Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Pumice
2.1.2. Cement
2.1.3. Natural Fibers
2.2. Method
2.2.1. Block Production
2.2.2. Dimension and Tolerance Analysis
2.2.3. Unit Volume Weight Test
2.2.4. Compressive Strength
2.2.5. Thermal Conductivity Coefficient
2.2.6. Water Absorption Coefficient
2.2.7. Freeze–Thaw Testing (Endurance Feature)
3. Results and Discussion
3.1. Size and Configuration Results
3.2. Unit Volume Weight Test
3.3. Compressive Strength
3.4. Heat Conduction Coefficient Values
3.5. Water Absorption
3.6. Freeze–Thaw Testing
4. Conclusions
- This study has shown that the deviation values of length, width and height are in accordance with the permissible deviation values according to the TS EN 772-16 (2012) standard. This shows that CW, SWW and CFF fibers can be used instead of pumice aggregate due to their compressible and moldable properties.
- According to the TS EN 772-13 (2002) standard, the gross density values of the block samples should not exceed a maximum of 1000 kg/m3. When the unit weight values are examined, it is seen that the unit weights of all fiber-substituted samples comply with the standard. Since the unit weights of the fibers used are lower than pumice, the gross weight of the block samples decreased as the fiber substitution rate increased. The lowest unit weight was obtained from the SWW-10 sample, with a value of 450 kg/m3, due to its low density. The use of lightweight blocks in buildings will result in a significant reduction in the dead load caused by the weight of the building itself, thus reducing the damage to the occupants during an earthquake.
- Although there is no compressive strength requirement for non-load-bearing partition elements, they are expected to have a robustness that will not deteriorate from the storage area to the usage area. When we look at the compressive strength results, it is seen that the strength decreases in CW and SWW substitution. (However, there is a 2.2% increase in strength in SWW-2.5 substitution compared to the reference sample.) In CFF-substituted samples, an increase of 5.1–9.6% in strength was observed due to the strong keratin structure of CFF.
- It is seen that the fiber-substituted block specimens have lower thermal conductivity (TC) values than the TC values required for traditional building elements used as partition walls today. The best TC value was obtained in the SWW-substituted specimens, which decreased by 12.5–24.6% compared to the reference specimen.
- Due to the high water absorption ability of CW, as the fiber substitution rate increased, the water absorption value increased by 5.3–14.9% compared to the reference sample. However, due to the hydrophobic character of SWW and CFF, the water absorption values decreased by 13–21.6% in SWW-substituted block elements and by 6.3–16.8% in CFF-substituted blocks.
- Freeze–thaw resistance is not required if the block elements are completely protected against water penetration, such as with a suitable plaster layer or cladding or use in the inner wing of the sandwich wall or in the interior walls of the building. However, SWW- and CFF-substituted block elements have reduced mass losses due to the freeze–thaw effect due to their hydrophobic character.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gencel, O. Characteristic of fired clay bricks with pumice additive. Energy Build. 2015, 102, 217–224. [Google Scholar] [CrossRef]
- Malhotra, V.M. Role of supplementary cementing materials in reducing greenhouse gas emissions. In Concrete Technology for a Sustainable Development in the 21st Century; CRC: Boca Raton, FL, USA, 2000; Volume 5, pp. 226–235. [Google Scholar]
- Díaz, J.D.C.; García Nieto, P.J.; Suárez Sierra, J.L.; Penuelas Sánchez, I. Non-linear thermal optimization and design improvement of a new internal light concrete multi-holed brick walls by FEM. Appl. Therm. Eng. 2008, 28, 1090–1100. [Google Scholar] [CrossRef]
- Fidan, S.; Oktay, H.; Polat, S. Artificial Neural Network-Based Prediction of Thermal Properties of Light Building Materials. Batman Univ. J. Life Sci. 2020, 10, 28–41. [Google Scholar]
- Kose, E. Evaluation of the Performance of Building Components Constructed with Phase-Change Materials in Terms of Energy Conservation in Residential Building. Master’s Thesis, Istanbul Technical University Control and Building Technology Program Department of Architecture Environmental, Istanbul, Turkey, 2019; p. 126. [Google Scholar]
- Zorer Gedik, G. Examination and evaluation of insulated building envelope sections in the cold climate region: Erzurum example. Plumb. Eng. Mag. 1999, 51, 43–47. [Google Scholar]
- Demirdag, S.; Gunduz, L. Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units. Constr. Build. Mater. 2008, 22, 135–142. [Google Scholar] [CrossRef]
- Rashad, A.M. A short manual on natural pumice as a lightweight aggregate. J. Build. Eng. 2019, 25, 100802. [Google Scholar] [CrossRef]
- Tatlidil, H.; Sancak, E. Investigation of the useability of pumice aggregate lightweight concrete in the production of panel walls. SDU Int. Technol. Sci. 2013, 5, 87–94. [Google Scholar]
- Çiçek, F.Z. Production of Light Composite Material Type of Pumice with Different Binder Instead of Cement. Master’s Thesis, Harran University Graduate School of Natural and Applied Sciences Department of Civil Engineering, Sanlıurfa, Turkey, 2024; p. 63. [Google Scholar]
- Unal, O.; Uygunoglu, T. Use of diatomite in the production of lightweight concrete. IMO Tech. J. 2007, 266, 4025–4034. [Google Scholar]
- Uygunoglu, T.; Unal, O. Investigation of the properties of lightweight block elements produced with diatomite to reduce the self-load of structures. In Proceedings of the Earthquake Symposium, Kocaeli, Turkey, 23–25 March 2005; pp. 51–56. [Google Scholar]
- Tatlidil, H.; Sancak, E. Wall of light concrete with pumice aggregate investigation of usability in production. SDU Int. Technol. Sci. 2013, 5, 87–94. [Google Scholar]
- Liu, F.; Wang, J.; Zhou, B.; Wu, M.; He, J.; Bin, J. Shaking table study on rubber-sand mixture cored composite block as low-cost isolation bearing for rural houses. J. Build. Eng. 2023, 76, 107413. [Google Scholar] [CrossRef]
- Galvin, A.P.; Sabrina, S.; Auxi, B.; Pena, A.; Lopez-Uceda, A. Leaching performance of concrete eco-blocks: Towards zero-waste in precast concrete plants. J. Environ. Manag. 2023, 344, 118409. [Google Scholar] [CrossRef] [PubMed]
- Al-Tarbi, S.M.; Baghabra Al-Amoudi, O.S.; Al-Osta, M.A.; Al-Awsh, W.A.; Shameem, M.; Zami, M.S. Development of energy-efficient hollow concrete blocks using perlite, vermiculite, volcanic scoria, and expanded polystyrene. Constr. Build. Mater. 2023, 371, 130723. [Google Scholar] [CrossRef]
- Al-Tarbi, S.M.; Baghabra Al-Amoudi, O.S.; Al-Osta, M.A.; Al-Awsh, W.A.; Rizwan Ali, M.; Maslehuddin, M. Development of eco-friendly hollow concrete blocks in the field using wasted high-density polyethylene, low-density polyethylene, and crumb tire rubber. J. Mater. Res. Technol. 2022, 21, 1915–1932. [Google Scholar] [CrossRef]
- Al-Jabri, K.S.; Hago, A.W.; Al-Nuaimi, A.S.; Al-Saidy, A.H. Concrete blocks for thermal insulation in hot climate. Cem. Concr. Res. 2005, 35, 1472–1479. [Google Scholar] [CrossRef]
- Wu, Q.; Deng, H.; Bai, H.; Ye, Z.; Chen, X.; Zhu, J. Facile and eco-friendly functionalization of basalt fiber with polyelectrolyte complex toward excellent interfacial adhesion of epoxy composites. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106889. [Google Scholar] [CrossRef]
- Ali, M.F.; Hossain, M.S.; Moin, T.S.; Ahmed, S.; Chowdhury, A.M.S. Utilization of waste chicken feather for the preparation of eco-friendly and sustainable composite. Clean. Eng. Technol. 2021, 4, 100190. [Google Scholar] [CrossRef]
- Ucgul, I.; Turak, B. Recycling of Textile Waste and Evaluation of Their Potential as Insulation Material. Acad. Platf. J. Eng. Sci. 2015, 3, 39–48. [Google Scholar]
- Uzun, M.; Sargin, S. Textile structures design using poultry wastes. J. Text. Eng. 2018, 25, 113–120. [Google Scholar] [CrossRef]
- Al Mousa, A.A.; Moubayed, N.M.; Al Jaloud, A.M.; Al Khattaf, F.S.; Dahmasha, N.D. Chicken feathers wastes management by microbial as a sustainable and tool environmental friendly. J. Environ. Prot. 2021, 12, 639–653. [Google Scholar] [CrossRef]
- Ossai, I.C.; Hamid, F.S.; Hassan, A. Valorisation of keratinous wastes: A sustainable approach towards a circular economy. Waste Manag. 2022, 151, 81–104. [Google Scholar] [CrossRef] [PubMed]
- Perța-Crișan, S.; Ursachi, C.S.; Gavrilaș, S.; Oancea, F.; Munteanu, F.-D. Closing the loop with keratin-rich fibrous materials. Polymers 2021, 13, 1896. [Google Scholar] [CrossRef] [PubMed]
- Kock, J.W. Physical and Mechanical Properties of Chicken Feather Materials. Master’s Thesis, George Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA, USA, 2006. [Google Scholar]
- Gorgun, B.; Bozkurt, E.; Kuru, D.; Akpınar Borazan, A.; Ural, N. Evaluation of Waste Chicken Feather in Soil Improvement. BSEU J. Sci. 2020, 2, 1196–1205. [Google Scholar] [CrossRef]
- Hassan, M.A.; Abol-Fotouh, D.; Omer, A.M.; Tamer, T.M.; Abbas, E. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. Int. J. Biol. Macromol. 2020, 154, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Vidmar, B.; Vodovnik, M. Microbial keratinases: Enzymes with promising biotechnological applications. Food Technol. Biotechnol. 2018, 56, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Lokesh, K.S.; Shrinivasa Mayya, D.; Santhosh Kumar, T.C.; Somaiah, K.S.; Sharath Chandra, H.S.; Varun Kumar, K.R.; Sneha; Pavan Kumar, P.M. Experimental and regression analysis of chicken feather-based chopped glass fibre mat hybrid composites. Results Eng. 2025, 26, 104964. [Google Scholar] [CrossRef]
- Yahyaoui, A.E.; Manssouri, I. Evaluating the effect of Incorporating Chicken Feather Fibers on the Technological Properties of Eco-Friendly Compressed Earth Bricks. Clean. Circ. Bioecon. 2024, 9, 100119. [Google Scholar] [CrossRef]
- Mishra, A.; Jung, D.; Kim, N.K.; Bhattacharyya, D. Influence of chicken feather fibre processing technique on mechanical and fire performances of flame-retardant polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107338. [Google Scholar] [CrossRef]
- Vaidya, S.; Abhijith; Shreenivasaiah, P.H.; Jayadeva, C.T.; Satyanarayana, G.M. Mechanical behaviour evaluation of glass fiber and chicken feather hybrid composite. Mater. Today Proc. 2023, 92, 393–398. [Google Scholar] [CrossRef]
- Adlin Rose, R.; Subramanian, M.; Elakkiyadasan, R.; Siva, M.; Manoj Kumar, P. Strength characteristics of sand modified with keratinous chicken feather fiber. Mater. Today Proc. 2022, 62, 3935–3939. [Google Scholar] [CrossRef]
- Ali, M.F.; Ahmed, M.A.; Hossain, M.S.; Ahmed, S.; Chowdhury, A.M.S. Effects of inorganic materials on the waste chicken feather fiber reinforced unsaturated polyester resin-based composite: An approach to environmental sustainability. Compos. Part C Open Access 2022, 9, 100320. [Google Scholar] [CrossRef]
- Adediran, A.A.; Oladele, I.O.; Omotosho, T.F.; Adesina, O.S.; Olayanju, T.M.A.; Fasemoyin, I.M. Water absorption, flexural properties and morphological characterization of chicken feather fiber-wood sawdust hybrid reinforced waste paper-cement bio-composites. Mater. Today Proc. 2021, 44, 2843–2848. [Google Scholar] [CrossRef]
- Pavithra, C.; Arokiaprakash, A.; Maheshwari, A. Behaviour of concrete adding chicken feather as fibre with partial replacement of cement with Cashewnut shell powder. Mater. Today Proc. 2021, 43, 1173–1178. [Google Scholar] [CrossRef]
- Araya-Letelier, G.; Gonzalez-Calderon, H.; Kunze, S.; Burbano-Garcia, C.; Reidel, U.; Sandoval, C.; Bas, F. Waste-based natural fiber reinforcement of adobe mixtures: Physical, mechanical, damage and durability performance assessment. J. Clean. Prod. 2020, 273, 122806. [Google Scholar] [CrossRef]
- Ouakarrouch, M.; El Azhary, K.; Laaroussi, N.; Garoum, M.; Kifani-Sahban, F. Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste. Therm. Sci. Eng. Prog. 2020, 19, 100642. [Google Scholar] [CrossRef]
- Yue, Y.; Solvang, M. Stone and Glass Wool. In Encyclopedia of Glass Science, Technology, History, and Culture II; John Wiley and Sons: Hoboken, NJ, USA, 2021; pp. 1103–1112. [Google Scholar]
- Korpayev, S.; Bayramov, M.; Durdyev, S.; Hamrayev, H.; Baymyradova, D.; Nurmuhammedov, A. Effect of stone wool waste from greenhouse agriculture in brick production. J. Build. Eng. 2023, 63, 105340. [Google Scholar] [CrossRef]
- Pavlin, M.; Horvat, B.; Frankovič, A.; Ducman, V. Mechanical, microstructural and mineralogical evaluation of alkali-activated waste glass and stone wool. Ceram. Int. 2021, 47, 15102–15113. [Google Scholar] [CrossRef]
- Jensen, P.G.; Belmonte, L.; Solvang, M.; Yue, Y. Quantification of high temperature stability of mineral wool for fire-safe insulation. J. Non-Cryst. Solids 2023, 622, 122680. [Google Scholar] [CrossRef]
- Cheng, S.; Lau, K.-T.; Liu, T.; Zhao, Y.; Lam, P.-M.; Yin, Y. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos. Part B Eng. 2009, 40, 650–654. [Google Scholar] [CrossRef]
- Gutiérrez-Orrego, D.A.; Gómez-Botero, M.A.; García-Aristizábal, E.F. Soil improved with a hybrid alkali-activated cement from waste stone wool and OPC. Case Stud. Constr. Mater. 2024, 21, e03532. [Google Scholar] [CrossRef]
- Klima, K.M.; Luo, Y.; Brouwers, H.J.H.; Yu, Q. Effects of mineral wool waste in alkali activated-artificial aggregates for high-temperature applications. Constr. Build. Mater. 2023, 401, 132937. [Google Scholar] [CrossRef]
- Liikanen, M.; Grönman, K.; Deviatkin, I.; Havukainen, J.; Hyvärinen, M.; Kärki, T.; Varis, J.; Soukka, R.; Horttanainen, M. Construction and demolition waste as a raw material for wood polymer composites—Assessment of environmental impacts. J. Clean. Prod. 2019, 225, 716–727. [Google Scholar] [CrossRef]
- Pavlin, M.; Horvat, B.; Korošec, R.C.; Capuder, R.; Korat, L.; Ducman, V. Characterisation of a 3D-printed alkali-activated material based on waste mineral wool at room and elevated temperatures. Cem. Concr. Compos. 2024, 147, 105445. [Google Scholar] [CrossRef]
- Yliniemi, J.; Ramaswamy, R.; Luukkonen, T.; Laitinen, O.; Nunes de Sousa, Á.; Huuhtanen, M.; Illikainen, M. Characterization of mineral wool waste chemical composition, organic resin content and fiber dimensions: Aspects for valorization. Waste Manag. 2021, 131, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Yliniemi, J.; Walkley, B.; Provis, J.L.; Kinnunen, P.; Illikainen, M. Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools. J. Therm. Anal. Calorim. 2020, 144, 1129–1138. [Google Scholar] [CrossRef]
- Yliniemi, J.; Walkley, B.; Provis, J.L.; Kinnunen, P.; Illikainen, M. Nanostructural evolution of alkali-activated mineral wools. Cem. Concr. Compos. 2020, 106, 103472. [Google Scholar] [CrossRef]
- Wu, H.; Wang, B.; Li, T.; Wu, Y.; Yang, R.; Gao, H.; Nie, Y. Efficient recycle of waste poly-cotton and preparation of cellulose and polyester fibers using the system of ionic liquid and dimethyl sulfoxide. J. Mol. Liq. 2023, 388, 122757. [Google Scholar] [CrossRef]
- Lu, L.; Fan, W.; Meng, X.; Xue, L.; Ge, S.; Wang, C.; Foong, S.Y.; Tan, C.S.Y.; Sonne, C.; Aghbashlo, M.; et al. Current recycling strategies and high-value utilization of waste cotton. Sci. Total Environ. 2023, 856, 158798. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, H.; Arumugam, H.; Dilip, A.A.; Krishnasamy, B.; Aleem, A.M.I.; Murugesan, A.; Muthukaruppan, A. Desert cotton and areca nut husk fibre reinforced hybridized bio-benzoxazine/epoxy bio-composites: Thermal, electrical and acoustic insulation applications. Constr. Build. Mater. 2023, 363, 129870. [Google Scholar] [CrossRef]
- Peña-Pichardo, P.; Martínez-Barrera, G.O.; Martínez-López, M.; Ureña-Núñez, F.; Laredo dos Reis, J.M. Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete. Constr. Build. Mater. 2018, 177, 409–416. [Google Scholar] [CrossRef]
- Kamble, Z.; Behera, B.K. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr. Build. Mater. 2021, 284, 122800. [Google Scholar] [CrossRef]
- TS EN 13055; Lightweight Aggregates. Turkish Standards Institute: Ankara, Turkey, 2016.
- TS EN 933-1; Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. Turkish Standards Institute: Ankara, Turkey, 2012.
- ASTM C330; Standard Specification for Lightweight Aggregates for Structural Concrete. ASTM International: West Conshohocken, PA, USA, 2012.
- TS EN 197-1; Cement—Part 1: Composition, Specification and Conformity Criteria for Common Cements. Turkish Standards Institute: Ankara, Turkey, 2012.
- Khaleel, M.; Soykan, U.; Cetin, S. Influences of the turkey feather fiber loading on significant characteristics of rigid polyurethane foam: Thermal degradation, heat insulation, acoustic performance, air permeability and cellular structure. Constr. Build. Mater. 2021, 308, 125014. [Google Scholar] [CrossRef]
- DIN 4108-11:2018-11; Thermal Insulation and Energy Economy in Buildings—Part 11: Minimum Requirements to the Durability of Bond Strength with Adhesive Tapes and Adhesive Masses for the Establishment of Airtight Layers. Deutsches Institut für Normung: Berlin, Germany, 2018.
- Bektas, V. Comparison of the Thermal Insulation Materials in the Buildings. Master’s Thesis, Bilecik Seyh Edebali University Graduate School of Sciences Department of Civil Engineering, Bilecik, Turkey, 2018; p. 194. [Google Scholar]
- TS EN 771-3+A1; Specification for Masonry Units—Part 3: Aggregate Concrete Masonry Units (Dense and Lightweight Aggregates). Turkish Standards Institute: Ankara, Turkey, 2015.
- TS EN 772-16; Methods of Test for Masonry Units—Part 16: Determination of Dimensions. Turkish Standards Institute: Ankara, Turkey, 2012.
- TS EN 772-20/A1; Methods of Test for Masonry Units—Part 20: Determination of Flatness of Faces of Masonry Units. Turkish Standards Institute: Ankara, Turkey, 2005.
- TS EN 772-13; Methods of Test for Masonry Units—Part 13: Determination of Net and Gross Dry Density of Masonry Units (Except for Natural Stone). Turkish Standards Institute: Ankara, Turkey, 2002.
- TS EN 772-1+A1; Methods of Test for Masonry Units—Part 1: Determination of Compressive Strength. Turkish Standards Institute: Ankara, Turkey, 2015.
- ASTM C1113-90; Standard Test Methods for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique). ASTM International: West Conshohocken, PA, USA, 1990.
- TS EN 772-11; Methods of Test for Masonry Units—Part 11: Determination of Water Absorption of Aggregate Concrete, Autoclaved Aerated Concrete, Manufactured Stone and Natural Stone Masonry Units Due to Capillary Action and the Initial Rate of Water Absorption of Clay Masonry Units. Turkish Standards Institute: Ankara, Turkey, 2012.
- Toklu, K. The Research of Opportunities for Increasing the Quality of Pumice Block Produced by Pumice Stone. Master’s Thesis, Istanbul University Institute of Science Department of Mining Engineering Mining Engineering Program, Istanbul, Turkey, 2009. [Google Scholar]
- TSE CEN/TR 15177; Testing the Freeze-Thaw Resistance of Concrete—Internal Structural Damage. Turkish Standards Institute: Ankara, Turkey, 2011.
- Salih, M.M.; Osofero, A.I.; Imbabi, M.S. Constitutive models for fibre reinforced soil bricks. Constr. Build. Mater. 2020, 240, 117806. [Google Scholar] [CrossRef]
- Gul, R.; Uysal, H.; Demirboğa, R. Investigation of Thermal Conductivity of Lightweight Concretes Produced with Kocapınar Pumice. In Proceedings of the Developments in Civil Engineering, III Technical Congress, ODTÜ, Ankara, Turkey, 15 July 1997. [Google Scholar]
- Hwang, C.-L.; Huynh, T.-P. Investigation into the use of unground rice husk ash to produce eco-friendly construction bricks. Constr. Build. Mater. 2015, 93, 335–341. [Google Scholar] [CrossRef]
- Martínez-Hernández, A.L.; Velasco-Santos, C.; de-Icaza, M.; Castaño, V.M. Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Compos. Part B Eng. 2007, 38, 405–410. [Google Scholar] [CrossRef]
- Odusotea, J.; Dosunmu, K. Development of chicken feather reinforced insulation paperboard from waste carton and portland cement. J. Eng. Res. 2019, 16, 44–52. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, Q. Valorization of mineral wool waste in Class F fly ash geopolymer: Geopolymerization, macro properties, and high temperature behavior. Cem. Concr. Compos. 2024, 145, 105318. [Google Scholar] [CrossRef]
- Aouba, L.; Bories, C.; Coutand, M.; Perrin, B.; Lemercier, H. Properties of fired clay bricks with incorporated biomasses: Cases of olive stone flour and wheat straw residues. Constr. Build. Mater. 2016, 102, 7–13. [Google Scholar] [CrossRef]
- Ralegaonkar, R.; Gavali, H.; Aswath, P.; Abolmaali, S. Application of chopped basalt fibers in reinforced mortar: A review. Constr. Build. Mater. 2018, 164, 589–602. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, H.; Feng, Q.; Zheng, Y. Improvement of basalt fiber dispersion and its effect on mechanical characteristics of oil well cement. J. Build. Eng. 2023, 76, 107244. [Google Scholar] [CrossRef]
- Li, Y.; Bian, Y.; Liu, C. Damage and failure mechanism of basalt fiber-reinforced gangue-cemented backfill under uniaxial compression. Constr. Build. Mater. 2023, 400, 132872. [Google Scholar] [CrossRef]
- TS 825; Thermal Insulation Requirements for Buildings. Turkish Standards Institute: Ankara, Turkey, 2013.
- Akdogan, E.; Erdem, M.; Ureyen, M.E.; Kaya, M. Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame retardant properties. J. Appl. Polym. Sci. 2020, 137, 47611. [Google Scholar] [CrossRef]
- Gong, L.; Wang, Y.; Cheng, X.; Zhang, R.; Zhang, H. Thermal conductivity of highly porous mullite materials. Int. J. Heat Mass Transf. 2013, 67, 253–259. [Google Scholar] [CrossRef]
- Taurino, R.; Ferretti, D.; Cattani, L.; Bozzoli, F.; Bondioli, F. Lightweight clay bricks manufactured by using locally available wine industry waste. J. Build. Eng. 2019, 26, 100892. [Google Scholar] [CrossRef]
- Gualtieri, M.L.; Gualtieri, A.F.; Gagliardi, S.; Ruffini, P.; Ferrari, R.; Hanuskova, M. Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials. Appl. Clay Sci. 2010, 49, 269–275. [Google Scholar] [CrossRef]
- Babalola, R.; Ayeni, A.O.; Joshua, P.S.; Ayoola, A.A.; Isaac, U.O.; Aniediong, U.; Efeovbokhan, V.E.; Omoleye, J.A. Synthesis of thermal insulator using chicken feather fibre in starch-clay nanocomposites. Heliyon 2020, 6, e05384. [Google Scholar] [CrossRef] [PubMed]
- Bansal, G.; Singh, V.K. Review on chicken feather fiber (CFF) a livestock waste in composite material development. Int. J. Waste Resour. 2016, 6, 254. [Google Scholar] [CrossRef]
- Zhang, T.; Dieckmann, E.; Song, E.S.; Xie, J.; Yu, Z.; Cheeseman, C. Properties of magnesium silicate hydrate (M-S-H) cement mortars containing chicken feather fibres. Constr. Build. Mater. 2018, 180, 692–697. [Google Scholar] [CrossRef]
- Zhao, Y.; Dieckmann, E.; Cheeseman, C. Low-temperature thermal insulation materials with high impact resistance made from feather-fibres. Mater. Lett. X 2020, 6, 100039. [Google Scholar] [CrossRef]
- Bessa, J.; Souza, J.; Lopes, J.B.; Sampaio, J.; Mota, C.; Cunha, F.; Fangueiro, R. Characterization of thermal and acoustic insulation of chicken feather reinforced composites. Procedia Eng. 2017, 200, 472–479. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Yliniemi, J.; Nguyen, H.; Adesanya, E.; Tanskanen, P.; Kinnunen, P.; Roning, J.; Illikainen, M. Utilisation of glass wool waste and mine tailings in high performance building ceramics. J. Build. Eng. 2020, 31, 101383. [Google Scholar] [CrossRef]
- Ozcan, S.P.; Gunduz, L.A. Technical analysis on the use of industrial waste fibers in the production of non-autoclaved aerated concrete masonry block elements. Eur. J. Sci. Technol. 2021, 24, 202–212. [Google Scholar] [CrossRef]
- Jannat, N.; Al-Mufti, R.L.; Hussien, A.; Abdullah, B.; Cotgrave, A. Utilisation of nut shell wastes in brick, mortar and concrete: A review. Constr. Build. Mater. 2021, 293, 123546. [Google Scholar] [CrossRef]
- Vrána, T.; Gudmundsson, K. Comparison of fibrous insulations—Cellulose and stone wool in terms of moisture properties resulting from condensation and ice formation. Constr. Build. Mater. 2010, 24, 1151–1157. [Google Scholar] [CrossRef]
- Karamanos, A.; Hadiarakou, S.; Papadopoulos, A.M. The impact of temperature and moisture on the thermal performance of stone wool. Energy Build. 2008, 40, 1402–1411. [Google Scholar] [CrossRef]
- Gonen, T.; Yazicioglu, S. The effect of mineral admixtures on freeze-thaw resistance of self-compacting lightweight concrete with pumice aggregate. El-Cezeri J. Sci. Eng. 2021, 8, 94–101. [Google Scholar] [CrossRef]
Sieve Number (mm) | Sieved (%) | Limit Values According to ASTM C 330 | ||
---|---|---|---|---|
Sieve Number (mm) | Upper | Under | ||
16 | 100 | 19 | 100 | 100 |
11.2 | 94.1 | 12.5 | 100 | 95 |
8 | 74.9 | 9.5 | - | - |
5.6 | 66.8 | 4.75 | 80 | 50 |
4 | 57.9 | 0.3 | 20 | 5 |
2 | 41.2 | 0.15 | 15 | 2 |
1 | 34.9 | 0.075 | 10 | 0 |
0.5 | 17.9 | |||
0.25 | 7.9 | |||
0.075 | 2.6 |
Chemical Properties | |
---|---|
Oxides | Contents (%) |
SiO2 | 8.54 |
Al2O3 | 4.65 |
Fe2O3 | 4.36 |
CaO | 63.28 |
SO3 | 2.49 |
MgO | 1.7 |
K2O | 0.84 |
Na2O | 0.32 |
MnO | 0.12 |
TiO2 | 0.28 |
Cl | 0.01 |
Loss on ignition (LOI) | 3.41 |
Physical properties | |
Specific gravity (g/cm2) | 3.13 |
Specific surface (cm2/g) | 3646 |
Initial setting time (min.) | 100–235 |
Final setting time (min.) | 140–345 |
Pumice | CW | CFF | SWW | |
---|---|---|---|---|
Unit weight (g/cm3) | 2.15 | 1.45 | 0.82 | 0.35 |
Thermal conductivity (W/mK) | 0.135 | 0.062 | 0.043 | 0.037 |
Water absorption (%) | 34 | 65 | 14 | 6 |
Component (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | TiO2 | MnO | CaO | MgO | Na2O | K2O | Others | |
Pumice | 68.60 | 15.95 | 2.97 | 0 | 0.10 | 1.93 | 1.79 | 4.80 | 2.88 | 0.98 |
SWW | 43.47 | 20.70 | 4.52 | 0 | 0.51 | 18.01 | 7.13 | 1.52 | 0.81 | 3.33 |
Examples | Pumice (kg) | Cement (kg) | CFF (kg) | CW (kg) | SWW (kg) | Water (kg) |
---|---|---|---|---|---|---|
R | 55 | 6.5 | - | - | - | 15 |
CFF-2.5 | 53.625 | 6.5 | 1.375 | - | - | 15 |
CFF-5 | 52.25 | 6.5 | 2.75 | - | - | 15 |
CFF-7.5 | 50.875 | 6.5 | 4.125 | - | - | 15 |
CFF-10 | 49.5 | 6.5 | 5.5 | - | - | 15 |
CW-2.5 | 53.625 | 6.5 | - | 1.375 | - | 15 |
CW-5 | 52.25 | 6.5 | - | 2.75 | - | 15 |
CW-7.5 | 50.875 | 6.5 | - | 4.125 | - | 15 |
CW-10 | 49.5 | 6.5 | - | 5.5 | - | 15 |
SWW-2.5 | 53.625 | 6.5 | - | - | 1.375 | 15 |
SWW-5 | 52.25 | 6.5 | - | - | 2.75 | 15 |
SWW-7.5 | 50.875 | 6.5 | - | - | 4.125 | 15 |
SWW-10 | 49.5 | 6.5 | - | - | 5.5 | 15 |
Samples | l (cm) | ld (mm) | w (cm) | wd (mm) | h (cm) | hd (mm) | dss (cm) | dl (cm) |
---|---|---|---|---|---|---|---|---|
R | 36.02 | 0.2 | 18.11 | 1.1 | 18.12 | 1.2 | 0.114 | 40.15 |
CFF-2.5 | 36.09 | 0.9 | 18.14 | 1.4 | 18.14 | 1.4 | 0.135 | 40.1 |
CFF-5 | 36.12 | 1.2 | 18.15 | 1.5 | 18.04 | 0.4 | 0.51 | 40.08 |
CFF-7.5 | 36.05 | 0.5 | 18.14 | 1.4 | 18.11 | 1.1 | 0.158 | 40.05 |
CFF-10 | 36.18 | 1.8 | 18.17 | 1.7 | 18.19 | 1.9 | 0.162 | 40.14 |
CW-2.5 | 36.09 | 0.9 | 18.03 | 0.3 | 18.03 | 0.3 | 0.124 | 40.24 |
CW-5 | 36.2 | 0.2 | 18.03 | 0.3 | 18.15 | 1.5 | 0.131 | 40.21 |
CW-7.5 | 36.14 | 1.4 | 18.04 | 0.4 | 18.08 | 0.8 | 0.129 | 40.07 |
CW-10 | 36.19 | 1.9 | 18.08 | 0.8 | 18.17 | 1.7 | 0.134 | 40.13 |
SWW-2.5 | 36.21 | 2.1 | 18.01 | 0.1 | 18.01 | 0.1 | 0.103 | 40.2 |
SWW-5 | 36.15 | 1.5 | 18.01 | 0.1 | 18.11 | 1.1 | 0.125 | 40.17 |
SWW-7.5 | 36.08 | 0.8 | 18.03 | 0.3 | 18.17 | 1.7 | 0.137 | 40.09 |
SWW-10 | 36.12 | 1.2 | 18.02 | 0.2 | 18.17 | 1.7 | 0.119 | 40.21 |
Tolerance Class | D1 | D2 | D3 | D4 |
---|---|---|---|---|
Length | +3 | +1 | +1 | +1 |
−5 | −3 | −3 | −3 | |
Width | +3 | +1 | +1 | +1 |
−5 | −3 | −3 | −3 | |
Height | +3 | +2 | +1.5 | +1 |
−5 | −2 | −1.5 | −1 |
Samples | Feature | ||
---|---|---|---|
Inner Wall Thickness (cm) | Outer Wall Thickness (Transverse) (cm) | Outer Wall Thickness (Longitudinal) (cm) | |
R | 2.13 | 2.24 | 2.16 |
CFF-2.5 | 2.15 | 2.28 | 2.21 |
CFF-5 | 2.18 | 2.29 | 2.23 |
CFF-7.5 | 2.13 | 2.26 | 2.21 |
CFF-10 | 2.19 | 2.31 | 2.29 |
CW-2.5 | 2.14 | 2.25 | 2.27 |
CW-5 | 2.16 | 2.24 | 2.26 |
CW-7.5 | 2.15 | 2.26 | 2.25 |
CW-10 | 2.17 | 2.29 | 2.26 |
SWW-2.5 | 2.13 | 2.28 | 2.25 |
SWW-5 | 2.14 | 2.29 | 2.32 |
SWW-7.5 | 2.14 | 2.3 | 2.31 |
SWW-10 | 2.17 | 2.31 | 2.33 |
Samples | l (mm) | w (mm) | h (mm) | Wd (kg) | Vv (mm3) | Vn (mm3) | γd (kg/m3) | Vg (mm3) | γg (kg/m3) |
---|---|---|---|---|---|---|---|---|---|
R | 360.2 | 181.1 | 181.2 | 6.122 | 3,673,500 | 8,146,578 | 752 | 11,820,078 | 518 |
CFF-2.5 | 360.9 | 181.4 | 181.4 | 5.883 | 3,669,800 | 8,205,961 | 717 | 11,875,761 | 495 |
CFF-5 | 361.2 | 181.5 | 180.4 | 5.773 | 3,670,300 | 8,156,327 | 708 | 11,826,627 | 488 |
CFF-7.5 | 360.5 | 181.4 | 181.1 | 5.632 | 3,673,100 | 8,169,880 | 689 | 11,842,980 | 476 |
CFF-10 | 361.8 | 181.7 | 181.9 | 5.545 | 3,671,200 | 8,286,735 | 669 | 11,957,935 | 464 |
CW-2.5 | 360.9 | 180.3 | 180.3 | 6.015 | 3,670,400 | 8,061,770 | 746 | 11,732,170 | 513 |
CW-5 | 362.0 | 180.3 | 181.5 | 5.935 | 3,672,400 | 8,173,851 | 729 | 11,846,251 | 501 |
CW-7.5 | 361.4 | 180.4 | 180.8 | 5.853 | 3,673,100 | 8,114,438 | 721 | 11,787,538 | 497 |
CW-10 | 361.9 | 180.8 | 181.7 | 5.748 | 3,671,400 | 8,217,507 | 670 | 11,888,907 | 484 |
SWW-2.5 | 362.1 | 180.1 | 180.1 | 5.685 | 3,669,400 | 8,075,679 | 704 | 11,745,079 | 484 |
SWW-5 | 361.5 | 180.1 | 181.1 | 5.541 | 3,670,800 | 8,119,924 | 682 | 11,790,724 | 470 |
SWW-7.5 | 360.8 | 180.3 | 181.7 | 5.437 | 3,671,700 | 8,148,292 | 667 | 11,819,992 | 460 |
SWW-10 | 361.2 | 180.2 | 181.7 | 5.322 | 3,673,200 | 8,153,333 | 653 | 11,826,533 | 450 |
Samples | Initial Dry Weight (g) | Water-Saturated Weight After 24 h (g) | Water-Saturated Weight After 48 h (g) | Weight Saturated with Water (g) | Water Absorption (%) |
---|---|---|---|---|---|
R | 6122 | 6887.25 | 7242.33 | 7395.38 | 20.8 |
CFF-2.5 | 5883 | 6594.84 | 6888.99 | 7030.19 | 19.5 |
CFF-5 | 5773 | 6448.44 | 6719.77 | 6846.78 | 18.6 |
CFF-7.5 | 5632 | 6262.78 | 6504.96 | 6640.13 | 17.9 |
CFF-10 | 5545 | 6127.23 | 6382.30 | 6504.29 | 17.3 |
CW-2.5 | 6015 | 6869.13 | 7163.87 | 7332.29 | 21.9 |
CW-5 | 5935 | 6819.32 | 7104.20 | 7270.38 | 22.5 |
CW-7.5 | 5853 | 6766.07 | 7041.16 | 7210.90 | 23.2 |
CW-10 | 5748 | 6679.18 | 6949.33 | 7121.77 | 23.9 |
SWW-2.5 | 5685 | 6338.78 | 6605.97 | 6713.99 | 18.1 |
SWW-5 | 5541 | 6128.35 | 6405.40 | 6505.13 | 17.4 |
SWW-7.5 | 5437 | 5948.08 | 6247.113 | 6350.42 | 16.8 |
SWW-10 | 5322 | 5785.01 | 6093.69 | 6189.49 | 16.3 |
Samples | wi (kg) | we (kg) | Examinati on for Rashes and Cracks | Mass Loss (%) |
---|---|---|---|---|
R | 6.122 | 5.985 | No rashes and crack s observed | 2.23 |
CFF-2.5 | 5.883 | 5.757 | 2.15 | |
CFF-5 | 5.773 | 5.656 | 2.02 | |
CFF-7.5 | 5.632 | 5.523 | 1.94 | |
CFF-10 | 5.545 | 5.450 | 1.72 | |
CW-2.5 | 6.015 | 5.857 | 2.63 | |
CW-5 | 5.935 | 5.730 | 3.45 | |
CW-7.5 | 5.853 | 5.622 | 3.95 | |
CW-10 | 5.748 | 5.463 | 4.96 | |
SWW-2.5 | 5.685 | 5.575 | 1.93 | |
SWW-5 | 5.541 | 5.438 | 1.85 | |
SWW-7.5 | 5.437 | 5.341 | 1.77 | |
SWW-10 | 5.322 | 5.235 | 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorur Avsaroglu, E.B. Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate. Buildings 2025, 15, 2587. https://doi.org/10.3390/buildings15152587
Gorur Avsaroglu EB. Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate. Buildings. 2025; 15(15):2587. https://doi.org/10.3390/buildings15152587
Chicago/Turabian StyleGorur Avsaroglu, Ela Bahsude. 2025. "Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate" Buildings 15, no. 15: 2587. https://doi.org/10.3390/buildings15152587
APA StyleGorur Avsaroglu, E. B. (2025). Investigation of Hollow Block Production by Substituting Chicken Feather, Cotton and Rock Wool Waste Fibers for Pumice Aggregate. Buildings, 15(15), 2587. https://doi.org/10.3390/buildings15152587