Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = volcanic processes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2440 KiB  
Article
Real-Time Foreshock–Aftershock–Swarm Discrimination During the 2025 Seismic Crisis near Santorini Volcano, Greece: Earthquake Statistics and Complex Networks
by Ioanna Triantafyllou, Gerassimos A. Papadopoulos, Constantinos Siettos and Konstantinos Spiliotis
Geosciences 2025, 15(8), 300; https://doi.org/10.3390/geosciences15080300 (registering DOI) - 4 Aug 2025
Abstract
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused [...] Read more.
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused considerable social concern. A rapid increase in both the seismicity rate and the earthquake magnitudes was noted until the mainshock of ML = 5.3 on 10 February; afterwards, activity gradually diminished. Fault-plane solutions indicated SW-NE normal faulting. The epicenters moved with a mean velocity of ~0.72 km/day from SW to NE up to the mainshock area at a distance of ~25 km. Crucial questions publicly emerged during the cluster. Was it a foreshock–aftershock activity or a swarm of possibly volcanic origin? We performed real-time discrimination of the cluster type based on a daily re-evaluation of the space–time–magnitude changes and their significance relative to background seismicity using earthquake statistics and the topological metric betweenness centrality. Our findings were periodically documented during the ongoing cluster starting from the fourth cluster day (2 February 2025), at which point we determined that it was a foreshock and not a case of seismic swarm. The third day after the ML = 5.3 mainshock, a typical aftershock decay was detected. The observed foreshock properties favored a cascade mechanism, likely facilitated by non-volcanic material softening and the likely subdiffusion processes in a dense fault network. This mechanism was possibly combined with an aseismic nucleation process if transient geodetic deformation was present. No significant aftershock expansion towards the NE was noted, possibly due to the presence of a geometrical fault barrier east of the Anydros Ridge. The 2025 activity offered an excellent opportunity to investigate deciphering the type of ongoing seismicity cluster for real-time discrimination between foreshocks, aftershocks, and swarms. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
19 pages, 5166 KiB  
Article
Investigation of a Volcanic Rock-Derived Coagulant for Water Purification: A Study of Its Preparation Process
by Lei Zhou, Zhangrui Yang, Xiaoyong Liu, Xiaoben Yang, Xuewen Wu, Yong Zhou and Guocheng Zhu
Water 2025, 17(15), 2279; https://doi.org/10.3390/w17152279 - 31 Jul 2025
Viewed by 91
Abstract
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. [...] Read more.
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. Further investigation into the influence of synthetic parameters, such as calcination temperature, reaction time, and alkali types, on the structure and performance of a volcanic rock-derived coagulant was conducted. Techniques including Scanning Electron Microscopy, Energy-Dispersive Spectroscopy, Fourier-Transform Infrared Spectroscopy, and X-Ray Diffraction were utilized to characterize it. Also, a ferron-complexation timed spectrophotometric method was used to study the distribution of aluminum species in the coagulant. Results indicated that the volcanic rock that was treated with acidic and alkaline solutions had the potential to form PSAC with Al-OH, Al-O-Si, Fe-OH, and Fe-O-Si bonds, which influenced the coagulation–flocculation efficiency. An acid leaching temperature of 90 °C, 8 mL of 2 mol/L NaOH, a reaction time of 0.5 h, and a reaction temperature of 60 °C were conducive to the preparation. A higher temperature could result in a higher proportion of Alb species, and, at 100 °C, the Ala, Alc, and Alb were 29%, 24%, and 47%, respectively, achieving a residual turbidity lower than 1 NTU at an appropriate dosage, as well as a reduction of over 0.1 to 0.018 in the level of UV254. The findings of this study provide a feasible method to prepare a flocculant using volcanic rock. Further application is expected to yield good results in wastewater/water treatment. Full article
Show Figures

Figure 1

16 pages, 4736 KiB  
Review
Volcanic Islands as Reservoirs of Geoheritage: Current and Potential Initiatives of Geoconservation
by Esther Martín-González, Juana Vegas, Inés Galindo, Carmen Romero and Nieves Sánchez
J. Mar. Sci. Eng. 2025, 13(8), 1420; https://doi.org/10.3390/jmse13081420 - 25 Jul 2025
Viewed by 259
Abstract
Volcanic islands host exceptional geological features that illustrate complex endogenic processes and interactions with climatic and marine forces, while also being particularly vulnerable to the impacts of climate change. Despite their scientific, educational, touristic, and aesthetic values, such islands remain underrepresented within the [...] Read more.
Volcanic islands host exceptional geological features that illustrate complex endogenic processes and interactions with climatic and marine forces, while also being particularly vulnerable to the impacts of climate change. Despite their scientific, educational, touristic, and aesthetic values, such islands remain underrepresented within the UNESCO Global Geoparks (UGGp). This study reviews current volcanic island geoparks and evaluates territories with potential for future designation, based on documented geoheritage, geosite inventories, and geoconservation frameworks. Geoparks are categorized according to their dominant narratives—ranging from recent Quaternary volcanism to broader tectonic, sedimentary, and metamorphic histories. Through an analysis of their distribution, management strategies, and integration into territorial planning, this work highlights the challenges that insular territories face, including vulnerability to global environmental change, limited legal protection, and structural inequalities in access to international resources recognition. It concludes that volcanic island geoparks represent strategic platforms for implementing sustainable development models, especially in ecologically and socially fragile contexts. Enhancing their global representation will require targeted efforts in ecologically and socially fragile contexts. Enhancing their global representation will require targeted efforts in capacity building, funding access, and regional cooperation—particularly across the Global South. Full article
(This article belongs to the Special Issue Feature Review Papers in Geological Oceanography)
Show Figures

Figure 1

23 pages, 12729 KiB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 262
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

21 pages, 2049 KiB  
Article
Tracking Lava Flow Cooling from Space: Implications for Erupted Volume Estimation and Cooling Mechanisms
by Simone Aveni, Gaetana Ganci, Andrew J. L. Harris and Diego Coppola
Remote Sens. 2025, 17(15), 2543; https://doi.org/10.3390/rs17152543 - 22 Jul 2025
Viewed by 1016
Abstract
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we [...] Read more.
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we present an alternative approach based on the post-eruptive Thermal InfraRed (TIR) signal, using the recently proposed VRPTIR method to quantify radiative energy loss during lava flow cooling. We identify thermally anomalous pixels in VIIRS I5 scenes (11.45 µm, 375 m resolution) using the TIRVolcH algorithm, this allowing the detection of subtle thermal anomalies throughout the cooling phase, and retrieve lava flow area by fitting theoretical cooling curves to observed VRPTIR time series. Collating a dataset of 191 mafic eruptions that occurred between 2010 and 2025 at (i) Etna and Stromboli (Italy); (ii) Piton de la Fournaise (France); (iii) Bárðarbunga, Fagradalsfjall, and Sundhnúkagígar (Iceland); (iv) Kīlauea and Mauna Loa (United States); (v) Wolf, Fernandina, and Sierra Negra (Ecuador); (vi) Nyamuragira and Nyiragongo (DRC); (vii) Fogo (Cape Verde); and (viii) La Palma (Spain), we derive a new power-law equation describing mafic lava flow thickening as a function of time across five orders of magnitude (from 0.02 Mm3 to 5.5 km3). Finally, from knowledge of areas and episode durations, we estimate erupted volumes. The method is validated against 68 eruptions with known volumes, yielding high agreement (R2 = 0.947; ρ = 0.96; MAPE = 28.60%), a negligible bias (MPE = −0.85%), and uncertainties within ±50%. Application to the February-March 2025 Etna eruption further corroborates the robustness of our workflow, from which we estimate a bulk erupted volume of 4.23 ± 2.12 × 106 m3, in close agreement with preliminary estimates from independent data. Beyond volume estimation, we show that VRPTIR cooling curves follow a consistent decay pattern that aligns with established theoretical thermal models, indicating a stable conductive regime during the cooling stage. This scale-invariant pattern suggests that crustal insulation and heat transfer across a solidifying boundary govern the thermal evolution of cooling basaltic flows. Full article
Show Figures

Figure 1

18 pages, 2570 KiB  
Article
Applicability of Visible–Near-Infrared Spectroscopy to Predicting Water Retention in Japanese Forest Soils
by Rando Sekiguchi, Tatsuya Tsurita, Masahiro Kobayashi and Akihiro Imaya
Forests 2025, 16(7), 1182; https://doi.org/10.3390/f16071182 - 17 Jul 2025
Viewed by 251
Abstract
This study assessed the applicability of visible–near-infrared (vis-NIR) spectroscopy to predicting the water retention characteristics of forest soils in Japan, which vary widely owing to the presence of volcanic ash. Soil samples were collected from 34 sites, and the volumetric water content was [...] Read more.
This study assessed the applicability of visible–near-infrared (vis-NIR) spectroscopy to predicting the water retention characteristics of forest soils in Japan, which vary widely owing to the presence of volcanic ash. Soil samples were collected from 34 sites, and the volumetric water content was measured at eight levels of matric suction. Spectral data were processed by using the second derivative of the absorbance, and regression models were developed by using explainable boosting machine (EBM), which is an interpretable machine learning method. Although the prediction accuracy was limited owing to the small sample size and soil heterogeneity, EBM performed better under saturated conditions (R2 = 0.30), which suggests that vis-NIR spectroscopy can capture water-related features, especially under wet conditions. Importance analysis consistently selected wavelengths that were associated with organic matter and hydrated clay minerals. The important wavelengths clearly shifted from free-water bands in wet soils to mineral-related absorption bands in dry soils. These findings highlight the potential of coupling vis-NIR spectroscopy with interpretable models like EBM for estimating the hydraulic properties of forest soils. Improved accuracy is expected with larger datasets and stratified models by soil type, which can facilitate more efficient soil monitoring in forests. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

21 pages, 5158 KiB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 296
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

29 pages, 14630 KiB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 264
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

24 pages, 4663 KiB  
Article
Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite
by Shilei Liu, Yiduo Li, Han Liu, Peng Wang, Shizhen Zhang and Fenglin Chen
Minerals 2025, 15(7), 730; https://doi.org/10.3390/min15070730 - 12 Jul 2025
Viewed by 187
Abstract
The Yangtze Block, with its widespread Neoproterozoic mafic–felsic magmatic rock series and volcanic–sedimentary rock assemblages, is one of the key windows for reconstructing the assembly and fragmentation process of Rodinia. This study focuses on the Taoyuan syenogranite from the Micangshan Massif on the [...] Read more.
The Yangtze Block, with its widespread Neoproterozoic mafic–felsic magmatic rock series and volcanic–sedimentary rock assemblages, is one of the key windows for reconstructing the assembly and fragmentation process of Rodinia. This study focuses on the Taoyuan syenogranite from the Micangshan Massif on the northern Yangtze Block, by conducting systematic chronology, mineralogy, and geochemistry analyses to investigate their source, petrogenesis, and tectonic setting. LA-ICP-MS U–Pb geochronology reveals that the medium- to coarse-grained and medium- to fine-grained syenogranites have crystallization ages of 878 ± 4.2 Ma and 880 ± 6.5 Ma, respectively. These syenogranites have aluminum saturation index (A/CNK) values ranging from 0.79 to 1.06, indicating quasi-aluminous to weakly peraluminous compositions, and are classified as calc-alkaline I-type granites. The geochemical indicators of these rocks, including Mg# (44–48, mean 46), Zr/Hf (40.07), Nb/La (0.4), and zircon εHf(t) values (+9.2 to +10.9), collectively indicate a depleted lithospheric mantle source. The mantle source was metasomatized by subduction-derived fluids and sediment melts prior to partial melting as evidenced by their higher Mg#, elevated Ba content, and distinctive ratios (Rb/Y, Nb/Y, Th/Yb, Th/Sm, Th/Ce, and Ba/La). Integrating regional data, this study confirms crust–mantle interaction along the northern Yangtze during the early Neoproterozoic, supporting a sustained subduction-related tectonic setting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

21 pages, 7866 KiB  
Article
Asteroid and Meteorite Impacts as a Cause of Large Sedimentary Basins: A Case Study of the Transylvanian Depression
by Dumitru Ioane, Irina Stanciu and Mihaela Scradeanu
Geosciences 2025, 15(7), 267; https://doi.org/10.3390/geosciences15070267 - 9 Jul 2025
Viewed by 688
Abstract
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events [...] Read more.
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events due to active plate tectonics, sedimentation, and volcanism, with these geological processes destroying and burying their impact geomorphological signatures. To enlarge the Earth’s impacts database, new concepts and research methods are necessary, as well as the reinterpretation of old geological and geophysical models. Geomorphological, Geological, and Geophysical (3G) signatures in concealed impacted areas are discussed in this paper; the first offers the target characteristics, while the others give means for detecting their unseen remnants. The 3G signatures have been applied to the Transylvanian Depression, a fascinating geological structure, with difficulties in explaining the direct overlapping of regionally developed thick tuff and thick salt layers, and undecided interpretation of the regional magnetic anomaly. Large and deep sedimentary basins, such as the Precaspian, Alexandria and Transylvanian depressions, are interpreted to have started as impacted areas during the Permian or the Lower Neogene. Geophysical and geological existing information have been reinterpreted, offering a new way in understanding deeply located geological structures. Full article
Show Figures

Figure 1

26 pages, 3270 KiB  
Review
Carbon Isotopes in Magmatic Systems: Measurements, Interpretations, and the Carbon Isotopic Signature of the Earth’s Mantle
by Yves Moussallam
Geosciences 2025, 15(7), 266; https://doi.org/10.3390/geosciences15070266 - 9 Jul 2025
Viewed by 329
Abstract
Carbon isotopes in magmatic systems serve as powerful tracers for understanding magma evolution, mantle processes, the deep carbon cycle, and the origin of Earth’s carbon. This review provides a comprehensive overview of carbon isotope measurements and behavior in magmatic systems, highlighting recent technological [...] Read more.
Carbon isotopes in magmatic systems serve as powerful tracers for understanding magma evolution, mantle processes, the deep carbon cycle, and the origin of Earth’s carbon. This review provides a comprehensive overview of carbon isotope measurements and behavior in magmatic systems, highlighting recent technological advancements and scientific insights. We begin by examining methods for measuring δ13C in volcanic gases, vesicles, glasses, melt, and fluid inclusions. We then explore the behavior of carbon isotopes in magmatic systems, especially during magmatic degassing. Finally, we evaluate what recent advances mean for our understanding of the carbon isotope signature of the Earth’s upper mantle. Full article
Show Figures

Figure 1

25 pages, 6368 KiB  
Article
Development of a Thermal Infrared Network for Volcanic and Environmental Monitoring: Hardware Design and Data Analysis Software Code
by Fabio Sansivero, Giuseppe Vilardo and Ciro Buonocunto
Sensors 2025, 25(13), 4141; https://doi.org/10.3390/s25134141 - 2 Jul 2025
Viewed by 296
Abstract
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work [...] Read more.
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work presents the comprehensive development of a thermal infrared monitoring network, detailing everything from the hardware schematics of the remote monitoring station (RMS) to the code for the final data processing software. The procedures implemented in the RMS for managing TIR sensor operations, acquiring environmental data, and transmitting data remotely are thoroughly discussed, along with the technical solutions adopted. The processing of TIR imagery is carried out using ASIRA (Automated System of InfraRed Analysis), a free software package, now developed for GNU Octave. ASIRA performs quality filtering and co-registration, and applies various seasonal correction methodologies to extract time series of deseasoned surface temperatures, estimate heat fluxes, and track variations in thermally anomalous areas. Processed outputs include binary, Excel, and CSV formats, with interactive HTML plots for visualization. The system’s effectiveness has been validated in active volcanic areas of southern Italy, demonstrating high reliability in detecting anomalous thermal behavior and distinguishing endogenous geophysical processes. The aim of this work is to enable readers to easily replicate and deploy this open-source, low-cost system for the continuous, automated thermal monitoring of active volcanic and geothermal areas and environmental pollution, thereby supporting hazard assessment and scientific research. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Thermography and Sensing Technologies)
Show Figures

Figure 1

19 pages, 1369 KiB  
Review
Current State of Arsenic, Fluoride, and Nitrate Groundwater Contamination in Northern Mexico: Distribution, Health Impacts, and Emerging Research
by Mélida Gutiérrez, María Teresa Alarcón-Herrera, María Socorro Espino-Valdés and Luz Idalia Valenzuela-García
Water 2025, 17(13), 1990; https://doi.org/10.3390/w17131990 - 2 Jul 2025
Viewed by 493
Abstract
The plateaus of north-central Mexico have an arid to semiarid climate and groundwater naturally contaminated with inorganic arsenic (iAs) and fluoride (F). Like other arid and semiarid areas, this region faces great challenges to maintain a safe supply of drinking and irrigation water. [...] Read more.
The plateaus of north-central Mexico have an arid to semiarid climate and groundwater naturally contaminated with inorganic arsenic (iAs) and fluoride (F). Like other arid and semiarid areas, this region faces great challenges to maintain a safe supply of drinking and irrigation water. Studies conducted in the past few decades on various locations within this region have reported groundwater iAs, F, and nitrate-nitrogen (NO3-N), and either their source, enrichment processes, health risks, and/or potential water treatments. The relevant findings are analyzed and condensed here to provide an overview of the groundwater situation of the region. Studies identify volcanic rocks (rhyolite) and their weathering products (clays) as the main sources of iAs and F and report that these solutes become enriched through evaporation and residence time. In contrast, NO3-N is reported as anthropogenic, with the highest concentrations found in large urban centers and in agricultural and livestock farm areas. Health risks are high since the hot spots of contamination correspond to populated areas. Health problems associated with NO3-N in drinking water may be underestimated. Removal technologies of the contaminants remain at the laboratory or pilot stage, except for the reverse osmosis filtration units fitted to selected wells within the state of Chihuahua. A recent approach to supplying drinking water free of iAs and F to two urban centers consisted of switching from groundwater to surface water. Incipient research currently focuses on the potential repercussions of irrigating crops with As-rich water. The groundwater predicaments concerning contamination, public health impact, and irrigation suitability depicted here can be applied to semiarid areas worldwide. Full article
Show Figures

Graphical abstract

22 pages, 1380 KiB  
Review
Carbon Mineralization in Basaltic Rocks: Mechanisms, Applications, and Prospects for Permanent CO2 Sequestration
by Ernest Ansah Owusu, Jiyue Wu, Elizabeth Akonobea Appiah, William Apau Marfo, Na Yuan, Xiaojing Ge, Kegang Ling and Sai Wang
Energies 2025, 18(13), 3489; https://doi.org/10.3390/en18133489 - 2 Jul 2025
Viewed by 654
Abstract
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an [...] Read more.
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an effective and durable solution for carbon dioxide sequestration. Basaltic rocks are widely used for road and building construction and insulation, soil amendment, and in carbon storage. There is a need to understand the parameters that affect this process in order to achieve efficient carbon mineralization. This review systematically analyzes peer-reviewed studies and project reports published over the past two decades to assess the mechanisms, effectiveness, and challenges of carbon mineralization in basaltic formations. Key factors such as mineral composition, pH, temperature and pressure are evaluated for their impact on mineral dissolution and carbonate precipitation kinetics. The presence of olivine and basaltic glass also accelerates cation release and carbonation rates. The review includes case studies from major field projects (e.g., CarbFix and Wallula) and laboratory experiments to illustrate how mineralization performs in different geological environments. It is essential to maximize mineralization kinetics while ensuring the formation of stable carbonate phases in order to achieve efficient and permanent carbon dioxide storage in basaltic rock. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

12 pages, 2413 KiB  
Article
The Effects of Calcination Process Parameters on RHA Reactivity and Mortar Mechanical Properties
by Jianrui Ji, Lihui Li, Lei Quan, Bo Tian, Panpan Zhang and Sili Li
Materials 2025, 18(13), 3129; https://doi.org/10.3390/ma18133129 - 2 Jul 2025
Viewed by 264
Abstract
The insufficient optimization of calcination process parameters severely restricts the enhancement of rice husk ash (RHA) volcanic ash activity. In this study, an intelligent muffle furnace was used for multi-parameter coupled regulation, combined with microscopic characterization techniques, to elucidate the effects of temperature, [...] Read more.
The insufficient optimization of calcination process parameters severely restricts the enhancement of rice husk ash (RHA) volcanic ash activity. In this study, an intelligent muffle furnace was used for multi-parameter coupled regulation, combined with microscopic characterization techniques, to elucidate the effects of temperature, cooling mode, heating rate, and holding time on the reactivity of RHA. The results showed that the effect of calcination temperature on the volcanic ash activity of RHA was dominant. RHA calcined at 600–700 °C showed a honeycomb porous structure, displayed broad amorphous SiO2 diffraction peaks and up to 95% content of SiO2, and exhibited the best volcanic ash activity. The increased crystallinity of RHA calcined at 800 °C led to a decrease in its activity. The subcooling treatment with distilled water effectively rebuilt the lamellar structure, reduced the crystallinity, and enhanced the reactivity. The samples incorporated with 600 °C calcined RHA showed higher compressive strength at 3 days compared to 800 °C calcined RHA. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop