on the Loess Plateau. Full article
Show Figures

Figure 1

18 pages, 5552 KB  
Article
Development of a Low-Cost Measurement System for Soil Electrical Conductivity and Water Content
by Emmanouil Teletos, Kyriakos Tsiakmakis, Argyrios T. Hatzopoulos and Stefanos Stefanou
AgriEngineering 2025, 7(10), 329; https://doi.org/10.3390/agriengineering7100329 - 1 Oct 2025
Abstract
Soil electrical conductivity (EC) and water content are key indicators of soil health, influencing nutrient availability, salinity stress, and crop productivity. Monitoring these parameters is critical for precision agriculture. However, most existing measurement systems are costly, which restricts their use in practical field [...] Read more.
Soil electrical conductivity (EC) and water content are key indicators of soil health, influencing nutrient availability, salinity stress, and crop productivity. Monitoring these parameters is critical for precision agriculture. However, most existing measurement systems are costly, which restricts their use in practical field conditions. The aim of this study was to develop and validate a low-cost, portable system for simultaneous measurement of soil EC, water content, and temperature, while maintaining accuracy comparable to laboratory-grade instruments. The system was designed with four electrodes arranged in two pairs and employed an AC bipolar pulse method with a constant-current circuit, precision rectifier, and peak detector to minimize electrode polarization. Experiments were carried out in sandy loam soil at water contents of 13%, 18%, and 22% and KNO3 concentrations of 0, 0.1, 0.2, and 0.4 M. Measurements from the developed system were benchmarked against a professional impedance analyzer (E4990A). The findings demonstrated that EC increased with both frequency and water content. At 100 Hz, the mean error compared with the analyzer was 8.95%, rising slightly to 9.98% at 10 kHz. A strong linear relationship was observed between EC and KNO3 concentration at 100 Hz (R2 = 0.9898), and for the same salt concentration (0.1 M KNO3) at 100 Hz, EC increased from ~0.26 mS/cm at 13% water content to ~0.43 mS/cm at 22%. In conclusion, the developed system consistently achieved <10% error while maintaining a cost of ~€55, significantly lower than commercial devices. These results confirm its potential as an affordable and reliable tool for soil salinity and water content monitoring in precision agriculture. Full article
Show Figures

Figure 1

18 pages, 30918 KB  
Article
Beyond Local Indicators: Integrating Aggregated Runoff into Rainwater Harvesting Potential Mapping
by Christy Mathew Damascene, Irene Pomarico, Aldo Fiori and Antonio Zarlenga
Water 2025, 17(19), 2866; https://doi.org/10.3390/w17192866 - 1 Oct 2025
Abstract
Water scarcity, driven by over-consumption, population growth, climate change, and pollution, poses severe threats to both human health and ecosystems. Rainwater harvesting (RWH) has emerged as a sustainable solution to mitigate these impacts, offering environmental, social, and economic benefits. Traditional RWH site selection [...] Read more.
Water scarcity, driven by over-consumption, population growth, climate change, and pollution, poses severe threats to both human health and ecosystems. Rainwater harvesting (RWH) has emerged as a sustainable solution to mitigate these impacts, offering environmental, social, and economic benefits. Traditional RWH site selection methods rely heavily on GIS-based Multi-Criteria Approaches, such as the Analytical Hierarchy Process, which typically assess runoff potential at the pixel scale using proxy indicators like runoff coefficients or drainage density. However, these methods often overlook horizontal water fluxes and temporal variability, leading to underestimation of the actual runoff available for harvesting. This study introduces an innovative enhancement to AHP/GIS-based methodologies for rainwater harvesting (RWH) site selection by incorporating Aggregated Runoff (AR) as a key criterion. Unlike traditional approaches, the use of AR—representing the total upstream surface water collected at each pixel—enables a more realistic and accurate assessment of RWH potential without increasing data or computational requirements. The proposed criterion is independent of the specific methodology or data layers adopted, making it broadly applicable and easily integrable into existing frameworks. The methodology is applied to the upper Tiber River catchment in Central Italy, demonstrating that AR-based assessments yield more realistic RWH potential maps compared to conventional methods. Additionally, the study proposes a quantile-based scoring system to account for inter-annual hydrological variability, enhancing the robustness of site selection under changing climate conditions. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

22 pages, 5797 KB  
Article
Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia
by Jivan Subedi, Ali Rajabipour, Milad Bazli, Dhyey Vegda, Nafiseh Ostadmoradi and Sunil Thapa
J. Compos. Sci. 2025, 9(10), 520; https://doi.org/10.3390/jcs9100520 - 1 Oct 2025
Abstract
As a sustainable construction material, mudbrick can be used widely in areas where common modern construction materials are not easily accessible but high clay content soil is available. The inclusion of locally available natural fibres in mudbrick could improve its mechanical and erosion [...] Read more.
As a sustainable construction material, mudbrick can be used widely in areas where common modern construction materials are not easily accessible but high clay content soil is available. The inclusion of locally available natural fibres in mudbrick could improve its mechanical and erosion resistance performance. This study examines the performance of fibre-reinforced mudbrick from spinifex and laterite soil which are abundant in Australia. The main objective of this study is to evaluate the mechanical and durability performance of spinifex fibre-reinforced mudbricks made with Australian laterite soil, focusing on the influence of fibre content, fibre length, and cement stabilisation. Spinifex fibre length (30 mm, 40 mm, 50 mm), spinifex fibre percentage (0.3%, 0.6%, 0.9%), and cement percentage (5% and 10%) are considered as the experiment variables. Results show that compressive strength generally decreases with fibre size. In this regard, specimens with 0.3% spinifex fibre, 40 mm fibre length, and 10% cement, with an average compressive strength value of 4.1 MPa, were found to have the highest strength among all design mixes. The elastic Young’s modulus was highest for the specimens with 0.3% spinifex fibre, 30 mm fibre length, and 10% cement with a 36.1 MPa. A low amount of longer fibres was found to be more effective in reducing water absorption in samples with higher cement content. Water absorption and compressive strength results suggest that, on average, 0.3–0.5% spinifex content of size 30 mm improves both low and high cement content mudbricks properties. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

10 pages, 458 KB  
Article
Preliminary Investigation of Nitrogen Rate Influence on Irrigated Bermudagrass Forage Production
by Bronc Finch and Lance Blythe
Nitrogen 2025, 6(4), 88; https://doi.org/10.3390/nitrogen6040088 - 1 Oct 2025
Abstract
Bermudagrass (Cynodon dactylon) forage production recommendations are often developed in natural environments with available water limitations, often resulting in highly variable responses and lower average responses. As farmland ownership changes and agriculture and irrigation technologies become more affordable the amount of [...] Read more.
Bermudagrass (Cynodon dactylon) forage production recommendations are often developed in natural environments with available water limitations, often resulting in highly variable responses and lower average responses. As farmland ownership changes and agriculture and irrigation technologies become more affordable the amount of irrigated hay production has increased. While much of the agronomic management does not differ between rain-fed and irrigated environments, nutrient use and uptake dynamics may. This requires a reevaluation and potential adjustment of current recommendations to allow for increased yield potential of irrigated production systems without detrimental impacts on the system. The objective of this study was to identify the need for further investigation of nitrogen application rates for forage bermudagrass production under irrigated conditions. Nitrogen applications of 0 to 280 kg N ha−1, in 56 kg increments, were applied at spring green-up and following the first and second harvests. Dry matter biomass, crude protein, and total digestible nutrients increased with increasing nitrogen application rate, while yield and profit maximizing rates both exceeded the typical recommended rate for bermudagrass hay production. The responses noted for increased nitrogen application rates indicate the need for further investigation of N requirements of non-moisture-limited hay production. Full article
Show Figures

Figure 1

11 pages, 447 KB  
Article
Tillage Effects on Soil Hydraulic Parameters Estimated by Brooks–Corey Function in Clay Loam and Sandy Loam Soils
by Jalal D. Jabro, William B. Stevens, William M. Iversen, Upendra M. Sainju, Brett L. Allen and Sadikshya R. Dangi
Agronomy 2025, 15(10), 2325; https://doi.org/10.3390/agronomy15102325 - 30 Sep 2025
Abstract
Tillage practices can significantly impact soil structure and pore size distribution and connectivity, consequently affecting the shape of the soil water retention curve (SWRC) and its related estimated hydraulic parameters in the top layer of soil. This study investigated the effect of no-tillage [...] Read more.
Tillage practices can significantly impact soil structure and pore size distribution and connectivity, consequently affecting the shape of the soil water retention curve (SWRC) and its related estimated hydraulic parameters in the top layer of soil. This study investigated the effect of no-tillage (NT) and conventional tillage (CT) practices on SWRCs and their soil hydraulic parameters, estimated by the Brooks–Corey (BC) function at 0–15 and 15–30 cm depths within sugarbeet and corn planting rows in clay loam and sandy loam soils, respectively. Soil water retention curves were measured using the evaporative method (HYPROP). Measured SWRC results were modeled for both untilled and tilled soils using the BC function for each depth in both soils. In clay loam, results indicated that all soil parameters of the BC function, water contents at 330 (θ330) and 15,000 (θ15,000) hPa, and plant available soil water content (AW) were not significantly affected by the type of tillage at either soil depth. The lack of difference in results between NT and CT may be due to considerable soil disturbance, primarily by the harvest process of sugarbeet roots. However, in sandy loam, results indicated that differences occurred in SWRC’s estimated parameters between the NT and CT practices. Averaged across 4 years and two soil depths, the pore size distribution index (λ) and saturated water content (θs) were significantly larger under CT than under NT due to greater soil loosening and disturbance caused by multiple passes of the CT process, thereby developing more soil macroporosity. However, the θ330 and AW were significantly larger in NT than in CT due to reduced soil disturbance and improved soil structure under NT compared to CT practices. Regardless of tillage, measurements of SWRC are important for determining better irrigation management practices, enabling producers to optimize crop productivity, while saving water and sustaining water quality. Full article
Back to TopTop