Tillage Effects on Soil Hydraulic Parameters Estimated by Brooks–Corey Function in Clay Loam and Sandy Loam Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. The EARC Research Site
2.2. The Nesson Research Site
2.3. Soil Core Sampling and Preparation
2.4. Brooks–Corey Model
2.5. Data Analysis
3. Results and Discussion
3.1. EARC Site
3.2. Nesson Site
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahuja, L.J.; Fiedler, F.; Dunn, J.G.; Benjamin, J.; Garrison, A. Changes in soil water retention curves die to tillage and natural reconsolidation. Soil Sci. Soc. Am. J. 1989, 62, 1228–1233. [Google Scholar] [CrossRef]
- Assouline, S.; Tessier, D.; Bruand, A. A conceptual model of the soil water retention curve. Water Resour. Res. 1998, 34, 223–231. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. The effect of tillage treatments on soil water holding capacity and soil physical properties. In Proceedings of the ISCO 2004—13th International Soil Conservation Organization Conference, Brisbane, Australia, 4–8 July 2004. Conserving Soil and Water for Society: Sharing Solutions 2004, Paper No 669. [Google Scholar]
- Tong, K.B.; Tian, Z.; Heitman, J.L.; Sauer, T.J.; Horton, R. Soil water retention and hydraulic conductivity dynamics following tillage. Soil Tillage Res. 2019, 193, 95–100. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B. Soil-water characteristic curves and their estimated hydraulic parameters in no-tilled and conventionally tilled soils. Soil Tillage Res. 2022, 219, 105342. [Google Scholar] [CrossRef]
- Jabro, J.; Stevens, W.; Iversen, W.; Sainju, U.; Allen, B.; Dangi, S.; Chen, C. Soil-water retention curves and pore-size distribution in a clay loam under different tillage systems. Land 2024, 13, 1987. [Google Scholar] [CrossRef]
- Hillel, D. Fundamentals of Soil Physics; Academic Press, Inc.: New York, NY, USA, 1980. [Google Scholar]
- Kirkham, M.B. Principles of Soil and Plant Water Relations; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Pena-Sancho, C.; Lopez, M.V.; Gracia, R.; Moret-Fernandez, D. Effect of tillage on the soil water retention curve during a fallow period of a semiarid dryland. Soil Res. 2017, 55, 114–123. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Omuto, C.T. Biexponential model for water retention characteristics. Geoderma 2009, 149, 235–242. [Google Scholar] [CrossRef]
- Too, V.K.; Omuto, C.T.; Biamah, E.K.; Obiero, J.P. Review of soil water retention characteristic (SWRC) models between saturation and oven dryness. Open J. Mod. Hydrol. 2014, 4, 173–182. [Google Scholar] [CrossRef]
- Gardner, W.R. Some Steady State-Solutions of the Unsaturated Moisture Flow Equation with Application to Evaporation from a Water Table. Soil Sci. 1958, 85, 228–232. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Hydrology Paper; No. 3; Colorado State University: Fort Collins, CO, USA, 1964; 27p. [Google Scholar]
- van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Pan, T.; Hou, S.; Liu, Y.; Tan, Q. Comparison of three models fitting the soil water retention curves in a degraded alpine meadow region. Sci. Rep. 2019, 9, 18407. [Google Scholar] [CrossRef]
- Haverkamp, R.; Leij, F.J.; Fuentes, C.; Sciortino, A.; Ross, P.J. Soil water retention: I. Introduction of a shape index. Soil Sci. Soc. Am. J. 2005, 69, 1881–1890. [Google Scholar] [CrossRef]
- Valiantzas, J.D.; Londra, P.A. Direct determination of the Brooks Corey hydraulic functions by fitting an extended power function to the outflow method data. J. Hydrol. 2008, 362, 128–133. [Google Scholar] [CrossRef]
- Fu, X.; Shao, M.; Lu, D.; Wang, H. Soil water characteristic curve measurement without bulk density changes and its implications in the estimation of soil hydraulic properties. Geoderma 2011, 167–168, 1–8. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, J.; Zhang, J. Fractal estimation of soil water retention curves using CT images. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2013, 63, 442–452. [Google Scholar] [CrossRef]
- Matlan, S.J.; Mukhlisin, M.; Taha, M.R. Performance evaluation of four-parameter models of the soil-water characteristic curve. Sci. World J. 2014, 2014, 569851. [Google Scholar] [CrossRef]
- Tian, Z.; Gao, W.; Kool, D.; Ren, T.; Horton, R.; Heitman, J.L. Approaches for estimating soil water retention curves at various bulk densities with the extended van Genuchten model. Water Resour. Res. 2018, 54, 5584–5601. [Google Scholar] [CrossRef]
- Xing, X.; Wang, H.; Ma, X. Brooks-Corey modeling by one-dimensional vertical infiltration method. Water 2018, 10, 593. [Google Scholar] [CrossRef]
- Evans, R.G.; Iversen, W.M.; Stevens, W.B.; Jabro, J.D. Development of combined site-specific MESA and LEPA methods on a linear move sprinkler irrigation system. Appl. Eng. Agric. 2010, 26, 883–895. [Google Scholar] [CrossRef]
- Sainju, U.M.; Stevens, W.B.; Jabro, J.D.; Allen, B.L.; Iversen, W.M.; Chen, C.; Alasinrin, S.Y. Greenhouse gas emissions from tillage practices and crop phases in a sugarbeet-based crop rotation. Soil Sci. Soc. Am. J. 2024, 89, e20786. [Google Scholar] [CrossRef]
- Schindler, U.; Durner, W.; von Unold, G.; Muller, L. Evaporation method for measuring unsaturated hydraulic properties of soils: Extending the measurement range. Soil Sci. Soc. Am. J. 2010, 74, 1071–1083. [Google Scholar] [CrossRef]
- SAS Institute. The SAS System for Windows; Version 9.2; SAS Institute: Cary, NC, USA, 2011. [Google Scholar]
- Gallage, C.P.K.; Uchimura, T. Effect of dry density and grain size distribution on soil-water characteristics curves of sandy soil. Soils Found. 2010, 5, 161–172. [Google Scholar] [CrossRef]
- Hashimi, R.; Huang, Q.; Dewi, R.K.; Nishiwaki, J.; Komatsuzaki, M. No-tillage and rye cover crop systems improve soil water retention by increasing soil organic carbon in Andosols under humid subtropical climate. Soil Tillage Res. 2023, 234, 105861. [Google Scholar] [CrossRef]
- Alam, M.K.; Islam, M.M.; Salahin, N.; Hasanuzzaman, M. Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. Sci. World J. 2014, 2014, 437283. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Weinhold, B.J.; Jin, V.I.; Schmer, M.R.; Kibet, L.C. Long-term tillage impact on soil hydraulic properties. Soil Tillage Res. 2017, 170, 38–42. [Google Scholar] [CrossRef]
- Bahmani, O. Evaluation of the short-term effect of tillage practices of soil hydro-physical properties. Pol. J. Soil Sci. 2019, 52, 43–57. [Google Scholar] [CrossRef]
- Syromiatnykov, Y.; Khalilovi, N.; Troyanovskaya, I.; Voinash, S.; Gulyarenko, A.; Malikkov, V.; Orekhvskaya, A. Dynamics of agrophysical parameters and corn yield under minimum tillage in Samarkand region. Acta Technol. Agric. 2025, 28, 80–87. [Google Scholar] [CrossRef]
Location | Source | α | λ | θr | θs | θ330 | θ15,000 | AW (θ330–θ15,000) |
---|---|---|---|---|---|---|---|---|
EARC | Tillage | NS | NS | NS | NS | NS | NS | NS |
Nesson | Tillage | NS | 0.0103 | NS | 0.0056 | 0.0184 | NS | 0.0244 |
Depth | Tillage | α cm−1 | λ | θr | θs | θ330 | θ15,000 | AW (θ33–θ15,000) |
---|---|---|---|---|---|---|---|---|
% | ||||||||
0–15 | NT | 0.1368 (0.05) | 0.1436 (0.04) | 9.98 (0.06) | 44.48 (0.01) | 33.06 (1.9) | 25.04 (3.1) | 7.99 (1.2) |
CT | 0.1473 (0.02) | 0.1582 (0.02) | 10.46 (0.02) | 48.26 (0.01) | 31.55 (0.7) | 22.21 (1.2) | 9.34 (0.5) | |
15–30 | NT | 0.1688 b (0.05) | 0.1074 (0.01) | 10.94 (0.02) | 43.48 (0.01) | 32.61 (1.3) | 25.27 (1.5) | 7.34 (0.3) |
CT | 0.1242 a (0.03) | 0.1270 (0.03) | 12.50 (0.02) | 42.74 (0.02) | 34.11 (1.4) | 26.60 (1.4) | 7.60 (0.3) | |
Average across 2 depths | ||||||||
0–30 | NT | 0.1528 | 0.1255 | 0.1091 | 43.98 | 32.68 | 25.00 | 7.68 |
CT | 0.1191 | 0.1443 | 0.1148 | 45.50 | 32.64 | 24.09 | 8.55 |
Year | Depth cm | Tillage | α cm−1 | λ | θr | θs | θ330 | θ15,000 | AW (θ330–θ15,000) |
---|---|---|---|---|---|---|---|---|---|
% | |||||||||
2014 | 0–15 | NT | 0.0680 | 0.4096 | 6.59 | 39.26 | 16.64 | 8.94 | 8.02 |
CT | 0.0839 | 0.4206 | 6.78 | 41.56 | 15.95 | 8.82 | 7.13 | ||
15–30 | NT | 0.0644 | 0.2982 a | 5.01 | 37.04 | 17.80 | 8.62 | 9.18 | |
CT | 0.0536 | 0.4266 b | 7.00 | 38.90 | 16.98 | 9.17 | 7.81 | ||
2015 | 0–15 | NT | 0.0700 | 0.3198 a | 2.50 | 38.44 | 17.71 | 6.63 | 11.08 |
CT | 0.0548 | 0.4738 b | 5.93 | 42.34 | 15.55 | 5.40 | 10.16 | ||
15–30 | NT | 0.0648 | 0.2970 | 3.82 | 35.56 | 16.92 | 8.09 | 8.83 | |
CT | 0.0625 | 0.5230 | 8.63 | 39.56 | 16.08 | 8.16 | 7.66 | ||
2016 | 0–15 | NT | 0.0556 | 0.4254 | 7.41 | 38.12 | 16.92 | 8.97 | 7.94 |
CT | 0.0597 | 0.5288 | 7.72 | 41.58 | 15.96 | 9.04 | 7.26 | ||
15–30 | NT | 0.0686 | 0.2322 a | 2.33 | 35.60 | 18.49 b | 8.61 | 9.87 b | |
CT | 0.0615 | 0.5112 b | 7.16 | 39.70 | 14.88 a | 7.98 | 7.07 a | ||
2017 | 0–15 | NT | 0.0624 | 0.4394 | 5.80 | 38.82 | 16.21 | 8.46 b | 8.57 b |
CT | 0.0510 | 0.5588 | 6.68 | 41.12 | 14.45 | 7.69 a | 6.77 a | ||
15–30 | NT | 0.0567 | 0.3140 | 5.40 | 36.90 | 17.39 | 7.69 | 9.70 | |
CT | 0.0537 | 0.4196 | 4.70 | 39.84 | 15.87 | 7.19 | 8.67 | ||
Average across 4 years | |||||||||
0–15 | NT | 0.0636 (0.01) | 0.4046 (0.04) | 5.92 (0.6) | 38.70 a (0.6) | 16.80 b (0.6) | 8.33 (0.4) | 8.77 (0.4) | |
CT | 0.0624 (0.01) | 0.4980 (0.03) | 6.86 (0.4) | 41.61 b (0.6) | 15.36 a (0.3) | 7.74 (0.4) | 7.62 (0.4) | ||
15–30 | NT | 0.0634 (0.0) | 0.2855 a (0.02) | 4.54 (0.7) | 36.26 a (0.4) | 17.66 (0.5) | 8.28 (0.5) | 9.37 (0.3) | |
CT | 0.0578 (0.0) | 0.4700 b (0.03) | 6.58 (0.6) | 39.46 b (0.7) | 16.05 (0.5) | 8.16 (0.5) | 7.87 (0.5) | ||
Average across 4 years and 2 depths | |||||||||
0–30 | NT | 0.0638 | 0.3400 a | 5.16 | 37.47 a | 17.31 b | 8.28 | 9.21 b | |
CT | 0.0601 | 0.4852 b | 6.75 | 40.57 b | 15.66 a | 7.94 | 7.82 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Sainju, U.M.; Allen, B.L.; Dangi, S.R. Tillage Effects on Soil Hydraulic Parameters Estimated by Brooks–Corey Function in Clay Loam and Sandy Loam Soils. Agronomy 2025, 15, 2325. https://doi.org/10.3390/agronomy15102325
Jabro JD, Stevens WB, Iversen WM, Sainju UM, Allen BL, Dangi SR. Tillage Effects on Soil Hydraulic Parameters Estimated by Brooks–Corey Function in Clay Loam and Sandy Loam Soils. Agronomy. 2025; 15(10):2325. https://doi.org/10.3390/agronomy15102325
Chicago/Turabian StyleJabro, Jalal D., William B. Stevens, William M. Iversen, Upendra M. Sainju, Brett L. Allen, and Sadikshya R. Dangi. 2025. "Tillage Effects on Soil Hydraulic Parameters Estimated by Brooks–Corey Function in Clay Loam and Sandy Loam Soils" Agronomy 15, no. 10: 2325. https://doi.org/10.3390/agronomy15102325
APA StyleJabro, J. D., Stevens, W. B., Iversen, W. M., Sainju, U. M., Allen, B. L., & Dangi, S. R. (2025). Tillage Effects on Soil Hydraulic Parameters Estimated by Brooks–Corey Function in Clay Loam and Sandy Loam Soils. Agronomy, 15(10), 2325. https://doi.org/10.3390/agronomy15102325