Water Supply Management Index
Abstract
1. Introduction
2. Materials and Methods
- A review of national and international research on water management indicators was conducted.
- The state of the art in integrated water management and the application of indices and indicators was reviewed.
- Water management indicators directly related to the approaches of the human right to water, the right to a healthy environment, and access to basic public services (SDG 6) were selected.
- The selected indicators were grouped into the following components according to their typology and data availability: social aspects, environmental aspects, water quality, efficiency in water use, and institutional aspects of coordination and policy.
- Considering the framework of the five components mentioned above, an AHP was applied to determine the relevance of each of the indicators that may be used by water supply services, directly impacting water management and serving as support for decision-making.
- FL was applied to identify trends and/or the evolution of the different indicators, as well as a mechanism to determine whether they are related and how they behave over time. For this analysis, the software R version 4.4.2 [19] was used.
- AHP and FL methodologies were combined to determine which of the different indicators that make up the components have a direct impact on water management and to assess through which of these indicators the water utility (OO) can evaluate and display the current state of the water resource from a comprehensive perspective.
Indicators | Lower Than | Between | Higher Than | References |
---|---|---|---|---|
Access of the population to Potable Water and Sewerage Services (APPWSyS) (%) | 60 | 60–95 | 95 | [22,23] |
Affordability (Affor) (%) | 0 | 0–100 | 100 | [24] |
Social Perception of Customer Satisfaction (SPCS) (rating) | 0 | 0–10 | 10 | [25] |
Ecosystem Preservation (PE) (m2/inhabitant) | 9 | 9–16 | 16 | [26,27,28] |
Pressure Level (PL) (%) | 10 | 10–120 | 120 | [29] |
Water Resource Availability (WRA) (m3/inhabitant/year) | 1000 | 1000–10,000 | 10,000 | [30] |
Climate Change (CC) | 0.05 | 0.05–0.98 | 0.98 | [31] |
Treated Wastewater (TW) (%) | 60 | 60–90 | 90 | [23] |
Groundwater and Surface Water Quality (GSWQ (%) | 0 | 0–100 | 100 | [32] |
Groundwater Extraction (GE) (%) | 0 | 0–100 | 100 | [33] |
Treated Water Consumption (TWC) (%) | 0 | 0–100 | 100 | [25] |
Flow Recovery Through Leak Mitigation (FRTLM) (L/s) | 0 | 0–130 | 130 | [34] |
Energy Efficiency (EE) (%) | 5.3 | 5.3–44 | 44 | [34] |
Degree of Implementation of Integrated Water Resources Management (DIIWRM) (%) | 0 | 0–100 | 100 | [31,35] |
Social Participation in Water and Sanitation Management (SPWSM) (rating) | 0 | 0–10 | 10 | Table 4 |
2.1. Conceptual Framework
Integrated Water Resource Management in an Urban Drinking Water System
2.2. Study Area
2.3. Analytic Hierarchy Process (AHP) and Fuzzy Logic (FL)
2.4. Fuzzy Sets
3. Results
3.1. AHP Method
3.2. Results of the FL Analysis for Each Component
3.2.1. Social Aspects
3.2.2. Environmental Aspects
3.2.3. Water Quality
3.2.4. Water Use Efficiency
3.2.5. Institutional Aspects of Coordination and Policy
3.3. Combination of AHP and FL Methodologies for Index Construction
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
1 | 2 | 3 | 4 | Component Value | |||||
---|---|---|---|---|---|---|---|---|---|
38.40% | 20.80% | 26.00% | 14.80% | 21.80% | Environmental Aspects | ||||
Year | Ecosystem Preservation (m2/Habitant) | Pressure Level (%) | Water Resources Availability (%) | Climate Change | Fuzzy Component | Weighted Component | |||
2010 | 1.55 | 0 | 42.3 | 0.641 | 49.2 | 0 | 0.958 | 0.275 | 0.060 |
2011 | 1.56 | 0 | 41.0 | 0.656 | 54.03 | 0 | 0.050 | 0.144 | 0.031 |
2012 | 1.74 | 0 | 42.1 | 0.643 | 53.14 | 0 | 0.658 | 0.231 | 0.050 |
2013 | 1.71 | 0 | 42.0 | 0.644 | 49.85 | 0 | 0.975 | 0.278 | 0.061 |
2014 | 1.69 | 0 | 43.6 | 0.627 | 48.74 | 0 | 0.550 | 0.212 | 0.046 |
2015 | 1.45 | 0 | 44.8 | 0.613 | 50.09 | 0 | 0.992 | 0.274 | 0.060 |
2016 | 3.49 | 0.115 | 45.4 | 0.607 | 52.11 | 0 | 0.975 | 0.315 | 0.069 |
2017 | 4.17 | 0.167 | 45.2 | 0.609 | 53.12 | 0 | 0.575 | 0.276 | 0.060 |
2018 | 4.26 | 0.174 | 45.6 | 0.604 | 54.85 | 0 | 0.470 | 0.265 | 0.058 |
2019 | 4.37 | 0.182 | 45.8 | 0.602 | 47.41 | 0 | 0.503 | 0.273 | 0.059 |
2020 | 4.47 | 0.190 | 45.6 | 0.604 | 49.71 | 0 | 0.417 | 0.271 | 0.059 |
2021 | 4.84 | 0.219 | 45.3 | 0.608 | 49.62 | 0 | 0.617 | 0.329 | 0.072 |
2022 | 5.77 | 0.290 | 45.0 | 0.611 | 47.46 | 0 | 0.683 | 0.340 | 0.074 |
1 | 2 | Component Value | ||||
---|---|---|---|---|---|---|
23.70% | 76.30% | 16.30% | Water Quality | |||
Year | Treated Wastewater (%) | Groundwater and Surface Water Quality (%) | Fuzzy Component | Weighted Component | ||
2010 | 89 | 0.967 | 39.93 | 0.2297 | 0.40 | 0.0659 |
2011 | 83 | 0.767 | 39.93 | 0.2297 | 0.36 | 0.0582 |
2012 | 84 | 0.800 | 39.93 | 0.2297 | 0.36 | 0.0595 |
2013 | 99 | 1 | 35.24 | 0.1569 | 0.36 | 0.0581 |
2014 | 86 | 0.867 | 40.76 | 0.2431 | 0.39 | 0.0637 |
2015 | 95 | 1 | 38.35 | 0.2046 | 0.39 | 0.0641 |
2016 | 88 | 0.933 | 39.97 | 0.2308 | 0.40 | 0.0648 |
2017 | 81 | 0.700 | 42.20 | 0.2646 | 0.37 | 0.0599 |
2018 | 86 | 0.867 | 37.61 | 0.1938 | 0.35 | 0.0576 |
2019 | 85 | 0.833 | 37.80 | 0.1969 | 0.35 | 0.0567 |
2020 | 87 | 0.900 | 47.55 | 0.3476 | 0.48 | 0.0780 |
2021 | 90 | 1 | 39.93 | 0.2297 | 0.41 | 0.0672 |
2022 | 93 | 1 | 39.93 | 0.2297 | 0.41 | 0.0672 |
1 | 2 | 3 | 4 | Component Value | |||||
---|---|---|---|---|---|---|---|---|---|
21.80% | 34.20% | 31.40% | 12.60% | 21.20% | Water Use Efficiency | ||||
Year | Water Extraction | Treated Wastewater Consumption (%) | Flow Recovery Though Leak Mitigation (lts/s) | Energy Efficiency (%) | Fuzzy Component | Weighted Component | |||
2010 | 0.50 | 38.6 | 0.358 | 74.36 | 0.572 | 10.8 | 0.858 | 0.519 | 0.110 |
2011 | 0.25 | 40.3 | 0.379 | 18.22 | 0.140 | 11.0 | 0.853 | 0.335 | 0.071 |
2012 | 0.50 | 41.1 | 0.389 | 69.46 | 0.534 | 13.5 | 0.788 | 0.509 | 0.108 |
2013 | 0.75 | 35.2 | 0.315 | 10.36 | 0.080 | 13.9 | 0.778 | 0.394 | 0.084 |
2014 | 0.25 | 40.7 | 0.384 | −4.78 | 0 | 12.9 | 0.804 | 0.287 | 0.061 |
2015 | 0.25 | 34.6 | 0.308 | −11.77 | 0 | 10.1 | 0.876 | 0.270 | 0.057 |
2016 | 0.75 | 37.6 | 0.345 | −129.30 | 0 | 9.5 | 0.892 | 0.394 | 0.083 |
2017 | 0.50 | 39.1 | 0.364 | 27.62 | 0.216 | 10.5 | 0.866 | 0.410 | 0.087 |
2018 | 0.75 | 36.9 | 0.336 | 130.00 | 1 | 10.1 | 0.876 | 0.703 | 0.149 |
2019 | 0.50 | 39.3 | 0.366 | 4.82 | 0.037 | 11.5 | 0.840 | 0.352 | 0.075 |
2020 | 0.50 | 40.7 | 0.384 | −16.43 | 0 | 11.4 | 0.843 | 0.346 | 0.073 |
2021 | 0.50 | 37.8 | 0.348 | 15.69 | 0.121 | 11.4 | 0.843 | 0.372 | 0.079 |
2022 | 0.50 | 41.5 | 0.394 | 15.69 | 0.121 | 11.4 | 0.843 | 0.388 | 0.082 |
1 | 2 | Component Value | ||||
---|---|---|---|---|---|---|
45.80% | 54.20% | 18.10% | Institutional, Coordination, and Policy Aspects | |||
Year | Degree of Implementation of Integrated Water Resources Management (%) | Social Participation in Water and Sanitation Management | Fuzzy Component | Weighted Component | ||
2010 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2011 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2012 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2013 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2014 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2015 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2016 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2017 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2018 | 49 | 0.49 | 7 | 0.7 | 0.60 | 0.109 |
2019 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2020 | 42 | 0.42 | 7 | 0.7 | 0.57 | 0.103 |
2021 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
2022 | 45.5 | 0.455 | 7 | 0.7 | 0.59 | 0.106 |
References
- Hezri, A.; Dovers, S.R. Sustainability indicators, policy and governance: Issues for ecological economics. Ecol. Econ. 2006, 60, 86–99. [Google Scholar] [CrossRef]
- Tiburcio, A.; Perevochtchikova, M. Propuesta de un marco de indicadores de agua urbana para la ciudad de México, 2005–2018. Tecnol. Cienc. Agua 2020, 11, 177–243. [Google Scholar] [CrossRef]
- United Nations, World Water Assessment Program (UN-WWAP). Water for People, Water for Life: The United Nations World Water Development Report Executive Summary; United Nations, World Water Assessment Program (UN-WWAP): Paris, France, 2003; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000129556_spa/PDF/129556spa.pdf.multi (accessed on 21 October 2023).
- Organization for Economic Cooperation and Development (OECD). Towards Sustainable Development: Environmental Indicators; Organization for Economic Cooperation and Development: Paris, France, 1998. [Google Scholar]
- Dunn, G.; Bakker, K. Fresh water-related indicators in Canada: An inventory of indicators. Can. Water Resour. J. 2011, 36, 135–148. [Google Scholar] [CrossRef]
- Hill, C.; Furlong, K.; Bakker, K.; Cohen, A. Harmonization versus subsidiarity in water governance: A review of water governance and legislation in the Canadian provinces and territories. Can. Water Resour. J. 2008, 33, 315–332. [Google Scholar] [CrossRef]
- United Nations, World Water Assessment Program (UN-WWAP). Water a Shared Responsibility; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2006. [Google Scholar]
- Pintér, L.; Hardi, P.; Bartelmus, P. Sustainable Development Indicators: Proposals for the Way Forward; International Institute for Sustainable Development: New York, NY, USA, 2005. [Google Scholar]
- United Nations (UN). World Urbanization Prospect. The Revision 2014. Highlights; United Nations Publications: New York, NY, USA, 2014. [Google Scholar]
- Organization for Economic Cooperation and Development (OECD). Water and Cities. Ensuring Sustainable Futures; OECD Studies on Water; OECD Publishing: Paris, France, 2015. [Google Scholar] [CrossRef]
- Ligtvoet, W.; Hilderink, H.; Bouwman, A.; Van Puijenbroek, P.; Lucas, P.; Witmer, M. Towards a World of Cities in 2050. An Outlook on Water-Related Challenges. Background Report to the UN-Habitat Global Report; Environmental Assessment Agency: The Hague, The Netherlands, 2014. [Google Scholar]
- Gleick, P.H.; Chalecki, E.L.; Wong, A. Measuring water well-being: Water indicators and indices. In The World’s Water: The Biennial Report on Freshwater Resources; Gleick, P.H., Ed.; Island Press/Pacific Institute for Studies in Development Environment and Security: Washington, DC, USA, 2002; pp. 87–112. [Google Scholar]
- Dweiri, F.T.; Kablan, M.M. Using fuzzy decision making for the evaluation of the project management internal efficiency. Decis. Support Syst. 2006, 42, 712–726. [Google Scholar] [CrossRef]
- Dadda, A.; Ouhbi, I. A decision support system for renewable energy plant projects. In Proceedings of the 2014 International Conference on Next Generation Networks and Services (NGNS), Casablanca, Morocco, 30 May 2014. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Buckley, J.J. Fuzzy hierarchical analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Waller, M.A.; Fawcett, S.E. Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. J. Bus. Logist. 2013, 34, 77–84. [Google Scholar] [CrossRef]
- Eckert, K.; Britos, P.V. Modelo basado en la toma decisiones con criterios múltiples para la elección de metodologías de data science. In Proceedings of the XX Workshop de Investigadores en Ciencias de la Computación, Corrientes, Argentina, 26–27 April 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.4.2; R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 10 October 2023).
- Mendoza, M.; Tagle, D.; Morales, J.; Caldera, A.; Mora, J.; Delgado, X. Water Supply Management Index: Leon, Guanajuato, Mexico. Water 2022, 14, 919. [Google Scholar] [CrossRef]
- Mendoza, M.; Tagle, D.; Caldera, A.; Mora, J.; Carreño-Aguilera, G.; Delgado, X. Indicadores de la gestión del suministro de agua en zonas urbanas para evaluar su sostenibilidad. Tecnol. Cienc. Agua 2024, 15, 192–240. [Google Scholar] [CrossRef]
- INEGI. Censo de Población y Vivienda. 2020. Available online: https://www.inegi.org.mx/programas/ccpv/2020/ (accessed on 3 October 2023).
- Hansen, M.; Rodríguez, J. Indicadores de Gestión Prioritarios en Organismos Operadores. Informe Final HC1915.1. Coordinación y Subcoordinación de Hidráulica Urbana; IMTA: Morelos, Mexico, 2019; pp. 1–124. [Google Scholar]
- INEGI. Encuesta Nacional de Ocupación y Empleo (ENOE), Población de 15 Años y Más de Edad; INEGI: Mexico City, Mexico, 2025; Available online: https://www.inegi.org.mx/programas/enoe/15ymas/ (accessed on 31 October 2024).
- SAPAL. Agua Siempre y Para Todos. Informe de Resultados del Consejo Directivo de SAPAL 2013–2016; SAPAL: Leon, Mexico, 2016; Available online: https://www.sapal.gob.mx/informacion-descargas (accessed on 6 November 2023).
- WHO. Naturaleza, Biodiversidad y Salud: Una Descripción General de las Interconexiones; WHO: Geneva, Switzerland, 2022; Available online: https://iris.who.int/handle/10665/352803 (accessed on 10 November 2023).
- IMPLAN. Indicadores de Áreas Verdes Del Municipio de León, Guanajuato; IMPLAN: Leon, Mexico, 2012. [Google Scholar]
- Reyes, S.; Figueroa, I.M. Distribución, superficie y accesibilidad de las áreas verdes en Santiago de Chile. EURE Rev. Latinoam. Estud. Urbanos Reg. 2010, 36, 89–110. Available online: http://www.scielo.cl/pdf/eure/v36n109/art04.pdf (accessed on 10 November 2023).
- Conagua. Grado de Presión Sobre el Recurso Hídrico por Región Hidrológicoadministrativa. 2025. Available online: https://sinav30.conagua.gob.mx:8080/Indicadores/ (accessed on 18 August 2023).
- Conagua (2006–2018) Estadísticas del Agua en México. Available online: https://sinav30.conagua.gob.mx:8080/port_publicaciones.html (accessed on 21 August 2023).
- Conagua. Sistema Meteorológico Nacional. 2025. Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 24 August 2023).
- Conagua. Calidad del agua en México. 2025. Available online: https://www.gob.mx/conagua/articulos/calidad-del-agua (accessed on 30 August 2023).
- IMTA. Programa de Indicadores de Gestión de Organismos Operadores; Instituto Mexicano de Tecnología del Agua: Morelos, Mexico, 2025; Available online: http://www.pigoo.gob.mx/ (accessed on 4 September 2023).
- CEAG. 2011, 2014, 2018 y 2019. Diagnóstico Sectorial de Agua Potable y Saneamiento; CEAG: Guanajuato, Mexico, 2018; Available online: https://agua.guanajuato.gob.mx/pdf/publicaciones/diagnostico-cea-2018.pdf (accessed on 8 September 2023).
- WHO. Situación Del Marco Para la Seguridad del Agua de Consumo Humano en América Latina y el Caribe; Organización Panamericana de la Salud: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Pinkham, R. 21st Century Water Systems: Scenarios Visions and Drivers. 1999. Available online: https://rmi.org/insight/21st-century-water-systems-scenarios-visions-and-drivers/ (accessed on 3 July 2023).
- Tucci, C. Integrated urban water management in the humid tropics. In Integrated Urban Water Management: Humid Tropics; Parkinson, J.N., Goldenfum, J.A., Tucci, C.E.M., Eds.; UNESCO-IHP; Urban Water Series; United Nations Educational, Scientific Nations Educationalization: Paris, France; Taylor and Francis: Leiden, The Netherlands, 2010; pp. 1–23. [Google Scholar]
- Benavides, H. Diagnóstico de la Sostenibilidad de un Abastecimiento de Agua e Identificación de las Propuestas que la Mejoren. Ph.D. Thesis, Universitat Politécnica de Valéncia, Valencia, Spain, 2010. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=88261 (accessed on 26 September 2023).
- Alegre, H.; Cabrera, E.; Duarte, P.; Merkel, W.; Melo, J.; Cubillo, F.; Hirner, W.; Parena, R. Indicadores de desempeño para servicio de abastecimiento de agua. In Manual de Buenas Prácticas. España: Universitat Politécnica de Valéncia, 3rd ed.; IWA: Valencia, Spain, 2018; pp. 1–439. Available online: https://www.iwapublishing.com/sites/default/files/ebooks/Manual%20PI%20IWA_ES.pdf (accessed on 22 May 2023).
- Alegre, H.; Melo, J.; Cabrera, E.; Cubillo, F.; Duarte, P.; Wolfram, H.; Wolf, M.; Parena, R. Performance Indicators for Water Supply Services, IWA Manual of Best Practices; IWA Publishing: London, UK, 2017; pp. 1–372. [Google Scholar]
- Mitchell, V. Applying integrated urban water management concepts: A review of Australian experience. Environ. Manag. 2006, 37, 589–605. [Google Scholar] [CrossRef]
- Niemczynowicz, J. Urban hydrology and water management—Present and future challenges. Urban Water 1999, 1, 1–14. [Google Scholar] [CrossRef]
- Suárez, J.; Puertas, J.; Anta, J.; Jácome, A.; Álvarez-Campana, J. Gestión integrada de los recursos hídricos en el sistema del agua urbana: Desarrollo Urbano Sensible al Agua como enfoque estratégico. Ing. Agua 2014, 18, 111–123. [Google Scholar]
- Pahl-Wostl, C.; Downing, T.; Kabat, P.; Magnuszewski, P.; Meigh, J.; Schlueter, M.; Sendzimir, J.; y Werners, S. Transition to Adaptive Water Management. The NeWater Project. Water Policy. NeWater (Working Paper X); Institute of Environmental Systems Research, University of Osnabrück: Osnabrück, Germany, 2005. [Google Scholar]
- Bhaduri, A.; Bogardi, J.; Siddiqi, A.; Voigt, H.; Vörösmarty, C.; Pahl-Wostl, C.; Bunn, S.E.; Shrivastava, P.; Lawford, R.; Foster, S.; et al. Achieving sustainable development goals from a water perspective. Front. Environ. Sci. 2016, 4, 64. [Google Scholar] [CrossRef]
- Brugmann, J. Is there a method in our measurement? The use of indicators in local sustainable development. Local Environ. 1997, 2, 59–72. [Google Scholar] [CrossRef]
- Perevochtchikova, M.; Rojo-Negrete, I. Development of an indicator scheme for the environment impact assessment in the Federal District, Mexico. J. Environ. Prot. 2013, 4, 226–237. [Google Scholar] [CrossRef]
- Tiburcio, A.; Perevochtchikova, M. La gestión del agua y el desarrollo de indicadores ambientales en México y Canadá: Un análisis comparativo. J. Lat. Am. Geogr. 2012, 11, 145–165. [Google Scholar] [CrossRef]
- García, C.; Carreón, J.; y Quintero, M. Dimensiones de gobernanza para la sustentabilidad hídrica. Rev. Pueblos Front. Digit. 2015, 10, 195–203. [Google Scholar] [CrossRef]
- United Nations. Agenda 21: Programme of Action for Sustainable Development; United Nations Publications: New York, NY, USA, 1992; Available online: https://www.un.org/en/conferences/environment/rio1992 (accessed on 15 November 2023).
- Flores, F.; Rodríguez, M.; Alcocer, V. Indicadores de Gestión Prioritarios en Organismos Operadores; Instituto Mexicano de Tecnología del Agua: Morelos, Mexico, 2012. [Google Scholar]
- Ministerio de Obras Públicas y Comunicaciones. Manual de Indicadores de Gestión Para Agua Potable y Alcantarillado Sanitario; Dirección de Agua Potable y Saneamiento: Asuncion, Paraguay, 2012. [Google Scholar]
- Pineda, N.; Salazar, A.; Méndez, R. Gestión municipal exitosa: El sistema de Agua Potable y Alcantarillado de León. In El Agua en las Ciudades del Norte de México: Capacidad Institucional y Desempeño; El Colegio de Sonora: Hermosillo, Mexico, 2020; pp. 27–50. Available online: https://libros.colson.edu.mx/index.php/colson/catalog/view/235/727/1275 (accessed on 6 November 2023).
- Instituto Nacional de Estadística y Geografía [INEGI]. Municipios de México; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2015. [Google Scholar]
- Tagle, D.; Caldera Ay Rodríguez, J. Complejidad ambiental en el Bajío mexicano: Implicaciones del proyecto civilizatorio vinculado al crecimiento económico. Reg. Soc. 2017, 29, 193–221. Available online: https://regionysociedad.colson.edu.mx:8086/index.php/rys/article/view/873/1016 (accessed on 8 December 2023).
- Instituto Municipal de Planeación. Plan Municipal de Desarrollo. León Hacia el Futuro; IMPLAN: Leon, Mexico, 2019; Available online: https://portalsocial.guanajuato.gob.mx/sites/default/files/documentos/2021_LEON_GTO_Plan_municipal_desarrollo_leon_futuro_vision_2045.pdf (accessed on 28 January 2024).
- Instituto Municipal de Planeación. Sistema de Indicadores para el Desarrollo del Municipio de León, Guanajuato; IMPLAN: León, Mexico, 2018; Available online: https://www.implan.gob.mx/sistema-indicadores.php (accessed on 11 December 2023).
- Tagle, D. Presa El Zapotillo: Una discusión de su pertinencia para León, Guanajuato, a una década del conflicto por el agua. Estud. Demogr. Urbanos 2023, 38, 247–282. [Google Scholar] [CrossRef]
- Moreno, C. Proceso de Jerarquía Difusa Para la Toma de Decisiones de Suministro Eléctrico en Áreas Rurales No Interconectadas en la Región Caribe Colombiana. Master’s Thesis, University of the Coast (CUC), Barranquilla, Colombia, 2021. [Google Scholar]
- Smith, E.E.; Kosslyn, S.M. Procesos Cognitivos, Modelos y Bases Neurales; Pearson, Prentice Hall Ed.: Madrid, Spain, 2008. [Google Scholar]
- Ríos, S. Análisis de Decisiones; Ediciones ICE: Madrid, Spain, 1976. [Google Scholar]
- Díaz, R.; Piña, J.; Ríos, D.; Serafín, M. Uso de AHP y conjuntos difusos para mejorar la toma de decisiones. Caso: Selección de Empresas Contratistas de Construcción en la Administración Pública Venezolana. In Proceedings of the Energy and Technology for the Americas: Education, Innovation, Technology and Practice, San Cristóbal, Venezuela, 2–5 June 2009. [Google Scholar]
- Nantes, E. El Método Analytic Hierarchy Process para la toma de decisiones. Repaso de la metodología y aplicaciones. Investig. Oper. 2019, 46, 54–73. [Google Scholar]
- Saaty, T.L. A Scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Delgado-Galván, X.; Pérez-García, R.; Izquierdo, J.; Mora-Rodríguez, J. Analytic Hierarchy Process for Assessing Externalities in Water Leakage Management. Math. Comput. Model. 2010, 52, 1194–1202. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Network Process; RWS Pub.: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Finan, J.; Hurley, W. The analytic hierarchy process: Does adjusting a pairwise comparison matrix to improve the consistency ratio help? Comput. Oper. Res. 1997, 24, 749–755. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy algorithms. Inf. Control. 1968, 12, 8. [Google Scholar] [CrossRef]
- Flores, H. Evaluación de Los Impactos de la Industrialización en el Bajío de Guanajuato. Ph.D. Thesis, Universidad de Guanajuato, Guanajuato, México, 2019; pp. 1–313. [Google Scholar]
- Purdue University. Simple Water Quality Index Calculator. 2020. Available online: https://www.agry.purdue.edu/hydrology/projects/nexus-swm/en/Tools/WaterQualityCalculator.php (accessed on 10 January 2024).
Membership Function | Chart | |
---|---|---|
(a) Gamma Function | ||
(b) “L” Function: defined as (1 − γ) |
Indicator | Values | Linguistic Terms | Fuzzy Value | Graph |
---|---|---|---|---|
Social Aspects | ||||
Access of the Population to Potable Water and Sewerage Services (APPWSyS) (%) | APPWSyS ≥ 95 | Excellent | 1 | |
86.25 < APPWSyS ≤ 95 | Very high | 0.75–1 | ||
77.5 < APPWSyS ≤ 86.25 | High | 0.50–0.75 | ||
68.75 < APPWSyS ≤ 77.5 | Good | 0.25–0.50 | ||
60 < APPWSyS ≤ 68.75 | Low | 0–0.25 | ||
APPWSyS ≤ 60 | Very Low | 0 | ||
Affordability (Affor) (%) | Affor ≥ 100 | Very Affordable | 1 | |
75 < Affor ≤ 100 | Affordable | 0.75–1 | ||
50 < Affor ≤ 75 | Mildly Affordable | 0.50–0.75 | ||
25 < Affor ≤ 50 | Low Affordability | 0.25–0.50 | ||
0 < Affor ≤ 25 | Very Low Affordability | 0–0.25 | ||
Affor ≤ 0 | Non Affordable | 0 | ||
Social Perception of Customer Satisfaction (SPCS) (rating) | SPCS ≥ 10 | Very high | 1 | |
7.5 < SPCS ≤ 10 | Very good | 0.75–1 | ||
5 < SPCS ≤ 7.5 | Good | 0.50–0.75 | ||
2.5 < SPCS ≤ 5 | Acceptable | 0.25–0.50 | ||
0 < SPCS ≤ 2.5 | Low | 0–0.25 | ||
SPCS ≤ 0 | Very Low | 0 | ||
Environmental Aspects | ||||
Indicator | Values | Linguistic Terms | Fuzzy Value | Graph |
Ecosystem Preservation (EP) (m2/inhabitant) | EP ≥ 16 | Ideal | 1 | |
12.5 < EP ≤ 16 | Adequate | 0.75–1 | ||
9 < EP ≤ 12.5 | Acceptable | 0.50–0.75 | ||
5.5 < EP ≤ 9 | Moderate | 0.25–0.50 | ||
2 < EP ≤ 5.5 | Deficient | 0–0.25 | ||
EP ≤ 2 | Critical | 0 | ||
Pressure Level (PL) (%) | PL ≤ 10 | No Stress | 1 | |
10 < PL ≤ 20 | Low | 0.89–1 | ||
20 < PL ≤ 40 | Medium | 0.67–0.89 | ||
40 < PL ≤ 100 | High | 0–0.67 | ||
PL ≥ 100 | Very High | 0 | ||
Water Resource Availability (WRA) (m3/inhabitant/year) | WRA ≥ 10 000 | Very High | 1 | |
7750 < WRA ≤ 10 000 | High | 0.75–1 | ||
5500 < WRA ≤ 7750 | Medium | 0.50–0.75 | ||
3250 < WRA ≤ 5500 | Low | 0.25–0.50 | ||
1000 < WRA ≤ 3250 | Very Low | 0–0.25 | ||
WRA ≤ 1000 | Extremely Low | 0 | ||
Climate Change (CC) | CC ≥ 0.98 | Very Low Impact | 1 | |
0.75 < CC ≤ 0.98 | Low Impact | 0.75–1 | ||
0.52 < CC ≤ 0.75 | Regular Impact | 0.50–0.75 | ||
0.28 < CC ≤ 0.52 | High Impact | 0.25–0.50 | ||
0.05 < CC ≤ 0.28 | Very High Impact | 0–0.25 | ||
CC ≤ 0.05 | Extremely High Impact | 0 | ||
Water Quality | ||||
Treated Wastewater (TW) (%) | TW ≥ 90 | High | 1 | |
82.5 < TW ≤ 90 | Very Good | 0.75–1 | ||
75 < TW ≤ 82.5 | Good | 0.50–0.75 | ||
67.5 < TW ≤ 75 | Regular | 0.25–0.50 | ||
60 < TW ≤ 67.5 | Poor | 0–0.25 | ||
TW ≤ 60 | Very Poor | 0 | ||
Groundwater and Surface Water Quality (GSWQ) (%) | 90 < GSWQ ≤ 100 | Excellent | 1 | |
70 < GSWQ ≤ 90 | Good | 0.69–1 | ||
50 < GSWQ ≤ 70 | Regular | 0.38–0.69 | ||
25 < GSWQ ≤ 50 | Poor | 0–0.38 | ||
0 < GSWQ ≤ 25 | Very Poor | 0 | ||
Water use efficiency | ||||
Groundwater Extraction (GE) (%) | GE ≤ 25 | Very Low | 1 | |
25 < GE ≤ 38 | Low | 0.75–1 | ||
38 < GE ≤ 50 | Medium | 0.50–0.75 | ||
50 < GE ≤ 63 | High | 0.25–0.50 | ||
63 < GE ≤ 75 | Very High | 0–0.25 | ||
GE ≥ 75 | Extremely High | 0 | ||
Treated Water Consumption (TWC) (%) | TWC ≥ 90 | High | 1 | |
70 < TWC ≤ 90 | Very Good | 0.75–1 | ||
50 < TWC ≤ 70 | Good | 0.50–0.75 | ||
30 < TWC ≤ 50 | Regular | 0.25–0.50 | ||
10 < TWC ≤ 30 | Low | 0–0.25 | ||
TWC ≤ 10 | Very Low | 0 | ||
Flow Recovery Through Leak Mitigation (FRTLM) (L/s) | FRTLM ≥ 130 | High | 1 | |
97.5 < FRTLM ≤ 130 | Very Good | 0.75–1 | ||
65 < FRTLM ≤ 97.5 | Good | 0.50–0.75 | ||
32.5 < FRTLM ≤ 65 | Regular | 0.25–0.50 | ||
0 < FRTLM ≤ 32.5 | Poor | 0–0.25 | ||
FRTLM ≤ 0 | Very Poor | 0 | ||
Energy Efficiency (EE) (%) | EE ≤ 5.3 | Very Good | 1 | |
5.3 < EE ≤ 15 | Good | 0.75–1 | ||
15 < EE ≤ 24.7 | Regular | 0.50–0.75 | ||
24.7 < EE ≤ 34.3 | Poor | 0.25–0.50 | ||
34.3 < EE ≤ 44 | Very Poor | 0–0.25 | ||
EE ≥ 44 | Very Poor | 0 | ||
Institutional, coordination and policy aspects | ||||
Degree of Implementation of Integrated Water Resources Management (DIIWRM) (%) | DIIWRM ≥ 100 | Very High | 1 | |
75 < DIIWRM ≤ 100 | High | 0.75–1 | ||
50 < DIIWRM ≤ 75 | Medium High | 0.50–0.75 | ||
25 < DIIWRM ≤ 50 | Medium Low | 0.25–0.50 | ||
0 < DIIWRM ≤ 25 | Low | 0–0.25 | ||
DIIWRM ≤ 0 | Very Low | 0 | ||
Social Participation in Water and Sanitation Management (SPWSM) (rating) | SPWSM ≥ 10 | Very High | 1 | |
7.5 < SPWSM ≤ 10 | High | 0.75–1 | ||
5 < SPWSM ≤ 7.5 | Good | 0.50–0.75 | ||
2.5 < SPWSM ≤ 5 | Acceptable | 0.25–0.50 | ||
0 < SPWSM ≤ 2.5 | Low | 0–0.25 | ||
SPWSM ≤ 0 | Very Low | 0 |
Assessment Criteria | Yes | No |
---|---|---|
Evidence of OO, SAPAL’s participation with institutional (national) agencies | X | |
Evidence of participation with institutional (state) agencies | X | |
Has a dedicated department for water-culture initiatives. | X | |
On-site (in-person) customer service system. | ||
Customer service is also available via website and/or mobile app. | X | |
Telephone customer service available 24 h/day, 7 days/week, 365 days/year | X | |
Social media channels with interactive user engagement. | X | |
Payment points throughout the municipality, demonstrating service quality standards. | X | |
Uptodate transparency and information-access webpage. | X | |
Acceptance of multiple payment methods. | X |
1 | 2 | 3 | Component Value | |||||
---|---|---|---|---|---|---|---|---|
55.40% | 27.10% | 17.50% | 22.60% | Social Aspects | ||||
Year | Access of the Population to Potable Water and Sewerage Services (%) | Affordability (%) | Social Perception of Customer Satisfaction (%) | Fuzzy Component | Weighted Component | |||
2010 | 71 | 0.3143 | 22.85 | 0.2285 | 8.75 | 0.875 | 0.389 | 0.088 |
2011 | 74 | 0.4000 | 27.05 | 0.2705 | 8.78 | 0.088 | 0.310 | 0.070 |
2012 | 76 | 0.4571 | 22.55 | 0.2255 | 8.71 | 0.871 | 0.467 | 0.105 |
2013 | 79 | 0.5429 | 24.20 | 0.2420 | 8.85 | 0.885 | 0.521 | 0.118 |
2014 | 82 | 0.629 | 22.59 | 0.2259 | 8.92 | 0.892 | 0.566 | 0.128 |
2015 | 85 | 0.714 | 22.60 | 0.2260 | 9.31 | 0.931 | 0.620 | 0.140 |
2016 | 88 | 0.800 | 22.40 | 0.2040 | 9.30 | 0.930 | 0.661 | 0.149 |
2017 | 91 | 0.886 | 19.70 | 0.1970 | 9.40 | 0.940 | 0.709 | 0.160 |
2018 | 93 | 0.943 | 20.60 | 0.2060 | 9.13 | 0.913 | 0.738 | 0.167 |
2019 | 94 | 0.971 | 15.50 | 0.1550 | 8.90 | 0.890 | 0.736 | 0.166 |
2020 | 96 | 1 | 21.10 | 0.2110 | 8.84 | 0.884 | 0.766 | 0.173 |
2021 | 98 | 1 | 15.90 | 0.159 | 8.60 | 0.860 | 0.748 | 0.169 |
2022 | 99 | 1 | 6.53 | 0.0653 | 8.50 | 0.850 | 0.720 | 0.163 |
Year | Social Aspects C1 = 0.226 | Environmental Aspects C2 = 0.218 | Water Quality C3 = 0.163 | Water Use Efficiency C5 = 0.212 | Institutional Aspects of Coordination and Policy C4 = 0.181 | Water Management Index |
---|---|---|---|---|---|---|
2010 | 0.088 | 0.060 | 0.066 | 0.110 | 0.106 | 0.43 |
2011 | 0.101 | 0.031 | 0.058 | 0.071 | 0.106 | 0.37 |
2012 | 0.105 | 0.050 | 0.059 | 0.108 | 0.106 | 0.43 |
2013 | 0.118 | 0.061 | 0.058 | 0.084 | 0.106 | 0.43 |
2014 | 0.128 | 0.046 | 0.064 | 0.061 | 0.106 | 0.40 |
2015 | 0.140 | 0.060 | 0.064 | 0.057 | 0.106 | 0.43 |
2016 | 0.149 | 0.069 | 0.065 | 0.083 | 0.106 | 0.47 |
2017 | 0.160 | 0.060 | 0.060 | 0.087 | 0.106 | 0.47 |
2018 | 0.167 | 0.058 | 0.058 | 0.149 | 0.109 | 0.54 |
2019 | 0.166 | 0.059 | 0.057 | 0.075 | 0.106 | 0.46 |
2020 | 0.173 | 0.059 | 0.078 | 0.073 | 0.103 | 0.49 |
2021 | 0.169 | 0.072 | 0.067 | 0.079 | 0.106 | 0.49 |
2022 | 0.163 | 0.074 | 0.067 | 0.082 | 0.106 | 0.49 |
Average | 0.14 | 0.058 | 0.063 | 0.09 | 0.11 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza Gómez, M.; Tagle-Zamora, D.; Martínez, J.L.M.; Caldera Ortega, A.; Mora Rodríguez, J.; Ramos, H.M.; Delgado-Galván, X. Water Supply Management Index. Water 2025, 17, 2870. https://doi.org/10.3390/w17192870
Mendoza Gómez M, Tagle-Zamora D, Martínez JLM, Caldera Ortega A, Mora Rodríguez J, Ramos HM, Delgado-Galván X. Water Supply Management Index. Water. 2025; 17(19):2870. https://doi.org/10.3390/w17192870
Chicago/Turabian StyleMendoza Gómez, Mayra, Daniel Tagle-Zamora, Jorge Luis Morales Martínez, Alex Caldera Ortega, Jesús Mora Rodríguez, Helena M. Ramos, and Xitlali Delgado-Galván. 2025. "Water Supply Management Index" Water 17, no. 19: 2870. https://doi.org/10.3390/w17192870
APA StyleMendoza Gómez, M., Tagle-Zamora, D., Martínez, J. L. M., Caldera Ortega, A., Mora Rodríguez, J., Ramos, H. M., & Delgado-Galván, X. (2025). Water Supply Management Index. Water, 17(19), 2870. https://doi.org/10.3390/w17192870