Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used
2.3. Resolution Harmonization and Data Integration
2.4. SCS-CN Method for Runoff Estimation
2.4.1. Calculation of Runoff Depth (Q)
- Q = Runoff depth (mm),
- P = Rainfall depth (mm),
- S = Potential maximum retention after runoff begins, which is calculated based on the Curve Number (CN).
2.4.2. Determining Curve Number (CN)
- AMC I: Dry condition (low runoff potential),
- AMC II: Average condition (standard CN used),
- AMC III: Wet condition (high runoff potential).
2.4.3. Potential Maximum Retention (S)
2.4.4. Adjustments for Antecedent Moisture Condition (AMC)
- AMC II (Average Condition): This is the standard CN value for average soil moisture. It is the baseline Curve Number used for most calculations without adjustment.
- AMC I (Dry Condition): When soil moisture is low (dry conditions), runoff potential is reduced, so a lower CN value is used. The adjusted CN for AMC I is calculated using Equation (3):
- AMC I (Dry): When cumulative rainfall over the last 5 days is below:<35 mm for dormant season or < 13 mm for growing season.
- AMC II (Average): When cumulative rainfall falls between:35–53 mm for dormant season or 13–28 mm for growing season.
- AMC III (Wet): When cumulative rainfall exceeds:>53 mm for dormant season or > 28 mm for growing season.
2.5. SCS CN Model Development in GEE Environment
2.6. Model Validation
2.7. Water Balance Model
2.8. Time-Series Analysis and Trend Detection
2.9. Spatial and Seasonal Analysis
3. Results
3.1. Rainfall and Runoff Analysis
3.2. Validation of Runoff
3.3. Hydrological Components Variation
3.4. Time-Series Analysis of Hydrological Components
3.5. Seasonal Analysis
3.6. Influence of Rainfall, Runoff, and Evapotranspiration on Water Balance
3.7. Spatial Variation of Hydrologic Components
4. Discussion
4.1. Rainfall and Runoff Dynamics
4.2. Evapotranspiration and Water Balance
4.3. Seasonal and Spatial Water Balance Patterns
4.4. Contributions and Implications
4.5. Cloud-Based Hydrological Modeling: Strengths, Constraints, and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GEE | Google Earth Engine |
SCS CN | Soil conservation Service Curve Number |
CRB | Chalakudy River Basin |
NSE | Nash–Sutcliffe efficiency coefficient |
RMSE | Root Mean Square Error |
ME | Mean Error |
KGE | Kling–Gupta Efficiency |
PCP | Precipitation |
ET | Evapotranspiration |
WB | Water balance |
LULC | Land use land cover |
References
- Flint, R.W. The sustainable development of water resources. In Water Resources Update; Universities Council on Water Resources: Carbondale, IL, USA, 2004; pp. 41–51. [Google Scholar]
- Jung, M.S.; da Silva, J.A.G.; Fachinetto, J.M.; Carvalho, I.R.; Lucchese, O.A.; Basso, N.C.F.; Copetti, C.M.; Da Silva, L.G. Water: A fundamental resource for ensuring sustainability. Rev. Gestão Soc. Ambient. 2023, 17, 1–17. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, Y. Global perspective on hydrology, water balance, and water resources management in arid basins. Hydrol. Process. Int. J. 2010, 24, 129–135. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Hiben, M.G.; Awoke, A.G.; Ashenafi, A.A. Assessment of Hydrological and Water management Models for Ghba Subbasin, Ethiopia. Afr. J. Geogr. Reg. Plan. 2023, 10, 001–007. [Google Scholar]
- Das, G.K. Goolge earth engine-based rainfall-runoff modelling for hydrological assessment in Rasulpur River basin. Knowl.-Based Eng. Sci. 2024, 5, 81–97. [Google Scholar] [CrossRef]
- Kazemi Garajeh, M.; Haji, F.; Tohidfar, M.; Sadeqi, A.; Ahmadi, R.; Kariminejad, N. Spatiotemporal monitoring of climate change impacts on water resources using an integrated approach of remote sensing and Google Earth Engine. Sci. Rep. 2024, 14, 5469. [Google Scholar] [CrossRef]
- Choudhury, I.; Bhattachrya, B. Assessing the long-term fluctuations in dry-wet spells over Indian region using Markov model in GEE cloud platform. J. Agrometeorol. 2023, 25, 247–254. [Google Scholar] [CrossRef]
- Samanta, M.; Gupta, S.K.; Kanga, S.; Singh, S.K.; Kumar, P.; Meraj, G.; Ali, T.; Abouleish, M.Y. Hydrological Assessment of Uttarakhand Using the Budyko Framework and Geospatial Analysis: Insights for Sustainable Water Resource Management. In Water Resources Management; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–38. [Google Scholar]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, D.; Kumari, R. Cloud-based large-scale data retrieval, mapping, and analysis for land monitoring applications with google earth engine (GEE). Environ. Chall. 2022, 9, 100605. [Google Scholar] [CrossRef]
- Skoulikaris, C. Large-Scale Hydrological Models and Transboundary River Basins. Water 2024, 16, 878. [Google Scholar] [CrossRef]
- El Alfy, M. Assessing the impact of arid area urbanization on flash floods using GIS, remote sensing, and HEC-HMS rainfall–runoff modelling. Hydrol. Res. 2016, 47, 1142–1160. [Google Scholar] [CrossRef]
- Rajesh, G.M.; Prasad, S.; Bhagat, I.B. Spatio-temporal Reconstruction of MODIS Land Surface Temperature over Samastipur district, Bihar with GLDAS using Geo-Matics. Indian J. Ecol. 2024, 51, 1–13. [Google Scholar]
- Senay, G.B.; Friedrichs, M.; Morton, C.; Parrish, G.E.; Schauer, M.; Khand, K.; Kagone, S.; Boiko, O.; Huntington, J. Mapping actual evapotranspiration using Landsat for the conterminous United States: Google Earth Engine implementation and assessment of the SSEBop model. Remote Sens. Environ. 2022, 275, 113011. [Google Scholar] [CrossRef]
- Mohseni, F.; Ahrari, A.; Haunert, J.H.; Montzka, C. The synergies of SMAP enhanced and MODIS products in a random forest regression for estimating 1 km soil moisture over Africa using Google Earth Engine. Big Earth Data 2024, 8, 33–57. [Google Scholar] [CrossRef]
- Ali, M.H.; Popescu, I.; Jonoski, A.; Solomatine, D.P. Remote sensed and/or global datasets for distributed hydrological modelling: A review. Remote Sens. 2023, 15, 1642. [Google Scholar] [CrossRef]
- Khattab, M.I.; Fadl, M.E.; Megahed, H.A.; Saleem, A.M.; El-Saadawy, O.; Drosos, M.; Scopa, A.; Selim, M.K. Evaluation of the Soil Conservation Service Curve Number (SCS-CN) Method for Flash Flood Runoff Estimation in Arid Regions: A Case Study of Central Eastern Desert, Egypt. Hydrology 2025, 12, 54. [Google Scholar] [CrossRef]
- Divya, P.V.; Shetty, A. Validation of CHIRPS rainfall estimates with ground-based observations in Kerala, India. In Climate Change and Water Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 585–596. [Google Scholar] [CrossRef]
- Bisht, D.S.; Chowdhury, B.; Rawat, S.S.; Pottakkal, J.G. Performance ranking of global precipitation estimates over data scarce Western Himalayan Region of India. Theor. Appl. Climatol. 2024, 155, 7515–7537. [Google Scholar] [CrossRef]
- Sharma, J.; Singh, O. Comparison of different rainfall products with gauge-based measurements over Narmada River Basin, India. Environ. Monit. Assess. 2024, 196, 114. [Google Scholar] [CrossRef]
- Prakash, S. Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. J. Hydrol. 2019, 571, 50–59. [Google Scholar] [CrossRef]
- Mishra, B.; Panthi, S.; Ghimire, B.R.; Poudel, S.; Maharjan, B.; Mishra, Y. Gridded precipitation products on the Hindu Kush-Himalaya: Performance and accuracy of seven precipitation products. PLoS Water 2023, 2, e0000145. [Google Scholar] [CrossRef]
- Du, H.; Tan, M.L.; Zhang, F.; Chun, K.P.; Li, L.; Kabir, M.H. Evaluating the effectiveness of CHIRPS data for hydroclimatic studies. Theor. Appl. Climatol. 2024, 155, 1519–1539. [Google Scholar] [CrossRef]
- Kumar, J.; Rajesh, G.M.; Singh, G.; Sambasiva Rao, P.; Kumar, P.; Ankit. Monitoring Land Use Dynamics and Agricultural Land Suitability in Samastipur District, Bihar Using Landsat Imagery and GIS. J. Clim. Change 2024, 10, 43–53. [Google Scholar]
- Karthik, G.; Nagarajan, K.; Manivannan, S.; Kannan, B. Application of Soil Conservation Service Curve Number model for deriving rainfall runoff relationship in an ungauged watershed of mountain region. J. Soil Water Conserv. 2022, 21, 361–370. [Google Scholar] [CrossRef]
- Shahbazi, S. Estimate Rainfall-Runoff Using Google Earth Engine in the Minab River Basin. EarthArxiv. 2025. Available online: https://eartharxiv.org/repository/view/8874/ (accessed on 15 September 2025).
- Milevski, I.; Aleksova, B.; Valjarević, A.; Gorsevski, P. Cloud-Based Assessment of Flash Flood Susceptibility, Peak Runoff, and Peak Discharge on a National Scale with Google Earth Engine (GEE). Atmosphere 2025, 16, 945. [Google Scholar] [CrossRef]
- Campo, C.; Deidda, R.; Sanna, A.; Cocco, S.; Pirastru, M. Automated Surface Runoff Estimation with the Spectral-Based Method. Remote Sens. 2023, 16, 136. [Google Scholar] [CrossRef]
- Sujud, L.H.; Jaafar, H.H.; Singh, V.P.; Mishra, A.K. A global dynamic runoff application and dataset based on Google Earth Engine. Sci. Data 2022, 9, 706. [Google Scholar] [CrossRef]
- Merizalde, M.J.; Muñoz, P.; Corzo, G.; Muñoz, D.F.; Samaniego, E.; Célleri, R. Integrating geographic data and the SCS-CN method with LSTM networks for enhanced runoff forecasting in a complex mountain basin. Front. Water 2023, 5, 1233899. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X.; Li, F.; Zhao, W.; Awuku, I.; Ma, W.; Liu, Q.; Liu, B.; Cai, T.; Liu, Y.; et al. Optimized parameters for SCS-CN model in runoff prediction in ridge-furrow rainwater harvesting in semiarid regions of China. Agric. Water Manag. 2025, 310, 109363. [Google Scholar] [CrossRef]
- Jain, S.; Jaiswal, R.K.; Lohani, A.K.; Galkate, R. Development of cloud-based rainfall–run-off model using Google Earth Engine. Curr. Sci. 2021, 121, 1433–1440. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Mourad, R.M.; Kustas, W.P.; Anderson, M.C. A global implementation of single-and dual-source surface energy balance models for estimating actual evapotranspiration at 30-m resolution using Google Earth Engine. Water Resour. Res. 2022, 58, e2022WR032800. [Google Scholar] [CrossRef]
- Vetrithangam, D.; Arunadevi, B.; Pegada, N.K.; Kaur, S.; Krishna Prasad, B. Cloud-based Rainfall-run-off Model for Assessment of Long-Term Rainfall Variability and Trends Using Google Earth Engine. Jordan J. Earth Environ. Sci. 2025, 16, 35–49. [Google Scholar]
- Zhu, B.; Xie, X.; Lu, C.; Lei, T.; Wang, Y.; Jia, K.; Yao, Y. Extensive evaluation of a continental-scale high-resolution hydrological model using remote sensing and ground-based observations. Remote Sens. 2021, 13, 1247. [Google Scholar] [CrossRef]
- Infante Corona, J.A.; Lakhankar, T.; Pradhanang, S.; Khanbilvardi, R. Remote sensing and ground-based weather forcing data analysis for streamflow simulation. Hydrology 2014, 1, 89–111. [Google Scholar] [CrossRef]
- Artha, M.A.; Libina, R.S.; Jegankumar, R. Geomorphometry Based Flood Susceptibility Prioritization: A Case Study of Chalakudy River Basin, Kerala, India. In Flood Risk Management: Assessment and Strategy; Springer Nature: Singapore, 2024; pp. 401–424. [Google Scholar]
- Chandran, P.B.; Arunkumar, R. Prediction of streamflow in Chalakudy River Basin, Kerala, by integrating teleconnection patterns of large-scale atmospheric circulations. ISH J. Hydraul. Eng. 2024, 30, 705–719. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Rowland, J.; Harrison, L.; Hoell, A.; Michaelsen, J. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Dhanesh, Y.; Bindhu, V.M.; Senent-Aparicio, J.; Brighenti, T.M.; Ayana, E.; Smitha, P.S.; Fei, C.; Srinivasan, R. A comparative evaluation of the performance of CHIRPS and CFSR data for different climate zones using the SWAT model. Remote Sens. 2020, 12, 3088. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Jingar, V.; Sahoo, S.; Siddharth, S.; Sharma, D.; Mehta, S.A.; Seth, A. Initial Experiments with a Scalable Machine Learning Based Approach for Downscaling the MOD16A2 Evapotranspiration Product. In Proceedings of the 7th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies, New Delhi, India, 8–11 July 2024. [Google Scholar]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Farah, A.A.; El Beyrouthy, N. GCN250, new global gridded curve numbers for hydrologic modeling and design. Sci. Data 2019, 6, 145. [Google Scholar] [CrossRef]
- United States of Department of Agriculture (USDA), Natural Resources Conservation Service. Handbook of Hydrology; Technical Release (TR). 55; USDA: Washington, DC, USA, 1986. [Google Scholar]
- Shadeed, S.; Almasri, M. Application of GIS-based SCS-CN method in West Bank catchments, Palestine. Water Sci. Eng. 2010, 3, 1–13. [Google Scholar]
- Guo, Y.; Zhang, Y.; Zhang, T.; Wang, K.; Ding, J.; Gao, H. Surface runoff. In Observation and Measurement of Ecohydrological Processes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–66. [Google Scholar]
- Dessie, M.; Verhoest, N.E.C.; Pauwels, V.R.N.; Admasu, T.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J. Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia. Hydrol. Earth Syst. Sci. 2014, 18, 5149–5167. [Google Scholar] [CrossRef]
- Deshmukh, D.S.; Chaube, U.C.; Hailu, A.E.; Gudeta, D.A.; Kassa, M.T. Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope. J. Hydrol. 2013, 492, 89–101. [Google Scholar] [CrossRef]
- Nageswara Rao, K. Analysis of surface runoff potential in ungauged basin using basin parameters and SCS-CN method. Appl. Water Sci. 2020, 10, 47. [Google Scholar] [CrossRef]
- Mishra, S.K.; Sahu, R.K.; Eldho, T.I.; Jain, M.K. A generalized relation between initial abstraction and potential maximum retention in SCS-CN-based model. Int. J. River Basin Manag. 2006, 4, 245–253. [Google Scholar] [CrossRef]
- Lee, K.K.F.; Ling, L.; Yusop, Z. The revised curve number rainfall–runoff methodology for an improved runoff prediction. Water 2023, 15, 491. [Google Scholar] [CrossRef]
- Akhtar, F.; Borgemeister, C.; Tischbein, B.; Awan, U.K. Metrics assessment and streamflow modeling under changing climate in a data-scarce heterogeneous region: A case study of the Kabul River Basin. Water 2022, 14, 1697. [Google Scholar] [CrossRef]
- Rajesh, G.M.; Prasad, S. Dynamic spatio-temporal reconstruction, evaluation and trend analysis of satellite-based rainfall: A comprehensive study in Samastipur, Bihar. Discov. Geosci. 2025, 3, 56. [Google Scholar] [CrossRef]
- Rajesh, G.M.; Prasad, S.; Singh, S.K.; Al-Ansari, N.; Salem, A.; Mattar, M.A. Bias Correction of Satellite-Derived Climatic Datasets for Water Balance Estimation. Water 2025, 17. [Google Scholar] [CrossRef]
- Almazroui, M.; Şen, Z. Trend analyses methodologies in hydro-meteorological records. Earth Syst. Environ. 2020, 4, 713–738. [Google Scholar] [CrossRef]
- Ravanashree, M.; Nagarajan, M.; Rajesh, G. Climate Trend Analysis and Implications for Water Management in the Upper Bhavani Region, Coimbatore (1995–2021). J. Sci. Res. Rep. 2025, 31, 460–469. [Google Scholar] [CrossRef]
- Williams, J.R.; Kannan, N.; Wang, X.; Santhi, C.; Arnold, J.G. Evolution of the SCS runoff curve number method and its application to continuous runoff simulation. J. Hydrol. Eng. 2012, 17, 1221–1229. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, H.I. Improved streamflow calibration of a land surface model by the choice of objective functions—A case study of the nakdong river watershed in the Korean peninsula. Water 2021, 13, 1709. [Google Scholar] [CrossRef]
- Rao, P.S.B.; Shetty, S.; Umesh, P.; Shetty, A. An exploratory analysis of rainfall: A case study on western ghats of India. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, 6–8 March 2018; pp. 1607–1617. [Google Scholar]
- Sadhwani, K.; Eldho, T.I. Assessing the vulnerability of water balance to climate change at river basin scale in humid tropics: Implications for a sustainable water future. Sustainability 2023, 15, 9135. [Google Scholar] [CrossRef]
- Reshma, C.; Arunkumar, R. Assessment of impact of climate change on the streamflow of Idamalayar River Basin, Kerala. J. Water Clim. Change 2023, 14, 2133–2149. [Google Scholar] [CrossRef]
- Nair, G.S.; Karunanidhi, D.; Subramani, T. Hydrological modeling for the Bharathapuzha River basin of South India using SWAT model. Desalination Water Treat. 2025, 321, 100975. [Google Scholar] [CrossRef]
- Abe, G.; Erinjery Joseph, J. Changes in streamflow regime due to anthropogenic regulations in the humid tropical Western Ghats, Kerala State, India. J. Mt. Sci. 2015, 12, 456–470. [Google Scholar] [CrossRef]
- Renu, S.; Reddy, B.S.N.; Santhosh, S.; Sreelekshmi; Lekshmi, V.; Pramada, S.K.; Sridhar, V. Hydrologic and Hydraulic Modeling for Flood Risk Assessment: A Case Study of Periyar River Basin, Kerala, India. Climate 2025, 13, 129. [Google Scholar] [CrossRef]
- Wagner, P.D.; Kumar, S.; Fiener, P.; Schneider, K. Hydrological modeling with SWAT in a monsoon-driven environment: Experience from the Western Ghats, India. Trans. ASABE 2011, 54, 1783–1790. [Google Scholar] [CrossRef]
- Shah, H.L.; Mishra, V. Hydrologic changes in Indian subcontinental river basins (1901–2012). J. Hydrometeorol. 2016, 17, 2667–2687. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Bhallamudi, S.M.; Narasimhan, B.; Thomas, J.; Bindhu, V.M.; Vema, V.; Kurian, C. Role of dams on the floods of August 2018 in Periyar River Basin, Kerala. Curr. Sci. 2019, 116, 780–794. [Google Scholar] [CrossRef]
- Raghavendra, P.K.; Bhimala, K.R.; Patra, G.K.; Goroshi, S. Annual and seasonal trends in actual evapotranspiration over different meteorological sub-divisions in India using satellite-based data. Theor. Appl. Climatol. 2023, 152, 999–1017. [Google Scholar] [CrossRef]
- Mathew, B.; HD, V.P. Impact of Watershed Development Projects Implemented in Kerala. J. Ext. Educ. 2021, 33, 6531–6543. [Google Scholar] [CrossRef]
- Nikam, B.R.; Garg, V.; Jeyaprakash, K.; Gupta, P.K.; Srivastav, S.K.; Thakur, P.K.; Aggarwal, S.P. Analyzing future water availability and hydrological extremes in the Krishna basin under changing climatic conditions. Arab. J. Geosci. 2018, 11, 581. [Google Scholar] [CrossRef]
- Rao, K.D.; Rao, V.V.; Dadhwal, V.K.; Sharma, J.R.; Jyothsna, R. Transforming to hydrological modelling approach for long-term water resources assessment under climate change scenario—A case study of the Godavari Basin, India. Curr. Sci. 2014, 106, 293–299. [Google Scholar]
- Mathew, M.M.; Sreelash, K.; Mathew, M.; Arulbalaji, P.; Padmalal, D. Spatiotemporal variability of rainfall and its effect on hydrological regime in a tropical monsoon-dominated domain of Western Ghats, India. J. Hydrol. Reg. Stud. 2021, 36, 100861. [Google Scholar] [CrossRef]
- Nair, A. Trend analysis of hydro-climatological factors using a bayesian ensemble algorithm with reasoning from dynamic and static variables. Atmosphere 2022, 13, 1961. [Google Scholar] [CrossRef]
- Goroshi, S.; Pradhan, R.; Singh, R.P.; Singh, K.K.; Parihar, J.S. Trend analysis of evapotranspiration over India: Observed from long-term satellite measurements. J. Earth Syst. Sci. 2017, 126, 113. [Google Scholar] [CrossRef]
- Sinha, R.K.; Eldho, T.I.; Subimal, G. Assessing the impacts of land use/land cover and climate change on surface runoff of a humid tropical river basin in Western Ghats, India. Int. J. River Basin Manag. 2023, 21, 141–152. [Google Scholar] [CrossRef]
Dataset | Purpose | Source | Temporal Resolution | Spatial Resolution | Key Attributes |
---|---|---|---|---|---|
CHIRPS | Rainfall input for runoff estimation | CHIRPS (Climate Hazards Group) | Daily | ~0.05° (~5 km) | Global rainfall estimates |
MODIS (MCD12Q1) and MODIS/006/MOD16A2 | Determining land use for CN and evapotranspiration | MODIS Land Cover Product | Annual | 500 m | Land cover classification |
OpenLand Soil Texture | Determining hydrological soil groups | Open Land Map Soil Data | Static | ~250 m | Soil texture, hydrological properties |
Discharge data | Runoff validation | India- Water Resource Information System (WRIS) | Monthly | ----- | Discharge analysis |
Metric | Formula | Description |
---|---|---|
NSE | Assesses the ability of the model to replicate observed runoff variability, with values close to 1 indicating high predictive accuracy. | |
RMSE | Quantifies the average magnitude of error between observed and simulated runoff, where lower values reflect better model performance. | |
ME | Represents the average bias in simulated runoff, with values near zero indicating minimal over- or underestimation. | |
KGE | Provides a comprehensive evaluation of runoff simulations by integrating correlation, bias, and variability, with a value of 1 indicating perfect agreement. |
Statistic | Value |
---|---|
RMSE | 29.37 |
NSE | 0.86 |
ME | 13.48 |
R2 | 0.83 |
KGE | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajesh, G.M.; Shaharudeen, S.; Hasher, F.F.B.; Zhran, M. Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala. Water 2025, 17, 2869. https://doi.org/10.3390/w17192869
Rajesh GM, Shaharudeen S, Hasher FFB, Zhran M. Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala. Water. 2025; 17(19):2869. https://doi.org/10.3390/w17192869
Chicago/Turabian StyleRajesh, Gudihalli Munivenkatappa, Sajeena Shaharudeen, Fahdah Falah Ben Hasher, and Mohamed Zhran. 2025. "Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala" Water 17, no. 19: 2869. https://doi.org/10.3390/w17192869
APA StyleRajesh, G. M., Shaharudeen, S., Hasher, F. F. B., & Zhran, M. (2025). Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala. Water, 17(19), 2869. https://doi.org/10.3390/w17192869