A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
Abstract
1. Introduction
2. Geochemistry and Mineralogy of REEs
2.1. Behavior in the Crust and Mantle
2.2. Common REE-Bearing Minerals
3. Deposit Types
3.1. Alkaline Igneous Complexes
3.2. Residual and Lateritic Deposits
3.3. Heavy Mineral Placer Deposits
3.4. Coal Deposits
3.5. REEs in Marine Sediments and Ocean Resources
Matrix Type | Ocean/Location | ΣREE/ΣREY (μg/g) | Reference |
---|---|---|---|
Cobalt crusts | Afanasy Nikitin Seamount (Eastern Indian Ocean) | 1727–2511 | Balaram et al. (2012) [108] |
Cobalt-rich crusts | Mid-Pacific Seamount | 2084 | Cui et al. (2009) [112] |
Ferromanganese crusts | Indian Ocean | 928–1570 | Nath et al. (1992) [113] |
Ferromanganese crusts | Scotia Sea | 3400 | Gonzalez et al. (2010) [114] |
Deep-sea sediments/mud | Indian Ocean | 399.92–875.27 | Li et al. (2023) [115] |
Deep-sea sediments/mud | Eastern South Pacific | 1000–2230 | Kato et al. (2011) [102] |
Deep-sea sediments/mud | North Pacific (Hawaii) | 400–1000 | Kato et al. (2011) [102] |
Marine mud | Indian Ocean | up to 920 | Yasukawa et al. (2015) [110] |
Fe-Mn nodules | Mid-Pacific Ocean | 1178–1434 | Bu et al. (2003) [116] |
Deep nodules | Pacific Ocean | 1326 | Piper (1974) [117] |
Shallow nodules | Pacific Ocean (shallow water) | 1398 | Piper (1974) [117] |
Bottom sediments | East Siberian Arctic Shelf | 104 to 220 | Sattarova et al. (2023) [118] |
Siliceous sediments | Central North Pacific Ocean | 810.4 | Sa et al. (2018) [119] |
REE-rich mud | Minamitorishima Island in the western North Pacific | >1446.2 (REE+Y) | Yamazaki et al. (2021) [120] |
Deep-sea mud | North Pacific Ocean near Minamitorishima Island, Japan | >5000 (REE+Y) | Takaya et al. (2018) [111] |
4. Global REE Projects
5. Machine Learning Applications in REE Research
5.1. Overview of Machine Learning Techniques in REE Research
5.2. LIBS and ML for REE Detection
5.3. ML in Ore Classification and Exploration
6. REE Recycling from E-Waste
7. Environmental and Health Hazards of REE Exposure
8. Agricultural Applications of REEs
9. Medical Applications of REEs
10. Advanced Engineering Applications of REEs
11. Conclusions
- REEs play a central role in renewable energy, electronics, and advanced technologies, but their extraction remains constrained by geochemical and environmental challenges.
- This review provides a comprehensive synthesis of REE-bearing deposit types, mineralogy, and emerging unconventional sources such as coal ash, marine sediments, and red mud.
- Machine learning is increasingly applied in REE exploration and analysis, offering solutions for data-limited environments and geochemical modeling.
- REE recycling from e-waste shows promise but is limited by technological, economic, and regulatory challenges that require integrated global strategies.
- Future research and policy should focus on responsible extraction, sustainable recycling, and the use of advanced analytical and computational tools to ensure long-term REE supply security.
Author Contributions
Funding
Conflicts of Interest
References
- Damhus, T.; Hartshorn, R.; Hutton, A. Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005; Royal Society of Chemistry: Cambridge, UK, 2005. [Google Scholar]
- Tyler, G. Rare earth elements in soil and plant systems—A review. Plant Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Atwood, D.A. The Rare Earth Elements: Fundamentals and Applications; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Zhou, B.; Li, Z.; Chen, C. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 2017, 7, 203. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; et al. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Liu, S.L.; Fan, H.R.; Liu, X.; Meng, J.; Butcher, A.R.; Yann, L.; Yang, K.F.; Li, X.C. Global rare earth elements projects: New developments and supply chains. Ore Geol. Rev. 2023, 157, 105428. [Google Scholar] [CrossRef]
- Zepf, V. Rare Earth Elements: What and Where They Are. In Rare Earth Elements; Springer Theses (Recognizing Outstanding Ph.D. Research); Springer: Berlin/Heidelberg, Germany, 2013; pp. 11–39. [Google Scholar]
- Mancheri, N.A. Chinese monopoly in rare earth elements: Supply–demand and industrial applications. China Rep. 2012, 48, 449–468. [Google Scholar] [CrossRef]
- Liang, T.; Li, K.; Wang, L. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 2014, 186, 1499–1513. [Google Scholar] [CrossRef]
- Patil, A.B.; Paetzel, V.; Struis, R.P.; Ludwig, C. Separation and recycling potential of rare earth elements from energy systems: Feed and economic viability review. Separations 2022, 9, 56. [Google Scholar] [CrossRef]
- Hayes-Labruto, L.; Schillebeeckx, S.J.; Workman, M.; Shah, N. Contrasting perspectives on China’s rare earths policies: Reframing the debate through a stakeholder lens. Energy Policy 2013, 63, 55–68. [Google Scholar] [CrossRef]
- Wübbeke, J. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 2013, 38, 384–394. [Google Scholar] [CrossRef]
- Han, A.P.; Ge, J.P.; Lei, Y.L. An adjustment in regulation policies and its effects on market supply: Game analysis for China’s rare earths. Resour. Policy 2015, 46, 30–42. [Google Scholar] [CrossRef]
- Lei, S.; Na, W.; Shuai, Z.; Li, G. Overview on China’s rare earth industry restructuring and regulation reforms. J. Resour. Ecol. 2017, 8, 213–222. [Google Scholar] [CrossRef]
- Hu, X.; Sun, B.; Wang, C.; Lim, M.K.; Wang, P.; Geng, X.; Yao, C.; Chen, W.-Q. Impacts of China’s exports decline in rare earth primary materials from a trade network-based perspective. Resour. Policy 2023, 81, 103321. [Google Scholar] [CrossRef]
- Van Gosen, B.S.; Verplanck, P.L.; Seal II, R.R.; Long, K.R.; Gambogi, J. Rare-Earth Elements. In Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; U.S. Geological Survey Professional Paper 1802; U.S. Geological Survey: Reston, VA, USA, 2017; pp. O1–O31. [Google Scholar]
- Ciacci, L.; Vassura, I.; Cao, Z.; Liu, G.; Passarini, F. Recovering the “new twin”: Analysis of secondary neodymium sources and recycling potentials in Europe. Resour. Conserv. Recycl. 2019, 142, 143–152. [Google Scholar] [CrossRef]
- Humphries, M. Critical Minerals and US Public Policy; Report No. R45810; Congressional Research Service: Washington, DC, USA, 2019.
- Mancheri, N.A.; Sprecher, B.; Bailey, G.; Ge, J.; Tukker, A. Effect of Chinese policies on rare earth supply chain resilience. Resour. Conserv. Recycl. 2019, 142, 101–112. [Google Scholar] [CrossRef]
- White, H. 100-Day Reviews Under Executive Order 14017: Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering Broad-Based Growth; The White House: Washington, DC, USA, 2021.
- Geng, Y.; Sarkis, J.; Bleischwitz, R. How to build a circular economy for rare-earth elements. Nature 2023, 619, 248–251. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publication: Oxford, UK, 1985; p. 312. [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Abou El-Anwar, E.A. Geochemical Evaluation of the Rare Earth and Trace Elements in the Upper Eocene Carbonate of Abu Rimth Formation, Southern Galala Plateau, Eastern Desert, Egypt. J. Umm Al-Qura Univ. Appl. Sci. 2025, 1–11. [Google Scholar] [CrossRef]
- Wakita, H.; Rey, P.; Schmitt, R.A. Abundances of the 14 Rare Earth Elements and 12 Other Elements in Apollo 12 Samples. In Proceedings of the Second Lunar Science Conference; Levinson, A.A., Ed.; MIT Press: Cambridge, MA, USA, 1971; pp. 1319–1329. [Google Scholar]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- Möller, P. Rare Earth Mineral Deposits and Their Industrial Importance. In Lanthanides, Tantalum and Niobium; Möller, P., Černý, P., Saupé, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 171–188. [Google Scholar]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Haxel, G.B.; Hedrick, J.B.; Orris, G.J. Rare Earth Elements–Critical Resources for High Technology; U.S. Geological Survey Fact Sheet 087–02; U.S. Geological Survey: Reston, VA, USA, 2002.
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Rezaei, M.; Gabitov, R.; Sadekov, A. Crystallographic Influence on Elemental Uptake by Calcite from Artificial Seawater. In Proceedings of the GSA Connects 2023, Pittsburgh, PA, USA, 15–18 October 2023; Geological Society of America: Boulder, CO, USA, 2023. Paper No. 254-11. [Google Scholar]
- Rezaei, M.; Gabitov, R.; Sadekov, A.; Perez-Huerta, A.; Borrelli, C.; Stiles, A. Elemental uptake by different calcite crystal faces: An in situ study. Crystals 2024, 14, 442. [Google Scholar] [CrossRef]
- Gabitov, R.I.; Sadekov, A.; Perez-Huerta, A.; Borrelli, C.; Rezaei, M. Elemental uptake by individual calcite crystals. In Proceedings of the 2022 Goldschmidt Conference, Honolulu, HI, USA, 11–15 July 2022. [Google Scholar]
- Meshram, P.; Pandey, B. Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries–A resource overview. Resour. Policy 2019, 60, 9–22. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Andreoli, M.; Smith, C.; Watkeys, M.; Moore, J.; Ashwal, L.; Hart, R. The geology of the Steenkampskraal monazite deposit, South Africa; implications for REE-Th-Cu mineralization in charnockite-granulite terranes. Econ. Geol. 1994, 89, 994–1016. [Google Scholar] [CrossRef]
- Hussain, A.; Zhao, K.-D.; Arif, M.; Palmer, M.R.; Chen, W.; Zhang, Q.; Li, Q.; Jiang, S.-Y.; Girei, M.B. Geochronology, mineral chemistry and genesis of REE mineralization in alkaline rocks from the Kohistan Island Arc, Pakistan. Ore Geol. Rev. 2020, 126, 103749. [Google Scholar] [CrossRef]
- Su, J.-H.; Zhao, X.-F.; Li, X.-C.; Su, Z.-K.; Liu, R.; Qin, Z.-J.; Chen, M. Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite-alkaline complexes, Central China: Constraints from in situ elemental and isotopic analyses of phosphate minerals. Am. Mineral. 2021, 106, 1545–1558. [Google Scholar] [CrossRef]
- Dostal, J.; Gerel, O. Rare earth element deposits in Mongolia. Minerals 2023, 13, 129. [Google Scholar] [CrossRef]
- Harben, P. The Industrial Mineral Handy Book—A Guide to Markets, Specifications and Prices, 4th ed.; Industrial Mineral Information: Worcester Park, UK, 2002; Volume 412. [Google Scholar]
- Dostal, J. Rare earth element deposits of alkaline igneous rocks. Resources 2017, 6, 34. [Google Scholar] [CrossRef]
- Cox, C.; Kynicky, J. The rapid evolution of speculative investment in the REE market before, during, and after the rare earth crisis of 2010–2012. Extr. Ind. Soc. 2018, 5, 8–17. [Google Scholar] [CrossRef]
- European Commission. Critical Materials for Strategic Technologies and Sectors in the EU—A Foresight Study; European Union Technical Report; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef] [PubMed]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the rare earth elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Wall, F. Rare earth elements: Minerals, mines, magnets (and more). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Wall, F.; Williams, C.T.; Woolley, A.R.; Stanley, C.J. Pyrochlore in Niobium Ore Deposits. In Mineral Deposits: Processes to Processing, Proceedings of the SGA Biennial Meeting (5th) and IAGOD Quadrennial Symposium (10th), London, UK, 22–25 August 1999; A.A. Balkema: Rotterdam, The Netherlands, 1999; pp. 687–690. [Google Scholar]
- Mitchell, R.H. Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol. Rev. 2015, 64, 626–641. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Vasyukova, O.V. The economic geology of scandium, the runt of the rare earth element litter. Econ. Geol. 2018, 113, 973–988. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Siegfried, P.R.; Wall, F.; O’Neill, M.; Brooker, R.A.; Fallon, E.K.; Pickles, J.R.; Banks, D.A. The origin and composition of carbonatite-derived carbonate-bearing fluorapatite deposits. Miner. Depos. 2020, 56, 863–884. [Google Scholar] [CrossRef]
- Hou, Z.; Tian, S.; Xie, Y.; Yang, Z.; Yuan, Z.; Yin, S.; Yi, L.; Fei, H.; Zou, T.; Bai, G.; et al. The Himalayan Mianning–Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China. Ore Geol. Rev. 2009, 36, 65–89. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Deady, E.A.; Beard, C.D.; Broom-Fendley, S.; Elliott, H.A.L.; van den Berg, F.; Öztürk, H. Carbonatites and alkaline igneous rocks in post-collisional settings: Storehouses of rare earth elements. J. Earth Sci. 2021, 32, 1332–1358. [Google Scholar] [CrossRef]
- Bhushan, S.K.; Somani, O.P. Rare earth elements and yttrium potentials of Neoproterozoic peralkaline Siwana granite of Malani igneous suite, Barmer district, Rajasthan. J. Geol. Soc. India 2019, in press. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Van Gosen, B.S.; Seal, R.R.; McCafferty, A.E. A Deposit Model for Carbonatite and Peralkaline Intrusion-Related Rare Earth Element Deposits; U.S. Geological Survey Scientific Investigations Report 2010-5070-J; U.S. Geological Survey: Reston, VA, USA, 2014; p. 58.
- Singh, H.; Sadiq, M.; Sharma, B.B. Exploration for rare earth elements in North East India. Curr. Sci. 2014, 107, 178–180. [Google Scholar]
- Bhushan, S.K.; Kumar, A. First carbonatite-hosted REE deposit from India. J. Geol. Soc. India 2013, 81, 41–60. [Google Scholar] [CrossRef]
- Bhushan, S.K. Geology of the Kamthai rare earth deposit. J. Geol. Soc. India 2015, 85, 537–546. [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Viladkar, S.G.; Ripp, G.S.; Burtseva, M.M.V. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can. Mineral. 2009, 47, 1105–1116. [Google Scholar] [CrossRef]
- Oliveira, S.M.B.; Imbernon, R.A.L. Weathering alteration and related REE concentration in the Catalão I carbonatite complex, central Brazil. J. S. Am. Earth Sci. 1998, 11, 379–388. [Google Scholar] [CrossRef]
- Witt, W.; Hammond, D.; Hughes, M. Geology of the Ngualla carbonatite complex, Tanzania, and origin of the weathered bastnaesite zone REE ore. Ore Geol. Rev. 2019, 105, 28–54. [Google Scholar] [CrossRef]
- Zhukova, I.A.; Stepanov, A.S.; Jiang, S.-Y.; Murphy, D.; Mavrogenes, J.; Allen, C.; Chen, W.; Bottrill, R. Complex REE systematics of carbonatites and weathering products from uniquely rich Mount Weld REE deposit, Western Australia. Ore Geol. Rev. 2021, 139, 104539. [Google Scholar] [CrossRef]
- Walter, A.; Lusty, P.; Chetmyn, C.; Hill, A. Rare Earth Elements; British Geological Survey, Natural Environment Research Council; Centre of Sustainable Mineral Development: Cornwall, UK, 2010. [Google Scholar]
- Castor, S.B.; Hendrik, J.B. Rare Earth Elements. In Industrial Minerals and Rocks: Commodities, Markets, and Uses, 7th ed.; Kogel, J.E., Trivedi, N.C., Barker, J.M., Krukowski, S.T., Eds.; Society for Mining, Metallurgy, and Exploration: Englewood, CO, USA, 2006; pp. 769–792. [Google Scholar]
- Green, C.; Simandl, G.J.; Paradis, S.; Katay, F.; Hoshino, M.; Kon, Y.; Kodama, S.; Graf, C. Geological setting of the Rock Canyon Creek REE-fluorite deposit, British Columbia, Canada. In Geological Fieldwork 2016; Report 2017-1; British Columbia Geological Survey, Ministry of Energy and Mines: Victoria, BC, Canada, 2017; pp. 195–203. [Google Scholar]
- Kanazawa, Y.; Kamitani, M. Rare earth minerals and resources in the world. J. Alloys Compd. 2006, 408, 1339–1343. [Google Scholar] [CrossRef]
- Yang, X.J.; Lin, A.J.; Li, X.L.; Wu, Y.D.; Zhou, W.B.; Chen, Z.H. China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev. 2013, 8, 131–136. [Google Scholar] [CrossRef]
- Huang, J.; Tan, W.; Liang, X.; He, H.; Ma, L.; Bao, Z.; Zhu, J. REE fractionation controlled by REE speciation during formation of the Renju regolith-hosted REE deposits in Guangdong Province, South China. Ore Geol. Rev. 2021, 134, 104172. [Google Scholar] [CrossRef]
- Zhu, X.P.; Zhang, B.; Ma, G.T.; Pan, Z.W.; Hu, Z.G.; Zhang, B.T. Mineralization of ion-adsorption type rare earth deposits in Western Yunnan, China. Ore Geol. Rev. 2022, 148, 104984. [Google Scholar] [CrossRef]
- Krakatoa Resources Ltd. MT Clere Rare Earth Project: 9 October 2020; Company Report; Krakatoa Resources Ltd.: Perth, WA, Australia, 2020. [Google Scholar]
- Li, X.C.; Zhou, M.F. Hydrothermal alteration of monazite-(Ce) and chevkinite-(Ce) from the Sin Quyen Fe-Cu-LREE-Au deposit, northwestern Vietnam. Am. Mineral. J. Earth Planet. Mater. 2017, 102, 1525–1541. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Honda, T.; Tanaka, M.; Tanaka, K.; Takahashi, Y. Discovery of ion-adsorption type deposits of rare earth elements (REE) in Southwest Japan with speciation of REE by extended X-ray absorption fine structure spectroscopy. Geochem. J. 2018, 52, 415–425. [Google Scholar] [CrossRef]
- Bao, Z.; Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Valeton, I. Developments in Soil Science 1. In Bauxites; Elsevier: Amsterdam, The Netherlands, 1972; ISBN 978-0-444-40888-4. [Google Scholar]
- Vind, J.; Malfliet, A.; Blanpain, B.; Tsakiridis, P.E.; Tkaczyk, A.H.; Vassiliadou, V.; Panias, D. Rare earth element phases in bauxite residue. Minerals 2018, 8, 32. [Google Scholar] [CrossRef]
- Komar, P.D. The entrainment, transport and sorting of heavy minerals by waves and currents. Dev. Sedimentol. 2007, 58, 3–48. [Google Scholar]
- Amalan, K.; Ratnayake, A.S.; Ratnayake, N.P.; Weththasinghe, S.M.; Dushyantha, N.; Lakmali, N.; Premasiri, R. Influence of nearshore sediment dynamics on the distribution of heavy mineral placer deposits in Sri Lanka. Environ. Earth Sci. 2018, 77, 1–13. [Google Scholar] [CrossRef]
- Orris, G.J.; Grauch, R.I. Rare Earth Element Mines, Deposits, and Occurrences; U.S. Geological Survey Open File Report 02-189; U.S. Geological Survey: Reston, VA, USA, 2002.
- Cronan, D.S. Handbook of Marine Mineral Deposits; CRC Marine Science Series; CRC Press: Boca Raton, FL, USA, 1999; Volume 17, ISBN 0-8493-8429-X. [Google Scholar]
- Franus, W.; Wiatros-Motyka, M.M.; Wdowin, M. Coal fly ash as a resource for rare earth elements. Environ. Sci. Pollut. Res. 2015, 22, 9464–9474. [Google Scholar] [CrossRef]
- Ketris, M.Á.; Yudovich, Y.E. Estimations of Clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu surface mine, Jungar coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Finkelman, R.B. Trace and Minor Elements in Coal. In Organic Geochemistry: Principles and Applications; Springer: Dordrecht, The Netherlands, 1993; pp. 593–607. [Google Scholar]
- Hower, J.C.; Granite, E.J.; Mayfield, D.B.; Lewis, A.S.; Finkelman, R.B. Notes on contributions to the science of rare earth element enrichment in coal and coal combustion byproducts. Minerals 2016, 6, 32. [Google Scholar] [CrossRef]
- Fu, B.; Hower, J.C.; Zhang, W.; Luo, G.; Hu, H.; Yao, H. A review of rare earth elements and yttrium in coal ash: Content, modes of occurrences, combustion behavior, and extraction methods. Prog. Energy Combust. Sci. 2021, 88, 100954. [Google Scholar] [CrossRef]
- Laudal, D.A.; Benson, S.A.; Addleman, R.S.; Palo, D. Leaching behavior of rare earth elements in Fort Union lignite coals of North America. Int. J. Coal Geol. 2018, 191, 112–124. [Google Scholar] [CrossRef]
- Zhang, W.; Honaker, R.Q. Rare earth elements recovery using staged precipitation from a leachate generated from coarse coal refuse. Int. J. Coal Geol. 2018, 195, 189–199. [Google Scholar] [CrossRef]
- Hedin, B.C.; Capo, R.C.; Stewart, B.W.; Hedin, R.S.; Lopano, C.L.; Stuckman, M.Y. The evaluation of critical rare earth element (REE) enriched treatment solids from coal mine drainage passive treatment systems. Int. J. Coal Geol. 2019, 208, 54–64. [Google Scholar] [CrossRef]
- Costis, S.; Mueller, K.K.; Coudert, L.; Neculita, C.M.; Reynier, N.; Blais, J.-F. Recovery potential of rare earth elements from mining and industrial residues: A review and case studies. J. Geochem. Explor. 2021, 221, 106699. [Google Scholar] [CrossRef]
- Blissett, R.S.; Smalley, N.; Rowson, N.A. An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel 2014, 119, 236–239. [Google Scholar] [CrossRef]
- Jarvis, I. Phosphorite geochemistry: State-of-the-art and environmental concerns. Eclogae Geol. Helv. 1994, 87, 643–700. [Google Scholar]
- Auer, G.; Reuter, M.; Hauzenberger, C.A.; Piller, W.E. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates. Geochim. Cosmochim. Acta 2017, 203, 140–156. [Google Scholar] [CrossRef]
- Pufahl, P.K.; Groat, L.A. Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper. Econ. Geol. 2017, 112, 483–516. [Google Scholar] [CrossRef]
- Wang, Z.; Hill, R.; Williams, G.; Dwyer, G.S.; Hu, J.; Schnug, E.; Bol, R.; Sun, Y.; Coleman, D.S.; Liu, X.-M. Lead isotopes and rare earth elements geochemistry of global phosphate rocks: Insights into depositional conditions and environmental tracing. Chem. Geol. 2023, 639, 121715. [Google Scholar] [CrossRef]
- Emsbo, P.; McLaughlin, P.I.; Breit, G.N.; du Bray, E.A.; Koenig, A.E. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Res. 2015, 27, 776–785. [Google Scholar] [CrossRef]
- Buccione, R.; Kechiched, R.; Mongelli, G.; Sinisi, R. REEs in the North Africa P-bearing deposits, paleoenvironments, and economic perspectives: A review. Minerals 2021, 11, 214. [Google Scholar] [CrossRef]
- Linares, E.; Velasquez, G.; Manrique, J.; Monsalve, J.; Mónaco, S.L.; Shumlyanskyy, L. REE + Y signatures of the Navay phosphate deposit, SW Venezuela: Seawater paleoredox conditions and diagenetic implications. J. S. Am. Earth Sci. 2023, 129, 104532. [Google Scholar] [CrossRef]
- Ahmed, A.; Aseri, A.; Ali, K. Geological and geochemical evaluation of phosphorite deposits in northwestern Saudi Arabia as a possible source of trace and rare-earth elements. Ore Geol. Rev. 2022, 144, 104854. [Google Scholar] [CrossRef]
- Hein, J.R.; Conrad, T.A.; Staudigel, H. Seamount mineral deposits, a source of rare-metals for high technology industries. Oceanography 2010, 23, 184–189. [Google Scholar] [CrossRef]
- Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 2011, 4, 535–539. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, Z.; Gonzalez, F.J.; Zheng, X.; Li, G.; Luo, Y.; Mo, A.; Xu, A.; Wang, S. Rare earth elements and yttrium in ferromanganese deposits from the South China Sea: Distribution, composition and resource considerations. Acta Oceanol. Sin. 2018, 37, 41–54. [Google Scholar] [CrossRef]
- Nath, B.N.; Roelandts, I.; Sudhakar, M.; Plüger, W.L.; Balaram, V. Cerium anomaly variations in ferromanganese nodules and crusts from the Indian Ocean. Mar. Geol. 1994, 120, 385–400. [Google Scholar] [CrossRef]
- Banakar, V.K.; Borole, D.V. Depth profiles of 230Th excess, transition metals and mineralogy of ferromanganese crusts of the Central Indian basin and implications for paleo-oceanographic influence on crust genesis. Chem. Geol. 1991, 94, 33–44. [Google Scholar] [CrossRef]
- Sander, S.G.; Koschinsky, A. Metal flux from hydrothermal vents increased by organic complexation. Nat. Geosci. 2011, 4, 145–150. [Google Scholar] [CrossRef]
- Prakash, L.S.; Ray, D.; Paropkari, A.L.; Mudholkar, A.V.; Satyanarayanan, M.; Sreenivas, B.; Chandrasekharam, D.; Kota, D.; Raju, K.A.K.; Kaisary, S.; et al. Distribution of REE and yttrium among major geochemical phases of marine Fe-Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits. Chem. Geol. 2012, 312–313, 127–137. [Google Scholar] [CrossRef]
- Balaram, V.; Banakar, V.K.; Subramanyam, K.S.V.; Roy, P.; Satyanarayanan, M.; Mohan, M.R.; Sawant, S.S. Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean. Curr. Sci. 2012, 103, 1334–1338. [Google Scholar]
- Krishna, K.S.; Bull, J.M.; Ishizuka, O.; Scrutton, R.A.; Jaishankar, S.; Banakar, V.K. Growth of the Afanasy Nikitin Seamount and its relationship with the 85°E ridge, northeastern Indian Ocean. J. Earth Syst. Sci. 2014, 123, 33–47. [Google Scholar] [CrossRef]
- Yasukawa, K.; Nakamura, K.; Fujinaga, K.; Machida, S.; Ohta, J.; Takaya, Y.; Kato, Y. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean. Geochem. J. 2015, 49, 621–635. [Google Scholar] [CrossRef]
- Takaya, Y.; Yasukawa, K.; Kawasaki, T.; Fujinaga, K.; Ohta, J.; Usui, Y.; Nakamura, K.; Kimura, J.; Chang, Q.; Hamada, M.; et al. The tremendous potential of deep-sea mud as a source of rare earth elements. Sci. Rep. 2018, 8, 8. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, J.; Ren, X.; Shi, X. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M seamount. J. Rare Earths 2009, 27, 169–176. [Google Scholar] [CrossRef]
- Nath, B.N.; Balaram, V.; Sudhakar, M.; Pluger, W.L. Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Mar. Chem. 1992, 38, 185–208. [Google Scholar] [CrossRef]
- Gonzalez, F.J.; Somoza, L.; Maldonado, A.; Lunar, R.; Martinez-Frias, J.; Martin-Rubi, J.A.; Carrion, M.C. High technology elements in Co-rich ferromanganese crusts from the Scotia Sea. Rev. Soc. Esp. Mineral 2010, 13, 113–114. [Google Scholar]
- Li, J.; Shi, X.; Huang, M.; Yu, M.; Bi, D.; Song, Z.; Shen, F.; Liu, J.; Zhang, Y.; Wang, H.; et al. The transformation and accumulation mechanism of rare earth elements in deep-sea sediments from the Wharton Basin, Indian Ocean. Ore Geol. Rev. 2023, 161, 105655. [Google Scholar] [CrossRef]
- Bu, W.R.; Shi, X.F.; Peng, J.T. Geochemical characteristics of seamount ferromanganese nodules from mid-Pacific Ocean. Chin. Sci. Bull. 2003, 48, 98–105. [Google Scholar] [CrossRef]
- Piper, D.Z. Rare earth elements in ferromanganese nodules and other marine phases. Geochim. Cosmochim. Acta 1974, 38, 1007–1022. [Google Scholar] [CrossRef]
- Yakovenko, V.G.; Yakovenko, N.M.; Rusanov, M.S.; Val’tsiferov, D.A. Formation Conditions and Characteristics of Synsedimentary Diagenetic Apatite in Phosphorites of the Eocene–Oligocene Dnipro–Donets Depression (Ukraine). Russ. Geol. Geophys. 2023, 64, 1733–1747. [Google Scholar]
- Sa, R.; Sun, X.; He, G.; Xu, L.; Pan, Q.; Liao, J.; Zhu, K.; Deng, X. Enrichment of Rare Earth Elements in Siliceous Sediments under Slow Deposition: A Case Study of the Central North Pacific. Ore Geol. Rev. 2018, 94, 12–23. [Google Scholar] [CrossRef]
- Yamazaki, T.; Nakatani, N.; Arai, R.; Sekimoto, T.; Katayama, H. Combined Mining and Pulp-Lifting of Ferromanganese Nodules and Rare-Earth Element-Rich Mud around Minamitorishima Island in the Western North Pacific: A Prefeasibility Study. Minerals 2021, 11, 310. [Google Scholar] [CrossRef]
- European Parliament. European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU; European Parliament: Brussels, Belgium, 2017. [Google Scholar]
- El Azhari, H.; Cherif, E.K.; El Halimi, R.; Azzirgue, E.M.; Ou Larbi, Y.; Coren, F.; Salmoun, F. Predicting the Production and Depletion of Rare Earth Elements and Their Influence on Energy Sector Sustainability through the Utilization of Multilevel Linear Prediction Mixed-Effects Models with R Software. Sustainability 2024, 16, 1951. [Google Scholar] [CrossRef]
- Bishop, B.A.; Robbins, L.J. Using machine learning to identify indicators of rare earth element enrichment in sedimentary strata with applications for metal prospectivity. J. Geochem. Explor. 2024, 258, 107388. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mastalerz, M.; Drobniak, A.; Karacan, C.Ö. Machine learning and data augmentation approach for identification of rare earth element potential in Indiana coals, USA. Int. J. Coal Geol. 2022, 259, 104054. [Google Scholar] [CrossRef]
- Lindsay, J.J.; Hughes, H.S.R.; Yeomans, C.M.; Andersen, J.C.Ø.; McDonald, I. A machine learning approach for regional geochemical data: Platinum-group element geochemistry vs. geodynamic settings of the North Atlantic Igneous Province. Geosci. Front. 2021, 12, 101098. [Google Scholar] [CrossRef]
- Hu, B.; Zeng, L.-P.; Liao, W.; Wen, G.; Hu, H.; Li, M.Y.H.; Zhao, X.-F. The origin and discrimination of high-Ti magnetite in magmatic-hydrothermal systems: Insight from machine learning analysis. Econ. Geol. 2022, 117, 1613–1627. [Google Scholar] [CrossRef]
- Montross, S.N.; Bagdonas, D.; Paronish, T.; Bean, A.; Gordon, A.; Creason, C.G.; Thomas, B.; Phillips, E.; Britton, J.; Quillian, S.; et al. On a unified core characterization methodology to support the systematic assessment of rare earth elements and critical minerals bearing unconventional carbon ores and sedimentary strata. Minerals 2022, 12, 1159. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Yang, M.; Ren, Z.J. Machine learning in environmental research: Common pitfalls and best practices. Environ. Sci. Technol. 2023, 57, 17671–17689. [Google Scholar] [CrossRef] [PubMed]
- Gregory, D.D.; Cracknell, M.J.; Large, R.R.; McGoldrick, P.; Kuhn, S.; Maslennikov, V.V.; Baker, M.J.; Fox, N.; Belousov, I.; Figueroa, M.C.; et al. Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets. Econ. Geol. 2019, 114, 771–786. [Google Scholar] [CrossRef]
- Schnitzler, N.; Ross, P.S.; Gloaguen, E. Using machine learning to estimate a key missing geochemical variable in mining exploration: Application of the random forest algorithm to multi-sensor core logging data. J. Geochem. Explor. 2019, 205, 106344. [Google Scholar] [CrossRef]
- Lopez, G.P.; Rokosh, C.D.; Weiss, J.A.; Pawlowicz, J.G. Inorganic Geochemistry of Bulk Samples from Selected Alberta Geological Units (Tabular Data, Tab-Delimited Format); Alberta Energy Regulator/Alberta Geological Survey, AER/AGS Digital Data 2019, 2019-0021; Alberta Energy Regulator: Calgary, AB, Canada, 2019. [Google Scholar]
- Jensen, G.K.S.; Pollard, A.; Rostron, B.J. Lithium Concentration in the Duperow Formation: Preliminary Results of Geochemical Analysis of Core Samples from Two Wells in Southeastern Saskatchewan. In Summary of Investigations 2020; Miscellaneous Report 2020-4.1, Paper A-2; Saskatchewan Geological Survey, Saskatchewan Ministry of Energy and Resources: Regina, SK, Canada, 2020; Volume 1. [Google Scholar]
- Farrell, Ú.C.; Samawi, R.; Anjanappa, S.; Klykov, R.; Adeboye, O.O.; Agic, H.; Ahm, A.C.; Boag, T.H.; Bowyer, F.; Brocks, J.J.; et al. The sedimentary geochemistry and paleoenvironments project. Geobiology 2021, 19, 545–556. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Zhang, Z.; Qian, D.; Sun, S.; Liu, X.; Liu, Z. Transformer-based deep learning models for quantification of La, Ce, and Nd in rare earth ores using laser-induced breakdown spectroscopy. Talanta 2025, 292, 127937. [Google Scholar] [CrossRef]
- Tian, L.; Shen, L.; Tian, D.; Ge, Y.; Sun, Z.; Liu, Y. Rare earth metals detection and recognition based on laser-induced breakdown spectroscopy and machine learning. Opt. Express 2023, 31, 20545–20558. [Google Scholar] [CrossRef]
- Wang, Y.; Coint, N.; Mansur, E.T.; Acosta-Gongora, P.; Miranda, A.C.R.; Nasuti, A.; Baranwal, V.C. Leveraging domain expertise in machine learning for critical metal prospecting in the Oslo Rift: A case study for Fe-Ti-P-Rare Earth Element mineralization. Minerals 2024, 14, 377. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Feng, Y.; Wang, Z.; Rosso, K.M.; Guo, X.; Zhang, X. Data-driven insights into rare earth mineralization: Machine learning applications using functional material synthesis data. arXiv 2025, arXiv:2504.07007. [Google Scholar]
- Omodara, L.; Pitkäaho, S.; Turpeinen, E.-M.; Saavalainen, P.; Oravisjärvi, K.; Keiski, R.L. Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications—A review. J. Clean. Prod. 2019, 236, 117573. [Google Scholar] [CrossRef]
- Bai, R.; Yang, F.; Meng, L.; Zhao, Z.; Guo, W.; Cai, C.; Zhang, Y. Polyethylenimine functionalized and scaffolded graphene aerogel and the application in the highly selective separation of thorium from rare earth. Mater. Des. 2021, 197, 109195. [Google Scholar] [CrossRef]
- Batinic, B.; Vaccari, M.; Savvilotidou, V.; Kousaiti, A.; Gidarakos, E.; Marinkovic, T.; Fiore, S. Applied WEEE pre-treatment methods: Opportunities to maximizing the recovery of critical metals. Glob. Nest J. 2018, 20, 706–711. [Google Scholar]
- Lucas, J.; Lucas, P.; Le Mercier, T.; Rollat, A.; Davenport, W. Rare Earths in Rechargeable Batteries. In Rare Earths; Elsevier: Oxford, UK, 2015; pp. 167–180. [Google Scholar]
- Hsu, E.; Barmak, K.; West, A.C.; Park, A.-H.A. Advancements in the treatment and processing of electronic waste with sustainability: A review of metal extraction and recovery technologies. Green Chem. 2019, 21, 919–936. [Google Scholar] [CrossRef]
- Li, Z.; Diaz, L.A.; Yang, Z.; Jin, H.; Lister, T.E.; Vahidi, E.; Zhao, F. Comparative life cycle analysis for value recovery of precious metals and rare earth elements from electronic waste. Resour. Conserv. Recycl. 2019, 149, 20–30. [Google Scholar] [CrossRef]
- Jadhao, P.R.; Ahmad, E.; Pant, K.K.; Nigam, K.D.P. Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication. Waste Manag. 2020, 118, 150–160. [Google Scholar] [CrossRef]
- de Oliveira, R.P.; Benvenuti, J.; Espinosa, D.C.R. A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes. Renew. Sust. Energ. Rev. 2021, 145, 111090. [Google Scholar] [CrossRef]
- Pokhrel, P.; Lin, S.-L.; Tsai, C.-T. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment. J. Environ. Manag. 2020, 276, 111276. [Google Scholar] [CrossRef]
- Sepúlveda, A.; Schluep, M.; Renaud, F.G.; Streicher, M.; Kuehr, R.; Hagelüken, C.; Gerecke, A.C. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipment during recycling: Examples from China and India. Environ. Impact Assess. Rev. 2010, 30, 28–41. [Google Scholar] [CrossRef]
- Parajuly, K.; Fitzpatrick, C.; Muldoon, O.; Kuehr, R. End-of-life management of electronics: Back to the future. Resour. Conserv. Recycl. 2020, 158, 104800. [Google Scholar]
- ISO 14001:2015; Environmental Management Systems—Requirements with Guidance for Use. 3rd ed. Confirmed 2025. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- Abrahami, S.T.; van den Boogaart, K.G.; van den Berg, G.; Stolle, A.; Ondruschka, B. Recovery of rare earth elements from Nd–Fe–B magnets using acetic acid and ultrasound. Green Chem. Lett. Rev. 2015, 8, 30–36. [Google Scholar]
- Chancerel, P.; Rotter, V.S. Recovery of rare and precious metals from waste electrical and electronic equipment (WEEE): A review of current literature. Waste Manag. Res. 2009, 27, 535–545. [Google Scholar]
- Vanessa, F.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global e-Waste Monitor 2020; United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA): Bonn, Germany; Geneva, Switzerland; Rotterdam, The Netherlands, 2020; Volume 120. [Google Scholar]
- Thakur, P.; Kumar, S. Evaluation of e-waste status, management strategies, and legislations. Int. J. Environ. Sci. Technol. 2022, 19, 6957–6966. [Google Scholar] [CrossRef]
- Li, K.; Liang, T.; Wang, L.; Tian, S. Inhalation exposure and potential health risk estimation of lanthanides elements in PM2.5 associated with rare earth mining areas: A case of Baotou city, northern China. Environ. Geochem. Health 2018, 40, 2795–2805. [Google Scholar] [CrossRef]
- Qiao, X.; Cui, W.; Gao, S.; Zhi, Q.; Li, B.; Fan, Y.; Liu, L.; Gao, J.; Tan, H. Occupational exposure to rare earth elements: Assessment of external and internal exposure. Environ. Pollut. 2022, 309, 119801. [Google Scholar] [CrossRef]
- Dai, L.; Ge, J.; Wang, L.; Wan, X.; Guo, G.; Liang, T.; Bolan, N.; Rennert, T.; Rinklebe, J. Hair-biomonitoring assessment of rare-earth-element exposure in residents of the largest rare-earth mining and smelting area of China. Environ. Int. 2023, 179, 108177. [Google Scholar] [CrossRef]
- Brouziotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of rare earth elements: An overview on human health impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Qiu, F.; Zhang, H.; Cui, Y.; Zhang, L.; Zhou, W.; Huang, M.; Xia, W.; Xu, S.; Li, Y. Associations of maternal urinary rare earth elements individually and in mixtures with neonatal size at birth. Environ. Pollut. 2024, 343, 123163. [Google Scholar] [CrossRef]
- Pietsch, T.J.; Guo, Z. Environmental impact of rare earth mining and processing. Environ. Geochem. Health 2021, 43, 2925–2940. [Google Scholar]
- Klinger, J.M. Rare earth elements: Development, sustainability, and policy issues. Resour. Policy 2015, 46, 118–131. [Google Scholar] [CrossRef]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef]
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A. Mineral supply for sustainable development requires resource governance. Nature 2017, 543, 367–372. [Google Scholar] [CrossRef]
- Freitas, R.; Cardoso, C.E.D.; Costa, S.; Morais, T.; Moleiro, P.; Lima, A.F.D.; Soares, M.; Figueiredo, S.; Águeda, T.L.; Rocha, P.; et al. New insights on the impacts of e-waste towards marine bivalves: The case of the rare earth element Dysprosium. Environ. Pollut. 2020, 260, 113859. [Google Scholar] [CrossRef]
- Odnevall, I.; Brookman-Amissah, M.; Stábile, F.; Ekvall, M.T.; Herting, G.; Bermeo Vargas, M.; Messing, M.E.; Sturve, J.; Hansson, L.A.; Isaxon, C.; et al. Characterization and toxic potency of airborne particles formed upon waste from electrical and electronic equipment waste recycling: A case study. ACS Environ. Au 2023, 3, 370–382. [Google Scholar] [CrossRef]
- Cashion, W.; Weisbord, S.D. Radiographic contrast media and the kidney. Clin. J. Am. Soc. Nephrol. 2022, 17, 1234–1242. [Google Scholar] [CrossRef]
- Pang, X.; Li, D.; Peng, A. Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environ. Sci. Pollut. Res. 2002, 9, 143–148. [Google Scholar] [CrossRef]
- Oliveira, C.; Ramos, S.J.; Siqueira, J.O.; Faquin, V.; de Castro, E.M.; Amaral, D.C.; Techio, V.H.; Coelho, L.C.; Silva, P.H.; Schnug, E.; et al. Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants. Ecotoxicol. Environ. Saf. 2015, 122, 136–144. [Google Scholar] [CrossRef]
- Emmanuel, E.S.C.; Anandkumar, B.; Natesan, M.; Maruthamuthu, S. Efficacy of rare earth elements on the physiological and biochemical characteristics of Zea mays L. Aust. J. Crop Sci. 2010, 4, 289–294. [Google Scholar]
- Liu, D.; Zheng, S.; Wang, X. Lanthanum regulates the reactive oxygen species in the roots of rice seedlings. Sci. Rep. 2016, 6, 31860. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, R.L.; Zhang, P.; Sun, L.L.; Xu, J. Involvement of reactive oxygen species in lanthanum-induced inhibition of primary root growth. J. Exp. Bot. 2016, 67, 6149–6159. [Google Scholar] [CrossRef]
- Diatloff, E.; Smith, F.W.; Asher, C.J. Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mung bean. Ann. Bot. 2008, 101, 971–982. [Google Scholar] [CrossRef]
- Kotelnikova, A.; Fastovets, I.; Rogova, O.; Volkov, D.S.; Stolbova, V. Toxicity assay of lanthanum and cerium in solutions and soil. Ecotoxicol. Environ. Saf. 2019, 167, 20–28. [Google Scholar] [CrossRef]
- Liman, R.; Acikbas, Y.; Ciğerci, İ.H. Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests. Ecotoxicol. Environ. Saf. 2019, 168, 408–414. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, L.; He, X.; Bai, W.; Ding, Y.; Zhang, Z.; Zhao, Y.; Chai, Z. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 2010, 78, 273–279. [Google Scholar] [CrossRef]
- Tang, X.; Sun, Y.; Xia, M.; Wen, C.; Zhang, Z. Ecological effects of low dosage mixed rare earth elements accumulation on major soil microbial groups in a yellow cinnamon soil. Ying Yong Sheng Tai Xue Bao 2004, 15, 2137–2141. [Google Scholar]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormetic dose responses induced by lanthanum in plants. Environ. Pollut. 2019, 244, 332–341. [Google Scholar] [CrossRef]
- Nascarella, M.A.; Calabrese, E.J. Hazard Assessment and the Evaluation of Rare Earth Element Dose–Response Relationships. In Rare Earth Elements in Human and Environmental Health: At Crossroads Between Toxicity and Safety; Pagano, G., Ed.; Pan Stanford Ltd.: Singapore, 2016; pp. 184–194. ISBN 978-981-4745-00-0. [Google Scholar]
- Wang, C.; Zhang, K.; He, M.; Jiang, C.; Tian, L.; Tian, Y.; Wang, X. Mineral nutrient imbalance, DNA lesion and DNA-protein crosslink involved in growth retardation of Vicia faba L. seedlings exposed to lanthanum ions. J. Environ. Sci. 2012, 24, 214–220. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Zhou, Q.; Yang, G.; Ding, X.L.; Li, X.; Cai, C.X.; Zhang, Z.; Wei, H.Y.; Lu, T.H.; et al. Rare earth elements activate endocytosis in plant cells. Proc. Natl. Acad. Sci. USA 2014, 111, 12936–12941. [Google Scholar] [CrossRef]
- Daumann, L.J. Essential and ubiquitous: The emergence of lanthanide metallobiochemistry. Angew. Chem. Int. Ed. Engl. 2019, 58, 12795–12802. [Google Scholar] [CrossRef]
- Ma, J.J.; Ren, Y.J.; Yan, L.Y. Effects of spray application of lanthanum and cerium on yield and quality of Chinese cabbage (Brassica chinensis L.) based on different seasons. Biol. Trace Elem. Res. 2014, 160, 427–432. [Google Scholar] [CrossRef]
- Ren, Y.; Ren, X.; Ma, J.; Yan, L. Effects of mixed rare earth fertilizer on yield and nutrient quality of leafy vegetables during different seasons. J. Rare Earths 2016, 34, 638–643. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, W.; Wang, Z.; Witkamp, G.J. Distributions of rare earths and heavy metals in field-grown maize after application of rare earth-containing fertilizer. Sci. Total Environ. 2002, 293, 97–105. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, S.; Wang, L.; Kung, H.T.; Wang, Y.; Hu, A.; Ding, S. Environmental biogeochemical behaviors of rare earth elements in soil–plant systems. Environ. Geochem. Health 2005, 27, 301–311. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Commission Implementing Regulation (EU) L 319/5 of 1 October 2020; Official Journal of the European Union: Luxemburg, 2020. [Google Scholar]
- Cheng, J.; Ding, C.; Li, X.; Zhang, T.; Wang, X. Rare earth element transfer from soil to navel orange pulp (Citrus sinensis Osbeck cv. Newhall) and the effects on internal fruit quality. PLoS ONE 2015, 10, e0120618. [Google Scholar] [CrossRef]
- Atar, E. Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology. Isr. Med. Assoc. J. 2004, 6, 412–414. [Google Scholar]
- Mitsumori, L.M.; Bhargava, P.; Essig, M.; Maki, J.H. Magnetic resonance imaging using gadolinium-based contrast agents. Top. Magn. Reson. Imaging 2014, 23, 51–69. [Google Scholar] [CrossRef]
- Tu, D.; Zheng, W.; Huang, P.; Chen, X. Europium-activated luminescent nanoprobes: From fundamentals to bioapplications. Coord. Chem. Rev. 2019, 378, 104–120. [Google Scholar] [CrossRef]
- Nishioka, T.; Yuan, J.; Yamamoto, Y.; Sumitomo, K.; Wang, Z.; Hashino, K.; Matsumoto, K. New luminescent europium (III) chelates for DNA labeling. Inorg. Chem. 2006, 45, 4088–4096. [Google Scholar] [CrossRef]
- Emmett, L.; Willowson, K.; Violet, J.; Shin, J.; Blanksby, A.; Lee, J. Lutetium-177 PSMA radionuclide therapy for men with prostate cancer: A review of the current literature and discussion of practical aspects of therapy. J. Med. Radiat. Sci. 2017, 64, 52–60. [Google Scholar] [CrossRef]
- English, R.J.; Zalutsky, M.; Venkatesan, P.; Sledge, C.B. Therapeutic application of Dysprosium-165-FHMA in the treatment of rheumatoid knee effusions. J. Nucl. Med. Technol. 1986, 14, 18–20. [Google Scholar]
- Allen, B.J.; Blagojevic, N. Alpha- and beta-emitting radiolanthanides in targeted cancer therapy: The potential role of terbium-149. Nucl. Med. Commun. 1996, 17, 40–47. [Google Scholar] [CrossRef]
- Sartor, O. Overview of Samarium Sm-153 lexidronam in the treatment of painful metastatic bone disease. Rev. Urol. 2004, 6, 3–12. [Google Scholar]
- Sandhu, A.S.; Srivastava, A.; Madhusoodanan, P.; Sinha, T.; Gupta, S.K.; Kumar, A.; Khanna, R. Holmium: YAG laser for intracorporeal lithotripsy. Med. J. Armed Forces India 2007, 63, 48–51. [Google Scholar] [CrossRef]
- Diaci, J.; Gaspirc, B. Comparison of Er:YAG and Er,Cr:YSGG lasers used in dentistry. J. Laser Health Acad. 2012, 2012, 1–13. [Google Scholar]
- Kostova, I. Lanthanides as anticancer agents. Curr. Med. Chem. Anticancer Agents 2005, 5, 591–602. [Google Scholar] [CrossRef]
- Abeynayake, N.S.; Le, N.; Sanchez-Lecuona, G.; Donnadieu, B.; Webster, C.E.; Montiel-Palma, V. Unexpected alkyl isomerization at the silicon ligand of an unsaturated Rh complex: Combined experiment and theory. Dalton Trans. 2023, 52, 17168–17176. [Google Scholar] [CrossRef]
- Dent, P.C. Rare earth elements and permanent magnets (invited). J. Appl. Phys. 2012, 111, 07A721. [Google Scholar] [CrossRef]
- Garside, M. (Ed.) Distribution of Rare Earth Element Consumption Worldwide in 2020, by End Use; Statista GmbH: Hamburg, Germany, 2022. [Google Scholar]
- Smith Stegen, K. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy 2015, 79, 1–8. [Google Scholar] [CrossRef]
- Zijlstra, H. Application of permanent magnets in electromechanical power converters; the impact of Nd-Fe-B magnets. J. Phys. Colloq. 1985, 46, C6-3–C6-8. [Google Scholar] [CrossRef]
- Nakamura, H. The current and future status of rare earth permanent magnets. Scr. Mater. 2018, 154, 273–276. [Google Scholar] [CrossRef]
- Sugimoto, S. Current status and recent topics of rare-earth permanent magnets. J. Phys. D Appl. Phys. 2011, 44, 064001. [Google Scholar] [CrossRef]
- Tripathy, P.K.; Mondal, K.; Khanolkar, A.R. One-step manufacturing process for neodymium-iron (magnet grade) master alloy. Mater. Sci. Energy Technol. 2021, 4, 249–255. [Google Scholar] [CrossRef]
- Goonan, T.G. Rare Earth Elements—End Use and Recyclability; Scientific Investigations Report 2011-5094; U.S. Geological Survey: Reston, VA, USA, 2011.
- Keane, E. Neodymium Magnets Provide Key to Understanding Rare Earth Trends; Seeking Alpha: New York, NY, USA, 2009. [Google Scholar]
- Li, L.Z.; Yan, B.; Lin, L.-X.; Zhao, Y. Solid state synthesis, microstructure and photoluminescence of Eu3+ and Tb3+ activated strontium tungstate. J. Mater. Sci. Mater. Electron. 2011, 22, 1040–1045. [Google Scholar] [CrossRef]
- Misiak, M.; Prorok, K.; Bednarkiewicz, A. Biological application of lanthanide doped nanomaterials. Wiad. Chem. 2012, 66, 5–6. [Google Scholar]
- Bednarkiewicz, A.; Mączka, M.; Strek, W.; Hanuza, J.; Karbownik, M. Size dependence on infrared spectra of NaGdF4 nanocrystals. Chem. Phys. Lett. 2006, 418, 75. [Google Scholar] [CrossRef]
- Park, Y.I.; Kim, J.H.; Lee, K.T.; Jeon, K.S.; Na, H.B.; Yu, J.H.; Hyeon, T. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 2009, 21, 4467. [Google Scholar] [CrossRef]
- Sun, L.N.; Peng, H.; Stich, M.I.; Achatz, D.; Wolfbeis, O.S. pH sensor based on upconverting luminescent lanthanide nanorods. Chem. Commun. 2009, 33, 5000–5002. [Google Scholar] [CrossRef]
- Mader, H.S.; Wolbies, O.S. Optical ammonia sensor based on upconverting luminescent nanoparticles. Anal. Chem. 2010, 82, 5002. [Google Scholar] [CrossRef]
Elements | Taylor and MeLennan, 1985 [23] | Wedepohl, 1995 [24] | Abu El-Anwar, 2025 [25] | Chondritic Abundances | |
---|---|---|---|---|---|
Wakita et al. 1971 [26] | Pourmand et al. 2012 [27] | ||||
Ce | 33 | 60 | 15.93 | 0.91 | 0.6321 |
Sc | 30 | 16 | 31.44 | - | 5.493 |
Y | 20 | 24 | 4.98 | - | 1.395 |
La | 16 | 30 | 11.3 | 0.34 | 0.2469 |
Nd | 16 | 27 | 6.59 | 0.64 | 0.4854 |
Pr | 3.9 | 6.7 | - | 0.121 | 0.0959 |
Dy | 3.7 | 3.8 | - | 0.3 | 0.2577 |
Sm | 3.5 | 5.3 | 2.69 | 0.195 | 0.1556 |
Gd | 3.3 | 4 | - | 0.26 | 0.2093 |
Er | 2.2 | 2.1 | - | 0.2 | 0.1667 |
Yb | 2.2 | 2 | - | 0.22 | 0.1694 |
Eu | 1.1 | 1.3 | - | 0.073 | 0.0599 |
Ho | 0.8 | 0.8 | - | 0.078 | 0.0554 |
Tb | 0.6 | 0.65 | - | 0.047 | 0.0378 |
Tm | 0.3 | 0.3 | - | 0.032 | 0.0261 |
Lu | 0.3 | 0.35 | - | 0.034 | 0.0256 |
Total | 136.9 | 184.3 | 72.93 | 3.45 | 9.5118 |
Mineral | Chemical Formula | REO wt% |
---|---|---|
Bastnaesite | (Ln,Y)(CO3)F | 70–74 |
Monazite | (Ln,Th)PO4 | 35–71 |
Xenotime | YPO4 | 52–67 |
Zircon | (Zr)SiO4 | - |
Apatite | (Ca,Ln)5(PO4)3(F,Cl,OH) | - |
Allanite | (Y,Ln,Ca)2(Al,Fe3+)3(SiO4)3(OH) | 3–51 |
Loparite | (Ln,Na,Ca)(Ti,Nb)O3 | 32–34 |
Eudialyte | Na4(Ca,Ln)2(Fe2+,Mn2+,Y)Zr3Si8O22(OH,Cl)2 | - |
Fergusonite | (Ln,Y)NbO4 | 47 |
Pyrochlore | (Ca,Na,Ln)2Nb2O6(OH,F) | - |
Parisite | Ca(Ln)2(CO3)3F2 | 59 |
Gittinsite | CaZrSi2O7 | - |
Kainosite | Ca2(Y,Ln)2Si4O12(CO3)·H2O | 38 |
Synchysite | Ca(Ln)(CO3)2F | 49–52 |
Iimorite | Y2(SiO4)(CO3) | - |
Mosandrite | (Na,Ca)3Ca3Ln(Ti,Nb,Zr)(Si2O7)2(O,OH,F)4 | <65 |
Steenstrupine | Na14Ln6Mn2Fe2(Zr,Th)(Si6O18)2(PO4)7·3H2O | - |
Rinkite (Rinkolite) | (Ca,Ln)4Na(Na,Ca)2Ti(Si2O7)2(O,F)2 | - |
Location | Company | Deposit Type | REE Mineral | HREEs % | Total Resource (×104 t, REO) | Project |
---|---|---|---|---|---|---|
Africa | Pensana Rare Earths Plc | Carbonatite | REE carbonates and phosphates | 5.04 | 447 | Longonjo |
Africa | Peak Resources | Carbonatite | Bastnasite | 1.6 | 462 | Ngualla |
Asia | China Rare Earth Group Co., Ltd. | Carbonatite | Bastnasite | 11.1 | 317 | Maoniuping |
Asia | ThreeArc Mining LLC | Carbonatite | Monazite, xenotime, pyrochlore | 9.1 | 323.29 | Tomtor |
Asia | Vietnam | Carbonatite | Parisite | 1.38 | 770 | Nam Xe |
Asia | China Northern Rare Earth (Group) | Carbonatite | Bastnasite, monazite | 1.13 | 10,000 | Bayan Obo |
Asia | Toyota Tsusho and Sojitz Corporation | Carbonatite | Bastnasite | 0.95 | 31 | Dongpo |
Asia | China Rare Earth Group Co., Ltd. | Ionic Clay | MREE and HREE | 51.1 | 840 | South China |
Australia | Lynas Rare Earths | Carbonatite | Pseudomorphs monazite | 3.97 | 300 | Mount Weld |
Australia | Arafura Resources | Hydrothermal/IOCG | Apatite, monazite, allanite | 2.87 | 145.6 | Nolans |
Australia | BHP | IOCG (Tailings) | Bastnasite, gloverenite | 6111.05 | Olympic Dam | |
Europe | LLC Lovozersky GOK | Alkaline rock | Loparite | 4.45 | 717.4 | Lovozersky |
Europe | REE Minerals Holding AS | Carbonatite | Bastnasite | 3.02 | 437 | Fen |
Greenland | Tanbreez Mining Greenland AS | Alkaline rock | Eudialyte | 31 | 2900 | Tanbreez |
Greenland | Greenland Minerals Limited | Alkaline rock | Steenstrupine-(Ce), lovozerite | 11.6 | 1114 | Kvanefjeld |
North America | Vital Metals | Alkaline rock | Fergusonite-(Y), zircon, monazite | 8.7 | 138.7 | Nechalacho |
North America | Commerce Resources Corp | Carbonatite | Bastnasite, monazite, xenotime | 3.5 | 468.686 | Ashram |
North America | MP Materials | Carbonatite | Bastnasite | 0.49 | 418.3 | Mountain Pass |
South America | Catalao I | Carbonatite | Monazite | 0.3 | 654.5 | Catalao I |
South America | Serra Verde mineraco | Ionic Clay | MREE and HREEs | 23.3 | 109.32 | Serra Verde |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaei, M.; Sanchez-Lecuona, G.; Abdolazimi, O. A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling. Minerals 2025, 15, 720. https://doi.org/10.3390/min15070720
Rezaei M, Sanchez-Lecuona G, Abdolazimi O. A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling. Minerals. 2025; 15(7):720. https://doi.org/10.3390/min15070720
Chicago/Turabian StyleRezaei, Mustafa, Gabriela Sanchez-Lecuona, and Omid Abdolazimi. 2025. "A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling" Minerals 15, no. 7: 720. https://doi.org/10.3390/min15070720
APA StyleRezaei, M., Sanchez-Lecuona, G., & Abdolazimi, O. (2025). A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling. Minerals, 15(7), 720. https://doi.org/10.3390/min15070720