Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (622)

Search Parameters:
Keywords = waste rock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2812 KiB  
Article
Application of a Multi-Algorithm-Optimized CatBoost Model in Predicting the Strength of Multi-Source Solid Waste Backfilling Materials
by Jianhui Qiu, Jielin Li, Xin Xiong and Keping Zhou
Big Data Cogn. Comput. 2025, 9(8), 203; https://doi.org/10.3390/bdcc9080203 (registering DOI) - 7 Aug 2025
Abstract
Backfilling materials are commonly employed materials in mines for filling mining waste, and the strength of the consolidated backfill formed by the binding material directly influences the stability of the surrounding rock and production safety in mines. The traditional approach to obtaining the [...] Read more.
Backfilling materials are commonly employed materials in mines for filling mining waste, and the strength of the consolidated backfill formed by the binding material directly influences the stability of the surrounding rock and production safety in mines. The traditional approach to obtaining the strength of the backfill demands a considerable amount of manpower and time. The rapid and precise acquisition and optimization of backfill strength parameters hold utmost significance for mining safety. In this research, the authors carried out a backfill strength experiment with five experimental parameters, namely concentration, cement–sand ratio, waste rock–tailing ratio, curing time, and curing temperature, using an orthogonal design. They collected 174 sets of backfill strength parameters and employed six population optimization algorithms, including the Artificial Ecosystem-based Optimization (AEO) algorithm, Aquila Optimization (AO) algorithm, Germinal Center Optimization (GCO), Sand Cat Swarm Optimization (SCSO), Sparrow Search Algorithm (SSA), and Walrus Optimization Algorithm (WaOA), in combination with the CatBoost algorithm to conduct a prediction study of backfill strength. The study also utilized the Shapley Additive explanatory (SHAP) method to analyze the influence of different parameters on the prediction of backfill strength. The results demonstrate that when the population size was 60, the AEO-CatBoost algorithm model exhibited a favorable fitting effect (R2 = 0.947, VAF = 93.614), and the prediction error was minimal (RMSE = 0.606, MAE = 0.465), enabling the accurate and rapid prediction of the strength parameters of the backfill under different ratios and curing conditions. Additionally, an increase in curing temperature and curing time enhanced the strength of the backfill, and the influence of the waste rock–tailing ratio on the strength of the backfill was negative at a curing temperature of 50 °C, which is attributed to the change in the pore structure at the microscopic level leading to macroscopic mechanical alterations. When the curing conditions are adequate and the parameter ratios are reasonable, the smaller the porosity rate in the backfill, the greater the backfill strength will be. This study offers a reliable and accurate method for the rapid acquisition of backfill strength and provides new technical support for the development of filling mining technology. Full article
37 pages, 1664 KiB  
Review
Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications
by Adeel Iqbal, Nuha S. Mashaan and Themelina Paraskeva
J. Compos. Sci. 2025, 9(8), 402; https://doi.org/10.3390/jcs9080402 - 1 Aug 2025
Viewed by 228
Abstract
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of [...] Read more.
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of 41 peer-reviewed articles for detailed analysis. Bibliometric analysis indicates a notable upward trend in annual publications, reflecting growing academic and practical interest in this field. Performance-based evaluations demonstrate that mining wastes, particularly iron and copper tailings, have the potential to enhance the high-temperature performance (i.e., rutting resistance) of asphalt binders and mixtures when utilized as fillers or aggregates. However, their effects on fatigue life, low-temperature cracking, and moisture susceptibility are inconsistent, largely influenced by the physicochemical properties and dosage of the specific waste material. Despite promising results, critical knowledge gaps remain, particularly in relation to long-term durability, comprehensive environmental and economic Life-Cycle Assessments (LCA), and the inherent variability of waste materials. This review underscores the substantial potential of mining wastes as sustainable alternatives to conventional pavement materials, while emphasizing the need for further multidisciplinary research to support their broader implementation. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

26 pages, 3891 KiB  
Article
Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate
by Ela Bahsude Gorur Avsaroglu
Buildings 2025, 15(15), 2587; https://doi.org/10.3390/buildings15152587 - 22 Jul 2025
Viewed by 297
Abstract
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials [...] Read more.
Currently, natural resources are rapidly depleting as a result of increasing construction facilities. Increasing energy consumption with increasing construction is another serious issue. In addition, many problems that threaten the environment and human health arise during the disposal and storage of waste materials obtained in different sectors. The main objective of this study is to investigate the substitution of cotton (CW), chicken feather (CFF) and stone wool waste (SWW) from pumice aggregate in the production of environmentally friendly hollow blocks. To achieve this, CW, CFF and SWW were substituted for pumice at ratios of 2.5–5–7.5–10% in mass, and hollow blocks were produced with this mixture under low pressure and vibrations in a production factory. Various characterization methods, including a size and tolerance analysis, unit volume weight test, thermal conductivity test, durability test, water absorption test and strength tests, were carried out on the samples produced. This study showed that waste fibers of chicken feather and stone wool are suitable for the production of sustainable and environmentally friendly hollow blocks that can reduce the dead load of the building, have sufficient strength, provide energy efficiency due to low thermal conductivity and have a high durability due to a low water absorption value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

32 pages, 7424 KiB  
Review
Gas Migration in Low-Permeability Geological Media: A Review
by Yangyang Mo, Alfonso Rodriguez-Dono, Ivan Puig Damians, Sebastia Olivella and Rémi de La Vaissière
Geotechnics 2025, 5(3), 49; https://doi.org/10.3390/geotechnics5030049 - 21 Jul 2025
Viewed by 288
Abstract
This article provides a comprehensive review of gas flow behavior in low-permeability geological media, focusing on its implications for the long-term performance of engineered barriers in underground radioactive waste repositories. Key mechanisms include two-phase flow and gas-driven fracturing, both critical for assessing repository [...] Read more.
This article provides a comprehensive review of gas flow behavior in low-permeability geological media, focusing on its implications for the long-term performance of engineered barriers in underground radioactive waste repositories. Key mechanisms include two-phase flow and gas-driven fracturing, both critical for assessing repository safety. Understanding the generation and migration of gas is crucial for the quantitative assessment of repository performance over extended timescales. The article synthesizes the current research on various types of claystone considered as potential host rocks for repositories, providing a comprehensive analysis of gas transport mechanisms and constitutive models. In addressing the challenges related to multi-field coupling, the article provides practical insights and outlines potential solutions and areas for further research, underscoring the importance of interdisciplinary collaboration to tackle these challenges and push the field forward. In addition, the article evaluates key research projects, such as GMT, FORGE, and DECOVALEX, shedding light on their methodologies, findings, and significant contributions to understanding gas migration in low-permeability geological media. In this context, mathematical modeling becomes indispensable for predicting long-term repository performance under hypothetical future conditions, enhancing prediction accuracy and supporting long-term safety assessments. Finally, the growing interest in gas-driven fracturing is explored, critically assessing the strengths and limitations of current numerical simulation tools, such as TOUGH, the phase-field method, and CODE_BRIGHT. Noteworthy advancements by the CODE_BRIGHT team in gas injection simulation are highlighted, although knowledge gaps remain. The article concludes with a call for innovative approaches to simulate gas fracturing processes more effectively, advocating for advanced modeling techniques and rigorous experimental validation to address existing challenges. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

18 pages, 886 KiB  
Review
Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology
by Yongfei Jin, Yixin Li, Wenyong Liu, Xiaona Yang, Xiaojiao Cheng, Chenyang Qi, Changsheng Li, Jing Hui and Lei Zhang
Processes 2025, 13(7), 2305; https://doi.org/10.3390/pr13072305 - 19 Jul 2025
Viewed by 348
Abstract
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes [...] Read more.
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes previous research results, and based on the principles and research and development progress of existing detection technologies such as the surface temperature measurement method, ground temperature measurement method, wellbore temperature measurement method, and infrared remote sensing detection method, it briefly reviews the application of various detection technologies in engineering practice at this stage and briefly explains the advantages and disadvantages of each application. Research shows that the existing technologies are generally limited by the interference of complex environmental conditions (such as temperature measurement deviations caused by atmospheric turbulence and the influence of rock layer structure on ground temperature conduction) and the implementation difficulties of geophysical methods in mining applications (such as the interference of stray currents in the ground by electromagnetic methods and the fast attenuation speed of waves detected by geological radar methods), resulting in the insufficient accuracy of fire source location and difficulties in identifying concealed fire sources. In response to the above bottlenecks, the ”air–ground integrated” fire source location determination technology that breaks through environmental constraints and the location determination method of a CSC fire source based on a multi-physics coupling mechanism are proposed. By significantly weakening the deficiency in obtaining parameters through a single detection method, a new direction is provided for the detection of coal spontaneous combustion fire sources in the future. Full article
Show Figures

Figure 1

34 pages, 3875 KiB  
Article
Basis for a New Life Cycle Inventory for Metals from Mine Tailings Using a Conceptual Model Tool
by Katherine E. Raymond, Mike O’Kane, Mark Logsdon, Yamini Gopalapillai, Kelsey Hewitt, Johannes Drielsma and Drake Meili
Minerals 2025, 15(7), 752; https://doi.org/10.3390/min15070752 - 18 Jul 2025
Viewed by 265
Abstract
Life Cycle Impact Assessments (LCIAs) examine the environmental impacts of products using life cycle inventories (LCIs) of quantified inputs and outputs of a product through its life cycle. Currently, estimated impacts from mining are dominated by long-term metal release from tailings due to [...] Read more.
Life Cycle Impact Assessments (LCIAs) examine the environmental impacts of products using life cycle inventories (LCIs) of quantified inputs and outputs of a product through its life cycle. Currently, estimated impacts from mining are dominated by long-term metal release from tailings due to inaccurate assumptions regarding metal release and transport within and from mine materials. A conceptual model approach is proposed to support the development of a new database of LCI data, applying mechanistic processes required for the release and transport of metals through tailings and categorizing model inputs into ‘bins’. The binning approach argues for accuracy over precision, noting that precise metal release rates are likely impossible with the often-limited data available. Three case studies show the range of forecasted metal release rates, where even after decades of monitoring within the tailings and underlying aquifer, metal release rates span several orders of magnitude (<100 mg/L to >100,000 mg/L sulfate at the Faro Mine). The proposed tool may be useful for the development of a new database of LCI data, as well as to analyze mine’s regional considerations during designs for risk evaluation, management and control prior to development, when data is also scarce. Full article
Show Figures

Figure 1

30 pages, 7220 KiB  
Article
Automated Hyperspectral Ore–Waste Discrimination for a Gold Mine: Comparative Study of Data-Driven and Knowledge-Based Approaches in Laboratory and Field Environments
by Mehdi Abdolmaleki, Saleh Ghadernejad and Kamran Esmaeili
Minerals 2025, 15(7), 741; https://doi.org/10.3390/min15070741 - 16 Jul 2025
Viewed by 384
Abstract
Hyperspectral imaging has been increasingly used in mining for detailed mineral characterization and enhanced ore–waste discrimination, which is essential for optimizing resource extraction. However, the full deployment of this technology still faces challenges due to the variability of field conditions and the spectral [...] Read more.
Hyperspectral imaging has been increasingly used in mining for detailed mineral characterization and enhanced ore–waste discrimination, which is essential for optimizing resource extraction. However, the full deployment of this technology still faces challenges due to the variability of field conditions and the spectral complexity inherent in real-world mining environments. In this study, we compare the performance of two approaches for ore–waste discrimination in both laboratory and actual mine site conditions: (i) a data-driven feature extraction (FE) method and (ii) a knowledge-based mineral mapping method. Rock samples, including ore and waste from an open-pit gold mine, were obtained and scanned using a hyperspectral imaging system under laboratory conditions. The FE method, which quantifies the frequency absorption peaks at different wavelengths for a given rock sample, was used to train three discriminative models using the random forest classifier (RFC), support vector classification (SVC), and K-nearest neighbor classifier (KNNC) algorithms, with RFC achieving the highest performance with an F1-score of 0.95 for the laboratory data. The mineral mapping method, which quantifies the presence of pyrite, calcite, and potassium feldspar based on prior geochemical analysis, yielded an F1-score of 0.78 for the ore class using the RFC algorithm. In the next step, the performance of the developed discriminative models was tested using hyperspectral data of two muck piles scanned in the open-pit gold mine. The results demonstrated the robustness of the mineral mapping method under field conditions compared to the FE method. These results highlight hyperspectral imaging as a valuable tool for improving ore-sorting efficiency in mining operations. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

16 pages, 1971 KiB  
Article
Slow Pyrolysis as a Method of Treating Household Biowaste for Biochar Production
by Agnieszka Bezuszko, Marcin Landrat, Krzysztof Pikoń, Ana F. Ferreira, Abel Rodrigues, Gabor Olejarz and Max Lewandowski
Appl. Sci. 2025, 15(14), 7858; https://doi.org/10.3390/app15147858 - 14 Jul 2025
Viewed by 339
Abstract
The amount of waste generated by society is constantly increasing. Consequently, there is a need to develop new and better methods of treating it. A significant part of municipal waste is biowaste, which can be treated as a source of valuable resources such [...] Read more.
The amount of waste generated by society is constantly increasing. Consequently, there is a need to develop new and better methods of treating it. A significant part of municipal waste is biowaste, which can be treated as a source of valuable resources such as nutrients, organic matter, and energy. The present work aims to determine the properties of the tested household biowaste and the possibility of using it as feedstock in slow pyrolysis to obtain biochar. The slow pyrolysis process of the biowaste was carried out in an electrically heated Horizontal Tube Furnace (HTF) at temperatures of 400 °C, 500 °C, and 600 °C in a nitrogen atmosphere. The analysis showed that depending on the type and composition of the biowaste, its properties are different. All the biowaste tested has a high moisture content (between 63.51% and 81.53%), which means that the biowaste needs to be dried before the slow pyrolysis process. The characteristics of kitchen biowaste are similar to those of food waste studied by other researchers in different regions of the world. In addition, the properties of kitchen biowaste are similar to those of the typical biomasses used to produce biochar via slow pyrolysis, such as wood, almond shells, and rice husks. Both kinds of garden biowaste tested may have been contaminated (soil, rocks) during collection, which affected the high ash content of spring (17.75%) and autumn (43.83%) biowaste. This, in turn, affected all the properties of the garden biowaste, which differed significantly from both the literature data of other garden wastes and from the properties of typical biomass feedstocks used to produce biochar in slow pyrolysis. For all biowaste tested, it was shown that as the pyrolysis temperature increases, the yield of biochar decreases. The maximum mass yield of biochar for kitchen, spring garden, and autumn garden biowaste was 36.64%, 66.53%, and 66.99%, respectively. Comparing the characteristics of biowaste before slow pyrolysis, biochar obtained from kitchen biowaste had a high carbon content, fixed carbon, and a higher HHV. In contrast, biochar obtained from garden biowaste had a lower carbon content and a lower HHV. Full article
Show Figures

Figure 1

18 pages, 4312 KiB  
Article
Influence of Rare Earth Elements on the Radiation-Shielding Behavior of Serpentinite-Based Materials
by Ayşe Didem Kılıç and Demet Yılmaz
Appl. Sci. 2025, 15(14), 7837; https://doi.org/10.3390/app15147837 - 13 Jul 2025
Viewed by 449
Abstract
In this study, the neutron and gamma radiation-shielding properties of serpentinites from the Guleman ophiolite complex were investigated, and results were evaluated in comparison with rare earth element (REE) content. The linear and mass attenuation coefficients (LAC and MAC), half-value layer (HVL), mean [...] Read more.
In this study, the neutron and gamma radiation-shielding properties of serpentinites from the Guleman ophiolite complex were investigated, and results were evaluated in comparison with rare earth element (REE) content. The linear and mass attenuation coefficients (LAC and MAC), half-value layer (HVL), mean free path (MFP), and effective atomic numbers (Zeff) of serpentinite samples were experimentally measured in the energy range of 80.99–383.85 keV. Theoretical MAC values were calculated. Additionally, fast neutron removal cross-sections, as well as thermal and fast neutron macroscopic cross-sections, were theoretically determined. The absorbed equivalent dose rates of serpentinite samples were also measured. The radiation protection efficiency (RPE) for gamma rays and neutrons were determined. It was observed that the presence of rare earth elements within serpentinite structure has a significant impact on thermal neutron cross-sections, while crystalline water content (LOI) plays an influential role in fast neutron cross-sections. Moreover, it has been observed that the concentration of gadolinium exerts a more substantial influence on the macroscopic cross-sections of thermal neutrons than on those of fast neutrons. The research results reveal the mineralogical, geochemical, morphological and radiation-shielding properties of serpentinite rocks contribute significantly to new visions for the use of this naturally occurring rock as a geological repository for nuclear waste or as a wall-covering material in radiotherapy centers and nuclear facilities instead of concrete. Full article
(This article belongs to the Special Issue Advanced Functional Materials and Their Applications)
Show Figures

Figure 1

26 pages, 2032 KiB  
Review
A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
by Mustafa Rezaei, Gabriela Sanchez-Lecuona and Omid Abdolazimi
Minerals 2025, 15(7), 720; https://doi.org/10.3390/min15070720 - 9 Jul 2025
Viewed by 975
Abstract
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This [...] Read more.
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This review presents a comprehensive overview of REE geochemistry, mineralogy, and major deposit types including carbonatites, alkaline igneous rocks, laterites, placer deposits, coal byproducts, and marine sediments. It also highlights the global distribution and economic potential of key REE projects. The integration of machine learning has further enhanced exploration by enabling deposit classification and geochemical modeling, especially in data-limited regions. Environmental and health challenges associated with REE mining, processing, and electronic waste (e-waste) recycling are studied, along with the expanding use of REEs in agriculture and medicine. Some recycling efforts offer promise for supply diversification, but significant technological and economic barriers remain. Ensuring a secure and sustainable REE supply will require integrated approaches combining advanced analytics, machine learning, responsible extraction, and coordinated policy efforts. The present review offers a general overview that can be useful for informing future studies and resource-related discussions. Full article
Show Figures

Figure 1

13 pages, 5432 KiB  
Communication
CSAMT-Driven Feasibility Assessment of Beishan Underground Research Laboratory
by Zhiguo An, Qingyun Di, Changmin Fu and Zhongxing Wang
Sensors 2025, 25(14), 4282; https://doi.org/10.3390/s25144282 - 9 Jul 2025
Viewed by 261
Abstract
The safe disposal of high-level radioactive waste (HLW) is imperative for sustaining China’s rapidly expanding nuclear power sector, with deep geological repositories requiring rigorous site evaluation via underground research laboratories (URLs). This study presents a controlled-source audio-frequency magnetotellurics (CSAMT) survey at the Xinchang [...] Read more.
The safe disposal of high-level radioactive waste (HLW) is imperative for sustaining China’s rapidly expanding nuclear power sector, with deep geological repositories requiring rigorous site evaluation via underground research laboratories (URLs). This study presents a controlled-source audio-frequency magnetotellurics (CSAMT) survey at the Xinchang site in China’s Beishan area, a region dominated by high-resistivity metamorphic rocks. To overcome electrical data acquisition challenges in such resistive terrains, salt-saturated water was applied to transmitting and receiving electrodes to enhance grounding efficiency. Using excitation frequencies of 9600 Hz to 1 Hz, the survey achieved a 1000 m investigation depth. Data processing incorporated static effect removal via low-pass filtering and smoothness-constrained 2D inversion. The results showed strong consistency between observed and modeled data, validating inversion reliability. Borehole correlations identified a 600-m-thick intact rock mass, confirming favorable geological conditions for URL construction. The study demonstrates CSAMT’s efficacy in characterizing HLW repository sites in high-resistivity environments, providing critical geophysical insights for China’s HLW disposal program. These findings advance site evaluation methodologies for deep geological repositories, though integrated multidisciplinary assessments remain essential for comprehensive site validation. This work underscores the feasibility of the Xinchang site while establishing a technical framework that is applicable to analogous challenging terrains globally. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

24 pages, 18983 KiB  
Article
Multi-Factor Analysis and Graded Remediation Strategy for Goaf Stability in Underground Metal Mines: Fluid–Solid Coupling Simulation and Genetic Algorithm-Based Optimization Approach
by Xuzhao Yuan, Xiaoquan Li, Xuefeng Li, Tianlong Su, Han Du and Danhua Zhu
Symmetry 2025, 17(7), 1024; https://doi.org/10.3390/sym17071024 - 30 Jun 2025
Viewed by 287
Abstract
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat [...] Read more.
To ensure the green, safe, and efficient extraction of mineral resources and promote sustainability, the stability of mined-out areas has become a critical factor affecting safe production and ecological restoration in underground metal mines. The instability of underground goafs poses a significant threat to mine safety, especially when irregular excavation patterns interact with high ground stress, exacerbating instability risks. Most existing studies lack a systematic and multidisciplinary integrated framework for comprehensive evaluation and management. This paper proposes a trinity research system of “assessment–optimization–governance”, integrating theoretical analysis, three-dimensional fluid–solid coupling numerical simulation, and a filling sequence optimization method based on genetic algorithms. An analysis of data measured from 243 pillars and 49 goafs indicates that approximately 20–30% of the pillars have a factor of safety (FoS) below 1.0, signaling immediate instability risks; additionally, 58% do not meet the threshold for long-term stability (FoS ≥ 1.5). Statistical and spatial analyses highlight that pillar width-to-height ratio (W/H) and cross-sectional area significantly influence stability; when W/H exceeds 1.5, FoS typically surpasses 2.0. Numerical simulations reveal pore water pressures of 1.4–1.8 MPa in deeper goafs, substantially reducing effective stress and accelerating plastic zone expansion. Stability classification categorizes the 49 goafs into 7 “poor”, 37 “moderate”, and 5 “good” zones. A genetic algorithm-optimized filling sequence prioritizes high-risk area remediation, reducing maximum principal stress by 60.96% and pore pressure by 28.6%. Cemented waste rock filling applied in high-risk areas, complemented by general waste rock filling in moderate-risk areas, significantly enhances overall stability. This integrated method provides a scientific foundation for stability assessment and dynamic remediation planning under complex hydrogeological conditions, offering a risk-informed and scenario-specific application of existing tools that improves engineering applicability. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

19 pages, 2774 KiB  
Article
Numerical Modeling on the Damage Behavior of Concrete Subjected to Abrasive Waterjet Cutting
by Xueqin Hu, Chao Chen, Gang Wang and Jenisha Singh
Buildings 2025, 15(13), 2279; https://doi.org/10.3390/buildings15132279 - 28 Jun 2025
Viewed by 291
Abstract
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical [...] Read more.
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical framework based on a coupled Smoothed Particle Hydrodynamics (SPH)–Finite Element Method (FEM) algorithm incorporating the Riedel–Hiermaier–Thoma (RHT) constitutive model is proposed to investigate the damage mechanism of concrete subjected to abrasive waterjet. Numerical simulation results show a stratified damage observation in the concrete, consisting of a crushing zone (plastic damage), crack formation zone (plastic and brittle damage), and crack propagation zone (brittle damage). Furthermore, concrete undergoes plastic failure when the shear stress on an element exceeds 5 MPa. Brittle failure due to tensile stress occurs only when both the maximum principal stress (σ1) and the minimum principal stress (σ3) are greater than zero at the same time. The damage degree (χ) of the concrete is observed to increase with jet diameter, concentration of abrasive particles, and velocity of jet. A series of orthogonal tests are performed to analyze the influence of velocity of jet, concentration of abrasive particles, and jet diameter on the damage degree and impact depth (h). The parametric numerical studies indicates that jet diameter has the most significant influence on damage degree, followed by abrasive concentration and jet velocity, respectively, whereas the primary determinant of impact depth is the abrasive concentration followed by jet velocity and jet diameter. Based on the parametric analysis, two optimized abrasive waterjet configurations are proposed: one tailored for rock fragmentation in tunnel boring machine (TBM) operations; and another for cutting reinforced concrete piles in shield tunneling applications. These configurations aim to enhance the efficiency and sustainability of excavation and tunneling processes through improved material removal performance and reduced mechanical wear. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 6417 KiB  
Article
Use of Fine Residues from Dimension Stone Processing as Stone Meal and Risk of Soil Salinization
by Mirna A. Neves, Gabriella T. Mateus, Eduardo B. Duarte and Diego L. Burak
Minerals 2025, 15(7), 680; https://doi.org/10.3390/min15070680 - 25 Jun 2025
Viewed by 306
Abstract
The processing of dimension stones for the construction sector involves transforming rock blocks into slabs via sawing and polishing. This process generates a fine-grained waste composed largely of rock powder derived from the processed rock. Several studies indicate that the rock powder produced [...] Read more.
The processing of dimension stones for the construction sector involves transforming rock blocks into slabs via sawing and polishing. This process generates a fine-grained waste composed largely of rock powder derived from the processed rock. Several studies indicate that the rock powder produced as a processing waste can release Ca, Mg, and K. However, alongside the release of macronutrients, there is the possibility of releasing undesirable constituents, such as Na, which is also a component of the minerals forming silicate rocks. This study aimed to analyze the risk of salinization that these materials may cause to soil if applied without a thorough evaluation of their composition. Samples were analyzed in terms of physical, chemical, and mineralogical parameters; exchangeable inorganic constituents; percentage of exchangeable sodium; and sodium adsorption ratio. The data indicate that residues stored in landfills in a random and unsorted manner do not fully meet the criteria established by Brazilian regulations for soil remineralizers. However, their characteristics suggest good potential for use in the agricultural sector, although this would require blending with other agricultural inputs and/or segregating residues from certain types of rocks to comply with current regulations. Full article
Show Figures

Figure 1

21 pages, 746 KiB  
Review
Waste Valorization Technologies in Tannery Sludge, Chromite, and Magnesite Mining
by Evgenios Kokkinos, Effrosyni Peleka, Evangelos Tzamos and Anastasios Zouboulis
Recycling 2025, 10(4), 123; https://doi.org/10.3390/recycling10040123 - 20 Jun 2025
Viewed by 376
Abstract
Waste valorization involves reusing and recycling waste materials to create useful products such as materials, chemicals, fuels, or energy. The primary goal is the transition to a circular economy model while minimizing the impacts of hazardous waste. Adopting such policies appears to be [...] Read more.
Waste valorization involves reusing and recycling waste materials to create useful products such as materials, chemicals, fuels, or energy. The primary goal is the transition to a circular economy model while minimizing the impacts of hazardous waste. Adopting such policies appears to be a one-way path due to the continuous increase in the consumption of raw materials. According to recent projections, by 2050, 180 billion tonnes of materials will be consumed annually. Since natural resources cannot meet these requirements, new sources must be explored. Waste can serve as an alternative source and cover at least part of the needs that arise. In this work, good practices regarding waste valorization are presented. The case studies examined include the waste/by-products of ultrabasic rocks resulting in chromite and magnesite mining, as well as the tannery sludge produced after the corresponding wastewater treatment. Full article
Show Figures

Figure 1

Back to TopTop