Nanoparticles Loaded with Lippia graveolens Essential Oil as a Topical Delivery System: In Vitro Antiherpetic Activity and Biophysical Parameters Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of EO-Loaded NP
2.3. Fourier-Transform Infrared Analysis
2.4. Cell Viability Assessment
2.5. Evaluation of Antiherpetic Activity In Vitro
2.6. Ex Vivo Biophysical Evaluation of Skin Treated with EOL-Loaded NP
2.7. Statistical Analysis
3. Results
3.1. Preparation and Characterization of EOL-Loaded Nanoparticles
3.2. Fourier-Transform Infrared Spectroscopy Analysis of NP-EOL Components
3.3. Cytotoxicity Against Vero Cells and in Vitro Antiherpetic Activity
3.4. Ex Vivo Biophysical Evalaution of Skin Treated with EOL-Loaded Nanoparticles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HSV-1 | herpes simplex virus type 1 |
NPs | polymeric nanoparticles |
SC | stratum corneum |
EO | essential oil |
CRV | carvacrol |
NP-EOL-R | Lippia graveolens essential oil-loaded nanoparticles purified by evaporation |
NP-EOL-D | Lippia graveolens essential oil-loaded nanoparticles purified by dialysis |
NP-BCO-R | nanoparticles without essential oil purified by evaporation |
NP-BCO-D | nanoparticles without essential oil purified by dialysis |
PDI | polydispersity index |
FT-IR | Fourier-transform infrared spectroscopy |
SEM | scanning electron microscopy |
IC50 | inhibitory concentration 50 |
CC50 | cytotoxic concentration 50 |
SI | selectivity index |
TEWL | transepidermal water loss |
SCWC | stratum corneum water content |
References
- Madawi, E.A.; Al Jayoush, R.A.; Rawas-Qalaji, M.; Ei Thu, H.; Khan, S.; Sohail, M.; Mahmood, A.; Hussain, Z. Polymeric nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin tissues for treatment of topical skin diseases. Pharmaceutics 2023, 15, 657. [Google Scholar] [CrossRef]
- Maranduca, M.A.; Hurjui, L.L.; Branisteanu, D.C.; Serban, D.N.; Branisteanu, D.E.; Dima, N.; Serbanm, I.L. Skin—A vast organ with immunological function (review). Exp. Ther. Med. 2020, 20, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, D.; Koe, K.H.; Maharajan, M.K.; Panda, S. A comprehensive overview of epidemiology, pathogenesis and the management of herpes labialis. Viruses 2023, 15, 225. [Google Scholar] [CrossRef] [PubMed]
- Almansorri, A.K.; Al-Shirifi, H.M.H.; Al-Musawi, S.; Ahmed, B.B. Investigation of the inhibition activity of aluminium oxide nanoparticles for herpes simplex type 1. Arch. Razi Inst. 2023, 78, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Center for Drug Evaluation and Research. Recurrent Herpes Labialis: Developing Drugs for Treatment and Prevention; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/recurrent-herpes-labialis-developing-drugs-treatment-and-prevention (accessed on 15 July 2025).
- Piperi, E.; Papadopoulou, E.; Georgaki, M.; Dovrat, S.; Illan, M.B.; Nikitakis, N.G.; Yarom, N. Management of oral herpes simplex virus infections: The problem of resistance. A narrative review. Oral Dis. 2023, 30, 877–894. [Google Scholar] [CrossRef]
- Fekete, G.L.; Fekete, L.; Ancuceanu, R.; Ianoși, S.L.; Drăgănescu, M.; Brihan, I. Acyclovir-induced immune thrombocytopenia: Case report and review of the literature. Exp. Ther. Med. 2020, 20, 3417–3420. [Google Scholar] [CrossRef]
- Nagra, U.; Barkat, K.; Ashraf, M.U.; Shabbir, M. Feasibility of enhancing skin permeability of acyclovir through sterile topical lyophilized wafer on self-dissolving microneedle-treated skin. Dose Response Int. J. 2022, 20, 15593258221097594. [Google Scholar] [CrossRef]
- Andreu, S.; Ripa, I.; Bello-Morales, R.; López-Guerrero, J.A. Valproic acid and its amidic derivatives as new antivirals against alphaherpesviruses. Viruses 2020, 12, 1356. [Google Scholar] [CrossRef]
- Predoi, D.; Groza, A.; Iconaru, S.L.; Predoi, G.; Barbuceanu, F.; Guegan, R.; Motelica-Heino, M.S.; Cimpeanu, C. Properties of basil and lavender essential oils adsorbed on the surface of hydroxyapatite. Materials 2018, 11, 652. [Google Scholar] [CrossRef]
- Orchard, A.; Vuuren, S.V. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid. Based Complement. Altern. Med. 2017, 1, 4517971. [Google Scholar] [CrossRef]
- Ma, L.; Yao, L. Antiviral effects of plant-derived essential oils and their components: An updated review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef]
- Medina-Romero, Y.M.; Hernandez-Hernandez, A.B.; Rodriguez-Monroy, M.A.; Canales-Martínez, M.M. Essential oils of Bursera morelensis and Lippia graveolens for the development of a new biopesticides in postharvest control. Sci. Rep. 2021, 11, 20135. [Google Scholar] [CrossRef]
- Alam, P.; Imran, M.; Ali, A.; Majid, H. Cananga odorata (Ylang-Ylang) essential oil containing nanoemulgel for the topical treatment of scalp psoriasis and dandruff. Gels 2024, 10, 303. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Rodríguez, S.E.; López-Rivera, R.J.; García-Márquez, E.; Estarrón-Espinosa, M.; Espinosa-Andrews, H. Mexican oregano (Lippia graveolens) essential oil-in-water emulsions: Impact of emulsifier type on the antifungal activity of Candida albicans. Food Sci. Biotechnol. 2019, 28, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Pilau, M.R.; Alves, S.H.; Weiblen, R.; Arenhart, S.; Cueto, A.P.; Lovato, L.T. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Braz. J. Microbiol. 2011, 42, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef]
- Badgujar Vaishnavi, C.; Shinde Ananya, J.; Nehete Jitendra, Y.; Bhambar Rajendra, S. Strategies to improve stability of essential oils. J. Pharm. Sci. Res. 2021, 13, 416–425. [Google Scholar]
- Zoabi, A.; Touitou, E.; Margulis, K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids Interfaces 2021, 5, 18. [Google Scholar] [CrossRef]
- Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 2004, 99, 53–62. [Google Scholar] [CrossRef]
- Kalita, S.; Kandimalla, R.; Devi, B.; Kalita, B.; Kalita, K.; Deka, M.; Kataki, A.C.; Sharma, A.; Kotoky, J. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Adv. 2017, 7, 1749–1758. [Google Scholar] [CrossRef]
- González-Moreno, B.J.; Galindo-Rodríguez, S.A.; Rivas-Galindo, V.M.; Pérez-López, L.A.; Granados-Guzmán, G.; Álvarez-Román, R. Enhancement of strawberry shelf life via a multisystem coating based on Lippia graveolens essential oil loaded in polymeric nanocapsules. Polymers 2024, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.B.S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Silva-Mares, D.; Rivas-Galindo, V.M.; Salazar-Aranda, R.; Pérez-Lopez, L.A.; Waksman De Torres, N.; Pérez-Meseguer, J.; Torres-Lopez, E. Screening of north-east Mexico medicinal plants with activities against herpes simplex virus and human cancer cell line. Nat. Prod. Res. 2019, 33, 1531–1534. [Google Scholar] [CrossRef]
- Albuquerque, P.M.; Azevedo, S.G.; de Andrade, C.P.; D’Ambros, N.C.d.S.; Martins Perez, M.T.; Manzato, L. Biotechnological applications of nanoencapsulated essential oils: A review. Polymers 2022, 14, 5495. [Google Scholar] [CrossRef]
- Martínez Rivas, C.J.; Tarhini, M.; Badri, W.; Miladi, K.; Greige-Gerges, H.; Nazari, Q.A.; Galindo Rodríguez, S.A.; Álvarez Román, R.; Fessi, H.; Elaissari, A. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 2017, 532, 66–81. [Google Scholar] [CrossRef]
- Ofridam, F.; Lebaz, N.; Gagniére, É.; Mangin, D.; Elaissari, A. Polymethylmethacrylate derivatives Eudragit® E100 and L100: Interactions and complexation with surfactants. Polym. Adv. Technol. 2021, 32, 379–390. [Google Scholar] [CrossRef]
- Tiwari, N.; Osorio-blanco, E.R.; Sonzogni, A.; Esporrín-Ubieto, D.; Wang, H.; Calderón, M. Nanocarriers for skin applications: Where do we stand? Angew. Chem. Int. Ed. 2022, 134, e202107960. [Google Scholar] [CrossRef]
- Dong, P.; Sahle, F.F.; Lohan, S.B.; Saeidpour, S.; Albrecht, S.; Teutloff, C.; Bodmeier, R.; Unbehauen, M.; Wolff, C.; Haag, R.; et al. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J. Control. Release 2019, 295, 214–222. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, B.; Sun, M.; Wang, Y.; Wei, M.; Gong, Y.; Yan, M. Preparation of Black pepper (Piper nigrum L.) essential oil nanoparticles and its antitumor activity on triple negative breast cancer in vitro. J. Food Biochem. 2022, 46, e14406. [Google Scholar] [CrossRef]
- Silva Flores, P.G. Desarrollo y Evaluación Dermatocinética de Nanopartículas con Aceites Esenciales para Su aplicación en Piel. Doctoral Thesis, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México, 2019. [Google Scholar]
- Dai, X.; Qiang, X.; Hils, C.; Schmalz, H.; Gröschel, A.H. Frustrated microparticle morphologies of a semicrystalline triblock terpolymer in 3D soft confinement. ACS Nano 2021, 15, 1111–1120. [Google Scholar] [CrossRef]
- Chung, T.W.; Huang, Y.Y.; Tsai, Y.L.; Liu, Y.Z. Effects of solvent evaporation rate on the properties of protein-loaded PLLA and PDLLA microspheres fabricated by emulsion-solvent evaporation process. J. Microencapsul. 2002, 19, 463–471. [Google Scholar] [CrossRef]
- Allison, S.D. Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic) acid microparticle drug delivery systems. J. Pharm. Sci. 2007, 97, 2022–2035. [Google Scholar] [CrossRef] [PubMed]
- Donalisio, M.; Leone, F.; Civra, A.; Spagnolo, R.; Ozer, O.; Lembo, D.; Cavalli, R. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics 2018, 10, 46. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, C.N.; Gomes, A.J.; Rocha, F.S.; De Tommaso, J.; Patience, G.S. Experimental methods in chemical engineering: Zeta potential. Can. J. Chem. Enginering 2021, 99, 627–639. [Google Scholar] [CrossRef]
- Chu, B.; Biriukov, D.; Bischoff, M.; Předota, M.; Roke, S.; Marchioro, A. Evolution of the electrical double layer with electrolyte concentration probed by second harmonic scattering. Faraday Discuss. 2023, 246, 407–425. [Google Scholar] [CrossRef]
- Wang, B.; LvYe, J.; Yang, S.; Shi, Y.; Chen, Q. Critical review of food colloidal delivery system for bioactive compounds: Physical characterization and application. Foods 2024, 13, 2596. [Google Scholar] [CrossRef]
- Dikpati, A.; Maio, V.D.P.; Ates, E.; Greffard, K.; Bertrand, N. Studying the stability of polymer nanoparticles by size exclusion chromatography of radioactive polymers. J. Control. Release 2024, 369, 394–403. [Google Scholar] [CrossRef]
- Muthu, M.S.; Feng, S.S. Pharmaceutical stability aspects of nanomedicines. Nanomedicine 2009, 4, 857–860. [Google Scholar] [CrossRef]
- Saadallah, M.S.; Hamid, O.A. Eudragit® L100 nanoparticles for transdermal delivery of rosuvastatin calcium. J. Excip. Food Chem. 2022, 13, 80–93. [Google Scholar]
- Gutiérrez-Pacheco, M.M.; Ortega-Ramírez, L.A.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; González-Aguilar, G.A.; Lizardi-Mendoza, J.; Miranda, R.; Ayala-Zavala, J.F. Individual and combined coatings of chitosan and Carnauba wax with oregano essential oil to avoid water loss and microbial decay of fresh cucumber. Coatings 2020, 10, 614. [Google Scholar] [CrossRef]
- Leary, J.J.; Wittrock, R.; Sarisky, R.T.; Weinberg, A.; Levin, M.J. Susceptibilities of herpes simplex viruses to penciclovir and acyclovir in eight cell lines. Antimicrob. Agents Chemother. 2002, 46, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Slavkova, M.; Lazov, C.; Spassova, I.; Kovacheva, D.; Pencheva-El Tibi, I.; Stefanova, D.; Tzankova, V.; Petrov, P.D.; Yoncheva, K. Formulation of budesonide-loaded polymeric nanoparticles into hydrogels for local therapy of atopic dermatitis. Gels 2024, 10, 79. [Google Scholar] [CrossRef]
- Velandia, S.A.; Quintero, E.; Stashenko, E.E.; Ocazionez, R.E. Actividad antiproliferativa de aceites esenciales de plantas cultivadas en colombia. Acta Biológica Colomb. 2017, 23, 189–198. [Google Scholar] [CrossRef]
- Nakamura de Vasconcelos, S.S.; Caleffi-Ferracioli, K.R.; Hegeto, L.A.; Baldin, V.P.; Nakamura, C.V.; Stefanello, T.F.; Freitas Gauze, G.; Yamazaki, D.A.S.; Scodro, R.B.L.; Siqueira, V.L.D.; et al. Carvacrol activity & morphological changes in Mycobacterium tuberculosis. Future Microbiol. 2018, 13, 877–888. [Google Scholar]
- Damayanti, S.; Permana, J.; Tjahjono, D.H. The use of computational chemistry to predict toxicity of antioxidants food additives and its metabolites as a reference for food safety regulation. Sch. Res. Libr. 2015, 7, 174–181. [Google Scholar]
- Monzote, L.; Stamberg, W.; Staniek, K.; Gille, L. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicol. Appl. Pharmacol. 2009, 240, 337–347. [Google Scholar] [CrossRef]
- Landry, M.L.; Stanat, S.; Biron, K.; Brambilla, D.; Britt, W.; Jokela, J.; Chou, S.; Drew, W.L.; Erice, A.; Gilliam, B.; et al. A standardized plaque reduction assay for determination of drug susceptibilities of cytomegalovirus clinical isolates. Antimicrob. Agents Chemother. 2000, 44, 688–692. [Google Scholar] [CrossRef]
- Dolskiy, A.A.; Grishchenko, I.V.; Yudkin, D.V. Cell cultures for virology: Usability, advantages, and prospects. Int. J. Mol. Sci. 2020, 21, 7978. [Google Scholar] [CrossRef]
- Akkutay-Yoldar, Z.; Yoldar, M.T.; Akkaş, Y.B.; Şurak, S.; Garip, F.; Turan, O.; Ekizoğlu, B.; Yüca, O.C.; Özkul, A.; Ünver, B. A web-based artificial intelligence system for label-free virus classification and detection of cytopathic effects. Sci. Rep. 2025, 15, 5904. [Google Scholar] [CrossRef]
- Vilhelmova-Ilieva, N.; Dobreva, A.; Doynovska, R.; Krastev, D.; Mileva, M. Antiviral activity of Rosa damascena Mill. and Rosa alba L. essential oils against the multiplication of herpes simplex virus type 1 strains sensitive and resistant to acyclovir. Biology 2021, 10, 746. [Google Scholar] [CrossRef] [PubMed]
- Gilling, D.H.; Kitajima, M.; Torrey, J.R.; Bright, K.R. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J. Appl. Microbiol. 2014, 116, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.L.; Chuang, H.S.; Lee, M.H.; Wei, C.L.; Lin, C.F.; Tsai, Y.C. Inhibition of herpes simplex virus type 1 by thymol-related monoterpenoids. Planta Med. 2012, 78, 1636–1638. [Google Scholar] [CrossRef]
- Cura Bermudez, P.M. Análisis In Silico de la Interacción de los Compuestos Mayoritarios del Aceite Esencial de Orégano (Lippia sp.) con las Proteínas de Envoltura del Herpes Simple Tipo 1 y Evaluación Toxicológica. Bachelor’s Thesis, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México, 2024. [Google Scholar]
- Yadavalli, T.; Mallick, S.; Patel, P.; Koganti, R.; Shukla, D.; Date, A.A. Pharmaceutically acceptable carboxylic acid-terminated polymers show activity and selectivity against HSV-1 and HSV-2 and synergy with antiviral drugs. ACS Infect. Dis. 2020, 6, 2926–2937. [Google Scholar] [CrossRef]
- Reichling, J. Antiviral and virucidal properties of essential oils and isolated compounds—A scientific approach. Planta Med. 2022, 88, 587–603. [Google Scholar] [CrossRef]
- Hwang, J.H.; Jeong, H.; Lee, N.; Hur, S.; Lee, N.; Han, J.J.; Jang, H.W.; Choi, W.K.; Nam, K.T.; Lim, K.M. Ex vivo live full-thickness porcine skin model as a versatile in vitro testing method for skin barrier research. Int. J. Mol. Sci. 2021, 22, 657. [Google Scholar] [CrossRef]
- Uhm, C.; Jeong, H.; Hyon, S.; Hwang, J.S.; Lim, K.M.; Nam, K.T. Comparison of structural characteristics and molecular markers of rabbit skin, pig skin, and reconstructed human epidermis for an ex vivo human skin model. Toxicol. Res. 2023, 39, 477–484. [Google Scholar] [CrossRef]
- Klotz, T.; Maddern, G.; Caplash, Y.; Wagstaff, M. Devices measuring transepidermal water loss of the skin: A systematic review protocol of measurement properties. Skin Res. Technol. 2021, 28, 497–539. [Google Scholar] [CrossRef]
- Green, M.; Kashetsky, N.; Feschuk, A.; Maibach, H.I. Transepidermal water loss (TEWL): Environment and pollution—A systematic review. Skin Health Dis. 2022, 2, e104. [Google Scholar] [CrossRef]
- Saraiva, S.M.; Crespo, A.M.; Vaz, F.; Filipe, M.; Santos, D.; Jacinto, T.A.; Paiva-Santos, A.C.; Rodrigues, M.; Ribeiro, M.P.; Coutinho, P.; et al. Development and characterization of thermal water gel comprising Helichrysum italicum essential oil-loaded chitosan nanoparticles for skin care. Cosmetics 2023, 10, 8. [Google Scholar] [CrossRef]
- Baker, P.; Huang, C.; Radi, R.; Moll, S.B.; Jules, E.; Arbiser, J.L. Skin barrier function: The interplay of physical, chemical, and immunologic properties. Cells 2023, 12, 2745. [Google Scholar] [CrossRef] [PubMed]
- Silva-Flores, P.G.; Galindo-Rodríguez, S.A.; Pérez-López, L.A.; Álvarez-Román, R. Development of essential oil-loaded polymeric nanocapsules as skin delivery systems: Biophysical parameters and dermatokinetics ex vivo evaluation. Molecules 2023, 28, 7142. [Google Scholar] [CrossRef] [PubMed]
- Logger, J.G.M. General introduction and thesis outline. In Noninvasive Assessment of Healthy and Inflamed Skin; Universitair Medisch Centrum Utrecht: Utrecht, The Netherlands, 2024. [Google Scholar]
- Bari, D.S.; Ali, Z.K.; Hameed, S.A.; Aldosky, H.Y.Y. Evaluation of the effect of several moisturizing creams using the low frequency electrical susceptance approach. J. Electr. Bioimpedance 2024, 15, 4–9. [Google Scholar] [CrossRef]
- Verdier-Sévrain, S.; Bonté, F. Skin hydration: A review on its molecular mechanisms. J. Cosmet. Dermatol. 2007, 6, 75–82. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lee, Y.; Kim, S.S.; Min Ju, H.; Baek, J.H.; Park, C.S.; Lee, D.H. Inhibitory effect of corn silk on skin pigmentation. Molecules 2014, 19, 2808–2818. [Google Scholar] [CrossRef]
- Maddaleno, A.S.; Camargo, J.; Mitjans, M.; Vinardell, M.P. Melanogenesis and melasma treatment. Cosmetics 2021, 8, 82. [Google Scholar] [CrossRef]
- Cho, Y.H. Codonopsis pilosula extract protects melanocytes against H2O2-induced oxidative stress by activating autophagy. Cosmetics 2021, 8, 67. [Google Scholar] [CrossRef]
- Lim, T.W.; Lee, M.H. A study of skin color by melanin index according to sex, age, site and skin phototype in koreans. Ann. Dermatol. 2002, 14, 71. [Google Scholar] [CrossRef]
- Dave, B.H.; Thomas, P.S.; Joshi, P.B.; Shah, P.S. Prevalence of oral melanin pigmentation among children of 4-14 years of age and its association with passive smoking. J. South. Asian Assoc. Pediatr. Dent. 2020, 3, 19–22. [Google Scholar] [CrossRef]
- Wanitphakdeedecha, R.; Natasha, J.; Junsuwan, N.; Phaitoonwattanakij, S.; Phothong, W.; Eimpunth, S.; Manuskiatti, W. Efficacy of olive leaf extract—Containing cream for facial rejuvenation: A pilot study. J. Cosmet. Dermatol. 2020, 19, 1662–1666. [Google Scholar] [CrossRef]
- Setaro, M.; Sparavigna, A. Quantification of erythema using digital camera and computer-based colour image analysis: A multicentre study. Skin Res. Technol. 2002, 8, 84–88. [Google Scholar] [CrossRef]
- Abdlaty, R.; Hayward, J.; Farrell, T.; Fang, Q. Skin erythema and pigmentation optical assessment techniques: Review article. Photodiagnosis Photodyn. Ther. 2020, 33, 102127. [Google Scholar] [CrossRef]
- Yotsawimonwat, S.; Rattanadechsakul, J.; Rattanadechsakul, P.; Okonogi, S. Skin improvement and stability of Echinacea purpurea dermatological formulations. Int. J. Cosmet. Sci. 2010, 32, 340–346. [Google Scholar] [CrossRef]
- Puentes Ossa, A.; Rodriguez Patarroyo, D.J.; Salamanca Bernal, J.A. Computational modeling of light scattering in polymer nanoparticles for optical characterization. Cienc. E Ing. Neogranadina 2024, 34, 63–75. [Google Scholar] [CrossRef]
Formulation | Mean Size (nm) | PDI | Zeta Potential (mV) | pH | %EE |
---|---|---|---|---|---|
NP-EOL-R | 145.89 ± 5.89 | 0.075 ± 0.024 | −32.47 ± 2.18 | 3.30 ± 0.04 | 16.92 ± 1.49 |
NP-EOL-D | 232.10 ± 13.50 | 0.127 ± 0.010 | −15.90 ± 1.70 | 3.18 ± 0.12 | 29.61 ± 2.26 |
Vero Cells CC50 (μg/mL) | HSV-1 IC50 (μg/mL) | SI | |
---|---|---|---|
NP-EOL-R | 71.89 ± 0.41 | 25.83 ± 1.53 | 2.78 |
NP-EOL-D | 57.16 ± 0.86 | 36.60 ± 2.41 | 1.56 |
NP-BCO-R | >200 | ND | ND |
NP-BCO-D | >200 | ND | ND |
EOL | 84.81 ± 1.36 | 47.74 ± 2.80 | 1.78 |
CRV | 83.32 ± 1.17 | 27.55 ± 1.66 | 3.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Carranza, N.N.; Álvarez-Román, R.; Silva-Mares, D.A.; Pérez-López, L.A.; Leos-Rivas, C.; Rivas-Morales, C.; Báez-González, J.G.; Galindo-Rodríguez, S.A. Nanoparticles Loaded with Lippia graveolens Essential Oil as a Topical Delivery System: In Vitro Antiherpetic Activity and Biophysical Parameters Evaluation. Pharmaceutics 2025, 17, 1286. https://doi.org/10.3390/pharmaceutics17101286
Espinosa-Carranza NN, Álvarez-Román R, Silva-Mares DA, Pérez-López LA, Leos-Rivas C, Rivas-Morales C, Báez-González JG, Galindo-Rodríguez SA. Nanoparticles Loaded with Lippia graveolens Essential Oil as a Topical Delivery System: In Vitro Antiherpetic Activity and Biophysical Parameters Evaluation. Pharmaceutics. 2025; 17(10):1286. https://doi.org/10.3390/pharmaceutics17101286
Chicago/Turabian StyleEspinosa-Carranza, Nancy Nallely, Rocío Álvarez-Román, David A. Silva-Mares, Luis A. Pérez-López, Catalina Leos-Rivas, Catalina Rivas-Morales, Juan Gabriel Báez-González, and Sergio Arturo Galindo-Rodríguez. 2025. "Nanoparticles Loaded with Lippia graveolens Essential Oil as a Topical Delivery System: In Vitro Antiherpetic Activity and Biophysical Parameters Evaluation" Pharmaceutics 17, no. 10: 1286. https://doi.org/10.3390/pharmaceutics17101286
APA StyleEspinosa-Carranza, N. N., Álvarez-Román, R., Silva-Mares, D. A., Pérez-López, L. A., Leos-Rivas, C., Rivas-Morales, C., Báez-González, J. G., & Galindo-Rodríguez, S. A. (2025). Nanoparticles Loaded with Lippia graveolens Essential Oil as a Topical Delivery System: In Vitro Antiherpetic Activity and Biophysical Parameters Evaluation. Pharmaceutics, 17(10), 1286. https://doi.org/10.3390/pharmaceutics17101286