Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia
Abstract
1. Introduction
2. Experimental Programme
2.1. Materials
2.1.1. Soil
2.1.2. Cement
2.1.3. Spinifex
2.2. Brick Specimens
2.3. Compression Test Method
2.4. Water Spray (Erosion) Test
2.5. Water Absorption Test Method
2.6. Data Analysis
3. Results
3.1. Water Spray Test Results
3.2. Water Absorption Test Results
3.3. Compression Test Results
4. Discussion
4.1. Water Spray Test
4.2. Water Absorption Test
4.3. Compression Test
5. Conclusions and Future Works
- The water spray test revealed that the mudbricks withstood the erosion test with minimal damage to their integrity and performed well in a standardised pressure of a 50 kPa water jet that satisfies the Australian guideline requirement. Bricks with 10% cement exhibit superior erosion resistance.
- The experiment suggested that for limiting water absorption, the fibre content should be kept below 0.6% when 10% cement is used and below 0.4% when 5% cement is used. That keeps the water absorption below 18%.
- The lowest water absorption was achieved by using 0.3% fibre content, 10% cement, and 50 mm fibre length. Such bricks are the best-performing sample in terms of the water absorption rate that can be used to build structures in aggressive environments, such as Australia’s Northern Territory.
- The absorption rate rises with the increase in fibre content. Further, wet bricks are more prone to unhygienic bacteria, moulds, and fungi growth. This issue should be addressed in the residential applications of mudbrick with natural fibres in tropical areas.
- The best compressive strength was achieved with 0.3% spinifex fibre at 40 mm length and 10% cement, reaching an average value of 4.1 MPa. Increasing the length of fibres to 50 mm reduced the strength, with the likely chance of fibre buckling during failure.
- To improve the compressive strength, fibre content should be reduced by increasing the cement content. Increasing the fibre content from 0.3% to 0.6% showed a positive impact on low cement content samples but did the opposite on high cement content samples.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bock-Hyeng, C.; Ofori-Boadu, A.N.; Yamb-Bell, E.; Shofoluwe, M.A. Mechanical properties of sustainable adobe bricks stabilized with recycled sugarcane fiber waste. Int. J. Eng. Res. Appl. 2016, 6, 50–59. [Google Scholar]
- Bailie, R.S.; Wayte, K.J. Housing and health in Indigenous communities: Key issues for housing and health improvement in remote Aboriginal and Torres Strait Islander communities. Aust. J. Rural. Health 2006, 14, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Joglekar, S.N.; Kharkar, R.A.; Mandavgane, S.A.; Kulkarni, B.D. Sustainability assessment of brick work for low-cost housing: A comparison between waste based bricks and burnt clay bricks. Sustain. Cities Soc. 2018, 37, 396–406. [Google Scholar] [CrossRef]
- Andrea Jardine-Orr, N.M.; Spring, F.; Anda, M. Indigenous Housing and Governance: Case Studies from Remote Communities in WA and NT. In Proceedings of the Third National Housing Conference, Adelaide, Australia, 27 November 2003; Volume 48. [Google Scholar]
- Hall, J.; Berry, M. What are the Real Costs of Housing Provision in Indigenous Communities in Australia? In Proceedings of the Building for Ddiversity National Housing Conference, Perth, Australia, 26–28 October 2005; pp. 287–304. [Google Scholar]
- John Fien, E.C.; Lee, G.; Morris, D.; Baker, D.; Grice, T. Flexible Guidelines for the Design of Remote Indigenous Community Housing; Australian Housing and Urban Research Institute: Victoria, Australia, 2007; p. 68. [Google Scholar]
- Pholeros, P.; Phibbs, P. Constructing and Maintaining Houses; Closing the Gap Clearinghouse; Australian Institute of Health and Welfare: Canberra, Australia, 2012.
- Zufferey, C.; Chung, D. ‘Red dust homelessness’: Housing, home and homelessness in remote Australia. J. Rural. Stud. 2015, 41, 13–22. [Google Scholar] [CrossRef]
- Grealy, L. Governing disassembly in Indigenous housing. Hous. Stud. 2023, 38, 327–346. [Google Scholar] [CrossRef]
- Fien, J.; Charlesworth, E. ‘Why isn’t it solved?’: Factors affecting improvements in housing outcomes in remote Indigenous communities in Australia. Habitat Int. 2012, 36, 20–25. [Google Scholar] [CrossRef]
- Newman, P.; Director, S.P.U. Sustainability and Housing: More Than a Roof Over Head; Institute for Sustainability and Technology Policy, Murdoch University: Murdoch, Australia, 2002. [Google Scholar]
- Rusch, R.; Best, R. Sustainability: Its adaptation and relevance in remote area housing. Australas. J. Constr. Econ. Build. 2014, 14, 88–104. [Google Scholar] [CrossRef]
- UN-Habitat. Sustainable Housing for Sustainable Cities. 2012. Available online: https://unhabitat.org/sites/default/files/download-manager-files/Sustainable%20Housing%20for%20Sustainable%20Cities.pdf (accessed on 10 September 2025).
- Morris, R. Community Engagement in Rural-Remote and Indigenous Local Government in Australia. 2012. Available online: https://opus.lib.uts.edu.au/bitstream/10453/42104/3/RRI-Community-Engagement.pdf (accessed on 10 September 2025).
- Mondal, S.; Memmott, P.; Martin, D. Preparation and characterization of green bio-composites based on modified spinifex resin and spinifex grass fibres. J. Compos. Mater. 2014, 48, 1375–1382. [Google Scholar] [CrossRef]
- Hayes, E.; Fullagar, R.; Mulvaney, K.; Connell, K. Food or fibercraft? Grinding stones and Aboriginal use of Triodia grass (spinifex). Quat. Int. 2018, 468, 271–283. [Google Scholar] [CrossRef]
- Powell, O.; Fensham, R.J.; Memmott, P. Indigenous use of spinifex resin for hafting in north-eastern Australia. Econ. Bot. 2013, 67, 210–224. [Google Scholar] [CrossRef]
- Foster, T.; Hall, N.L. Housing conditions and health in Indigenous Australian communities: Current status and recent trends. Int. J. Environ. Health Res. 2021, 31, 325–343. [Google Scholar] [CrossRef]
- Chan, C.-M. Effect of natural fibres inclusion in clay bricks: Physico-mechanical properties. Int. J. Civ. Environ. Eng. 2011, 3, 51–57. [Google Scholar]
- Abdelmegeed, M.M. Modified mud bricks for strengthening historic earthen structures: Towards sustainable and green restoration. Shedet 2020, 7, 263–276. [Google Scholar] [CrossRef]
- Friesem, D.E.; Karkanas, P.; Tsartsidou, G.; Shahack-Gross, R. Sedimentary processes involved in mud brick degradation in temperate environments: A micromorphological approach in an ethnoarchaeological context in northern Greece. J. Archaeol. Sci. 2014, 41, 556–567. [Google Scholar] [CrossRef]
- Sheweka, S. Using mud bricks as a temporary solution for Gaza reconstruction. Energy Procedia 2011, 6, 236–240. [Google Scholar] [CrossRef]
- Oskouei, A.V.; Afzali, M.; Madadipour, M. Experimental investigation on mud bricks reinforced with natural additives under compressive and tensile tests. Constr. Build. Mater. 2017, 142, 137–147. [Google Scholar] [CrossRef]
- Dabaieh, M.; Heinonen, J.; El-Mahdy, D.; Hassan, D.M. A comparative study of life cycle carbon emissions and embodied energy between sun-dried bricks and fired clay bricks. J. Clean. Prod. 2020, 275, 122998. [Google Scholar] [CrossRef]
- Murmu, A.L.; Patel, A. Towards sustainable bricks production: An overview. Constr. Build. Mater. 2018, 165, 112–125. [Google Scholar] [CrossRef]
- Baeissa, A.A. Mud-brick high-rise buildings architectural linkages for thermal comfort in Hadhramaut Valley, Yemen. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2014, 5, 167–182. [Google Scholar]
- Laborel-Préneron, A.; Giroudon, M.; Aubert, J.; Magniont, C.; Faria, P. Experimental assessment of bio-based earth bricks durability. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Zhang, L.; Sang, G.; Han, W. Effect of hygrothermal behaviour of earth brick on indoor environment in a desert climate. Sustain. Cities Soc. 2020, 55, 102070. [Google Scholar] [CrossRef]
- Zhou, C. Production of eco-friendly permeable brick from debris. Constr. Build. Mater. 2018, 188, 850–859. [Google Scholar] [CrossRef]
- Cagnon, H.; Aubert, J.-E.; Coutand, M.; Magniont, C. Hygrothermal properties of earth bricks. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- Nadarajan, M.; Kirubakaran, V. Simulation studies on small rural residential houses using sustainable building materials for thermal comfort–case comparison. Adv. Build. Energy Res. 2017, 11, 193–207. [Google Scholar] [CrossRef]
- Samuel, D.L.; Dharmasastha, K.; Nagendra, S.S.; Maiya, M.P. Thermal comfort in traditional buildings composed of local and modern construction materials. Int. J. Sustain. Built Environ. 2017, 6, 463–475. [Google Scholar] [CrossRef]
- Babatunde, S.A. Review of strengthening techniques for masonry using fiber reinforced polymers. Compos. Struct. 2017, 161, 246–255. [Google Scholar] [CrossRef]
- Codispoti, R.; Oliveira, D.V.; Olivito, R.S.; Lourenço, P.B.; Fangueiro, R. Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. Compos. Part B Eng. 2015, 77, 74–83. [Google Scholar] [CrossRef]
- Mahir, F.I.; Keya, K.N.; Sarker, B.; Nahiun, K.M.; Khan, R.A. A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Mater. Eng. Res. 2019, 1, 86–97. [Google Scholar] [CrossRef]
- Love, S. Field methods for the analysis of mud brick architecture. J. Field Archaeol. 2017, 42, 351–363. [Google Scholar] [CrossRef]
- Binici, H.; Aksogan, O.; Shah, T. Investigation of fibre reinforced mud brick as a building material. Constr. Build. Mater. 2005, 19, 313–318. [Google Scholar] [CrossRef]
- Prakash, V.; Raj, A.; Aravind, S.; Mathew, B.; Sumith, V. Studies on stabilized mud block as a construction material. Int. J. Innov. Res. Adv. Eng. 2016, 3, 19–24. [Google Scholar]
- Salih, M.M.; Osofero, A.I.; Imbabi, M.S. Mechanical Properties of Fibre-Reinforced Mud Bricks; CCE: Khartoum, Sudan, 2018; pp. 91–96. [Google Scholar]
- Vincenzini, A.; Augarde, C.E.; Gioffrè, M. Experimental characterization of natural fibre–soil interaction: Lessons for earthen construction. Mater. Struct. 2021, 54, 110. [Google Scholar] [CrossRef]
- Allan, G.E.; Southgate, R.I. Fire Regimes in The Spinifex Landscapes of Australia. In Flammable Australia; Cambridge University Press: Cambridge, UK, 2002; pp. 145–176. [Google Scholar]
- Amiralian, N.; Annamalai, P.K.; Memmott, P.; Taran, E.; Schmidt, S.; Martin, D.J. Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia’s arid zone. RSC Adv. 2015, 5, 32124–32132. [Google Scholar] [CrossRef]
- Burrows, N.; Ward, B.; Robinson, A. Fire behaviour in spinifex fuels on the Gibson Desert nature reserve, Western Australia. J. Arid. Environ. 1991, 20, 189–204. [Google Scholar] [CrossRef]
- Pitman, H.T.; Wallis, L.A. The Point of Spinifex: Aboriginal Uses of Spinifex Grasses in Australia. 2012. Available online: https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/6fcfd632-8186-4f4e-8dd6-f847583d391a/content (accessed on 10 September 2025).
- Horton, H. Of Spinifex and Grasswrens, with Particular Reference to’Amytornis Ballarae’, the Kalkadoon Grasswren. Qld. Nat. 2011, 49, 3–17. [Google Scholar]
- Downton, P. Mud Brick. 2003. Available online: https://www.yourhome.gov.au/materials/mud-brick (accessed on 10 September 2025).
- Jannat, N.; Hussien, A.; Abdullah, B.; Cotgrave, A. Application of agro and non-agro waste materials for unfired earth blocks construction: A review. Constr. Build. Mater. 2020, 254, 119346. [Google Scholar] [CrossRef]
- Smith, E.W.; Puebio, S. Adobe brick production in New Mexico. New Mex. Bur. Mines Miner. Resour. 1981, 3, 17–24. [Google Scholar] [CrossRef]
- Beckett, C.; Ciancio, D.; Huebner, C.; Cardell-Oliver, R. Sustainable and affordable rammed earth houses in Kalgoorlie, Western Australia: Development of thermal monitoring techniques. In Structural Engineering in Australasia–World Standard; Institution of Engineers (Australia): Barton, Australia, 2014; pp. 1–9. [Google Scholar]
- Bui, Q.-B.; Morel, J.-C.; Reddy, B.V.; Ghayad, W. Durability of rammed earth walls exposed for 20 years to natural weathering. Build. Environ. 2009, 44, 912–919. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012, 29, 512–519. [Google Scholar] [CrossRef]
- Lanzón, M.; Martínez, E.; Mestre, M.; Madrid, J.A. Use of zinc stearate to produce highly-hydrophobic adobe materials with extended durability to water and acid-rain. Constr. Build. Mater. 2017, 139, 114–122. [Google Scholar] [CrossRef]
- Obonyo, E.; Exelbirt, J.; Baskaran, M. Durability of compressed earth bricks: Assessing erosion resistance using the modified spray testing. Sustainability 2010, 2, 3639–3649. [Google Scholar] [CrossRef]
- Ren, K.B.; Kagi, D.A. Upgrading the durability of mud bricks by impregnation. Build. Environ. 1995, 30, 433–440. [Google Scholar] [CrossRef]
- Bhavsar, S.N.; Patel, A.J. Analysis of swelling & shrinkage properties of expansive soil using brick dust as a stabilizer. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 303–308. [Google Scholar]
- Brooks, K.N.; Ffolliott, P.F.; Magner, J.A. Hydrology and the Management of Watersheds; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sathiparan, N.; Subramaniam, D.N.; Malsara, K.; Akmal, M. Thermal comfort analysis of fired-clay brick, cement-sand block and cement stabilized earth block masonry house models. Innov. Infrastruct. Solut. 2022, 7, 147. [Google Scholar] [CrossRef]
- Stazi, F.; Nacci, A.; Tittarelli, F.; Pasqualini, E.; Munafò, P. An experimental study on earth plasters for earthen building protection: The effects of different admixtures and surface treatments. J. Cult. Herit. 2016, 17, 27–41. [Google Scholar] [CrossRef]
- Pedergnana, M.; Elias-Ozkan, S.T. Impact of various sands and fibres on the physical and mechanical properties of earth mortars for plasters and renders. Constr. Build. Mater. 2021, 308, 125013. [Google Scholar] [CrossRef]
- Andres, D.M.; Manea, D.L.; Fechete, R.; Jumate, E. Green plastering mortars based on clay and wheat straw. Procedia Technol. 2016, 22, 327–334. [Google Scholar] [CrossRef]
- Caballero-Caballero, M.; Chinas-Castillo, F.; Montes Bernabé, J.L.; Alavéz-Ramirez, R.; Silva Rivera, M.E. Effect on compressive and flexural strength of agave fiber reinforced adobes. J. Nat. Fibers 2018, 15, 575–585. [Google Scholar] [CrossRef]
- Danso, H.; Martinson, D.B.; Ali, M.; Williams, J. Effect of fibre aspect ratio on mechanical properties of soil building blocks. Constr. Build. Mater. 2015, 83, 314–319. [Google Scholar] [CrossRef]
- Millogo, Y.; Morel, J.-C.; Aubert, J.-E.; Ghavami, K. Experimental analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Constr. Build. Mater. 2014, 52, 71–78. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.-E.; Magniont, C.; Maillard, P.; Poirier, C. Effect of plant aggregates on mechanical properties of earth bricks. J. Mater. Civ. Eng. 2017, 29, 04017244. [Google Scholar] [CrossRef]
- Segetin, M.; Jayaraman, K.; Xu, X. Harakeke reinforcement of soil–cement building materials: Manufacturability and properties. Build. Environ. 2007, 42, 3066–3079. [Google Scholar] [CrossRef]
- Yixian, W.; Panpan, G.; Shengbiao, S.; Haiping, Y.; Binxiang, Y. Study on strength influence mechanism of fiber-reinforced expansive soil using jute. Geotech. Geol. Eng. 2016, 34, 1079–1088. [Google Scholar] [CrossRef]
- Prabakar, J.; Sridhar, R. Effect of random inclusion of sisal fibre on strength behaviour of soil. Constr. Build. Mater. 2002, 16, 123–131. [Google Scholar] [CrossRef]
- Sharma, V.; Vinayak, H.K.; Marwaha, B.M. Enhancing compressive strength of soil using natural fibers. Constr. Build. Mater. 2015, 93, 943–949. [Google Scholar] [CrossRef]
- Jové-Sandoval, F.; Barbero-Barrera, M.M.; Medina, N.F. Assessment of the mechanical performance of three varieties of pine needles as natural reinforcement of adobe. Constr. Build. Mater. 2018, 187, 205–213. [Google Scholar] [CrossRef]
- Damanik, N.H.C.; Susanto, D.; Suganda, E. The compressive strength of unfired clay brick with sugarcane bagasse fiber (SBF) and bio-enzyme reinforcements. Int. J. Technol. 2020, 11, 1422–1429. [Google Scholar] [CrossRef]
- Dawood, A.O.; Mussa, F.I.; Al Khazraji, H.; Abd Ulsada, H.A.; Yasser, M.M. Investigation of compressive strength of straw reinforced unfired clay bricks for sustainable building construction. Civ. Environ. Eng. 2021, 17, 150–163. [Google Scholar] [CrossRef]
- Ouedraogo, M.; Bamogo, H.; Sanou, I.; Dao, K.; Ouedraogo, K.A.J.; Aubert, J.-E.; Millogo, Y. Microstructure, physical and mechanical properties of adobes stabilized with rice husks. Int. J. Archit. Herit. 2023, 17, 1348–1363. [Google Scholar] [CrossRef]
- Tripura, D.D.; Gupta, S.; Debbarma, B.; Deep, R.S.S. Flexural strength and failure trend of bamboo and coir reinforced cement stabilized rammed earth wallettes. Constr. Build. Mater. 2020, 242, 117986. [Google Scholar] [CrossRef]
- Eslami, A.; Mohammadi, H.; Banadaki, H.M. Palm fiber as a natural reinforcement for improving the properties of traditional adobe bricks. Constr. Build. Mater. 2022, 325, 126808. [Google Scholar] [CrossRef]
- Sumanasena, V.; Rajabipour, A.; Bazli, M.; Kutay, C.; Guo, D. Strength and erosion resistance of mudbrick as an alternative local material for Australia’s Northern Territory remote housing. Case Stud. Constr. Mater. 2022, 16, e01023. [Google Scholar] [CrossRef]
- Martins, A.; Silva, F.; Toledo Filho, R.D. Mechanical behavior of self-compacting soil-cement-sisal fiber composites. Key Eng. Mater. 2015, 634, 421–432. [Google Scholar] [CrossRef]
- Thanushan, K.; Yogananth, Y.; Sangeeth, P.; Coonghe, J.G.; Sathiparan, N. Strength and durability characteristics of coconut fibre reinforced earth cement blocks. J. Nat. Fibers 2021, 18, 773–788. [Google Scholar] [CrossRef]
- Alausa, S.; Adekoya, B.; Aderibigbe, J.; Nwaokocha, C. Thermal characteristics of laterite-mud and concrete-block for walls in building construction in Nigeria. Int. J. Eng. Appl. Sci 2013, 4, 8269. [Google Scholar]
- Saing, Z.; Samang, L.; Harianto, T.; Patanduk, J. Mechanical characteristic of ferro laterite soil with cement stabilization as a subgrade material. Int. J. Civ. Eng. Technol. 2017, 8, 609–616. [Google Scholar]
- Nott, J.F. The urban geology of Darwin, Australia. Quat. Int. 2003, 103, 83–90. [Google Scholar] [CrossRef]
- Walker, P. The Australian earth building handbook. In The Australian Earth Building Handbook; SAI Global Limited: Sydney, Australia, 2002. [Google Scholar]
- Sadeeq, J.; Ochepo, J.; Salahudeen, A.; Tijjani, S. Effect of bagasse ash on lime stabilized lateritic soil. Jordan J. Civ. Eng. 2015, 9, 203–213. [Google Scholar]
- Corporation, J.A. Wanggalili: Yindjibarndi and Ngarluma Plants; Juluwarlu Aboriginal Corporation: Roebourne, Australia, 2003. [Google Scholar]
- Kępa, K.; Chaléat, C.M.; Amiralian, N.; Batchelor, W.; Grøndahl, L.; Martin, D.J. Evaluation of properties and specific energy consumption of spinifex-derived lignocellulose fibers produced using different mechanical processes. Cellulose 2019, 26, 6555–6569. [Google Scholar] [CrossRef]
- Milan, S.; Christopher, T.; Manivannan, A.; Mayandi, K.; Jappes, J.W. Mechanical and thermal properties of a novel Spinifex Littoreus fiber reinforced polymer composites as an alternate for synthetic glass fiber composites. Mater. Res. Express 2021, 8, 035301. [Google Scholar] [CrossRef]
- Sutcu, M. Influence of expanded vermiculite on physical properties and thermal conductivity of clay bricks. Ceram. Int. 2015, 41, 2819–2827. [Google Scholar] [CrossRef]
- Bakar, B.A.; Saari, S.; Surip, N. Water absorption characteristic of interlocking compressed earth brick units. In Proceedings of the International Conference of Global Network for Innovative Technology and Awam International Conference in Civil Engineering (IGNITE-AICCE’17), Telangana, India, 5–6 December 2018; AIP Publishing LLC: Melville, NY, USA, 2017. [Google Scholar]
- ASTM C62-17; Standard Specification for Building Brick (Solid Masonry Units Made From Clay or Shale). ASTM International: West Conshohocken, PA, USA, 2017.
- Ali, Z.A. Properties of Malaysia Fired Clay Bricks and Their Evaluation with International Masonry Specification—A Case Study; Universiti Teknologi Malaysia: Johor, Malaysia, 2005. [Google Scholar]
- Ali, M.; Room, S.; Khan, M.I.; Masood, F.; Memon, R.A.; Khan, R.; Memon, A.M. Assessment of local earthen bricks in perspective of physical and mechanical properties using Geographical Information System in Peshawar, Pakistan. Structures 2020, 28, 2549–2561. [Google Scholar] [CrossRef]
- Khitab, A. Materials of Construction; Allied Books Lahore: Lahore, Pakistan, 2012. [Google Scholar]
- ASTM C1314-18; Standard Test Method for Compressive Strength of Masonry Prisms. ASTM International: West Conshohocken, PA, USA, 2018.
- Ebadi Jamkhaneh, M.; Ahmadi, M.; Shokri Amiri, M. Sustainable reuse of inorganic materials in eco-friendly clay bricks: Special focus on mechanical and durability assessment. J. Mater. Civ. Eng. 2021, 33, 04021111. [Google Scholar] [CrossRef]
- Fernando, P.R.; Kannangara, G.L.; Buddhika, G.P.; Urushiya, A. Synthesis and characterization of sustainable man-made low cost clay bricks with bamboo leaf ash. Eng. Phys. 2018, 2, 15–22. [Google Scholar] [CrossRef]
- Coutts, R.; Ni, Y. Autoclaved bamboo pulp fibre reinforced cement. Cem. Concr. Compos. 1995, 17, 99–106. [Google Scholar] [CrossRef]
- Ghavami, K.; Toledo Filho, R.D.; Barbosa, N.P. Behaviour of composite soil reinforced with natural fibres. Cem. Concr. Compos. 1999, 21, 39–48. [Google Scholar] [CrossRef]
- Ugwuishiwu, B.; Mama, B.; Okoye, N.M. Effects of natural fiber reinforcement on water absorption of compressed stabilized earth blocks. IJSR Int. J. Sci. Res. 2013, 2, 165–167. [Google Scholar]
- Limami, H.; Manssouri, I.; Cherkaoui, K.; Khaldoun, A. Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive. Clean. Eng. Technol. 2021, 2, 100037. [Google Scholar] [CrossRef]
- Araya-Letelier, G.; Concha-Riedel, J.; Antico, F.C.; Valdés, C.; Cáceres, G. Influence of natural fiber dosage and length on adobe mixes damage-mechanical behavior. Constr. Build. Mater. 2018, 174, 645–655. [Google Scholar] [CrossRef]
- Kasie, Y.M.; Mogne, A.Y. Improvement of mechanical properties of adobe brick reinforced with sisal fiber. Discov. Mater. 2025, 5, 69. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Faria, P.; Aubert, J.-E.; Magniont, C. Assessment of Durability of Bio-based Earth Composites. Recent Prog. Mater. 2021, 3, 16. [Google Scholar] [CrossRef]
Origin | Fibre Name | Fibre Scientific Name | Fibre Length (mm) | Cement % | Fibre % | Compressive Strength (MPa) | Ref. |
---|---|---|---|---|---|---|---|
India | Chir pine | Pinus roxburghii | 30 | 2.5 | 1 | 0.2603 | [68] |
India | Beul | Grewia optivia | 30 | 2.5 | 2 | 0.380 | [68] |
Iberian Peninsula | Pine needles | Pinus halepensis, Pinus pinea and Pinus pinaster | 99–127 | NA | 3 | 2.4–3.3 | [69] |
North Carolina | Sugarcane | Saccharum officinarum | 10–50 | NA | 3 | 4.79 | [1] |
Indonesia | Sugarcane | Saccharum officinarum | 15 | 5–10 (bio-enzyme) | 5 | 3.92 | [70] |
Iraq | Rice straw | Oryza sativa | NA | 5 | 5 | 2.4 | [71] |
West Africa | Rice husk | Oryza sativa | NA | NA | 0.4 | 3.7 | [72] |
India | Bamboo | Bambusoideae | 50 mm | 8 | 0.5 | 5.5 | [73] |
Iran | Palm | Arecaceae | 10–60 | NA | 0.5 | 4.88 | [74] |
Australia | spinifex | spinifex | 60 mm | 10 | NA | 3.34 | [75] |
Brazil | sisal | Agave sisalana | 20 | NA | 1.5 | 3.3 | [76] |
Sri Lanka | Coconut | Cocos nucifera | 24 | NA | 0.2 | 3.5 | [77] |
China | Jute | Corchorus olitorius | 6 | NA | 0.6 | 0.4 | [66] |
New Zealand | Flax | Phormium tenax, or Harakeke | 70–85 | 10 | 0.6 | 4.55 | [65] |
Description | Sieve Size (mm) | Weight Retained on the Sieve (%) |
---|---|---|
Coarse Aggregate | 2.36 | 11.06 |
Sand | 2.00 | 3.50 |
0.850 | 13.9 | |
0.425 | 19.01 | |
0.212 | 31.94 | |
0.075 | 10.21 | |
Clay | Pan | 10.43 |
Ingredient | Formula | Proportion |
---|---|---|
Portland cement Clinker | Not available | >92% |
Limestone | CaCO3 | 0–7.5% |
Gypsum | CaSO4·2H2O | 3–8% |
Test Type | Fibre Content (%) | Fibre Length (mm) | Cement Content (%) | Sample Convention | Number of Identical Tests | Total Number |
---|---|---|---|---|---|---|
Water spray test/water absorption | 0.3 | 30 | 5 | 0.3/30F-5C | 3 | 6 |
Compression | 0.3 | 30 | 5 | 0.3/30F-5C | 3 | 3 |
Compression | 0.3 | 40 | 5 | 0.3/40F-5C | 3 | 3 |
Compression | 0.3 | 50 | 5 | 0.3/50F-5C | 3 | 3 |
Water spray test/water absorption | 0.3 | 30 | 10 | 0.3/30F-10C | 3 | 6 |
Compression | 0.3 | 30 | 10 | 0.3/30F-10C | 3 | 3 |
Compression | 0.3 | 40 | 10 | 0.3/40F-10C | 3 | 3 |
Compression | 0.3 | 50 | 10 | 0.3/50F-10C | 3 | 3 |
Water spray test/water absorption | 0.6 | 30 | 5 | 0.6/30F-5C | 3 | 6 |
Compression | 0.6 | 30 | 5 | 0.6/30F-5C | 3 | 3 |
Compression | 0.6 | 40 | 5 | 0.6/40F-5C | 3 | 3 |
Compression | 0.6 | 50 | 5 | 0.6/50F-5C | 3 | 3 |
Water absorption | 0.6 | 30 | 10 | 0.6/30F-10C | 3 | 3 |
Compression | 0.6 | 30 | 10 | 0.6/30F-10C | 3 | 3 |
Compression | 0.6 | 40 | 10 | 0.6/40F-10C | 3 | 3 |
Compression | 0.6 | 50 | 10 | 0.6/50F-10C | 3 | 3 |
Water absorption | 0.9 | 30 | 5 | 0.9/30F-5C | 3 | 3 |
Compression | 0.9 | 30 | 5 | 0.9/30F-5C | 3 | 3 |
Compression | 0.9 | 40 | 5 | 0.9/40F-5C | 3 | 3 |
Compression | 0.9 | 50 | 5 | 0.9/50F-5C | 3 | 3 |
Water absorption | 0.9 | 30 | 10 | 0.9/20F-10C | 3 | 3 |
Compression | 0.9 | 30 | 10 | 0.9/30F-10C | 3 | 3 |
Compression | 0.9 | 40 | 10 | 0.9/40F-10C | 3 | 3 |
Compression | 0.9 | 50 | 10 | 0.9/50F-10C | 3 | 3 |
Total | 81 |
Specimen Type | Exposure Time (min) | Average Pit Depth (mm) | COV (%) |
---|---|---|---|
0.3/30F-5C | 15 | 1.0 | 12.1 |
30 | 1.3 | 6.3 | |
45 | 1.5 | 3 | |
60 | 1.7 | 5.4 | |
0.3/30F-10C | 15 | 0.0 | 0 |
30 | 0.1 | 9.8 | |
45 | 0.4 | 39.5 | |
60 | 0.7 | 2.6 | |
0.6/30F-5C | 15 | 1.0 | 21.1 |
30 | 1.2 | 12.8 | |
45 | 1.5 | 11.1 | |
60 | 1.8 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subedi, J.; Rajabipour, A.; Bazli, M.; Vegda, D.; Ostadmoradi, N.; Thapa, S. Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia. J. Compos. Sci. 2025, 9, 520. https://doi.org/10.3390/jcs9100520
Subedi J, Rajabipour A, Bazli M, Vegda D, Ostadmoradi N, Thapa S. Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia. Journal of Composites Science. 2025; 9(10):520. https://doi.org/10.3390/jcs9100520
Chicago/Turabian StyleSubedi, Jivan, Ali Rajabipour, Milad Bazli, Dhyey Vegda, Nafiseh Ostadmoradi, and Sunil Thapa. 2025. "Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia" Journal of Composites Science 9, no. 10: 520. https://doi.org/10.3390/jcs9100520
APA StyleSubedi, J., Rajabipour, A., Bazli, M., Vegda, D., Ostadmoradi, N., & Thapa, S. (2025). Performance Analysis of Spinifex Fibre-Reinforced Mudbrick as a Sustainable Construction Material for Remote Housing in Australia. Journal of Composites Science, 9(10), 520. https://doi.org/10.3390/jcs9100520